Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 274-287.DOI: 10.13745/j.esf.sf.2025.3.23
Previous Articles Next Articles
CUI Hao1,2(), WEI Gangjian1,*(
)
Received:
2025-02-06
Revised:
2025-02-22
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
CUI Hao, WEI Gangjian. The weathering evolution during the Eocene-Oligocene Transition in the surrounding regions of the Tibetan Plateau and its response to global and regional climate changes[J]. Earth Science Frontiers, 2025, 32(3): 274-287.
年龄/ Ma | 深度/ m | 全岩矿物质量分数/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
石英 | 斜长石 | 钾长石 | 高岭石 | 云母 | 蒙脱石 | 绿泥石 | 白云石 | 方解石 | 方石英 | 菱铁矿 | 赤铁矿 | ||
— | 0.0 | 10.3 | 10.1 | 46.8 | 12.7 | 10.3 | 5.6 | — | — | — | 4.2 | — | — |
— | 7.0 | 6.3 | 0.2 | 29.6 | 3.2 | 12.5 | 42.5 | — | — | — | 5.7 | — | — |
34.935 09 | 22.5 | 32.0 | 10.3 | 19.2 | 11.3 | 17.4 | 9.7 | — | — | — | — | — | 0.1 |
34.923 18 | 23.0 | 23.8 | — | 13.2 | 10.2 | 13.5 | — | — | 37.6 | — | — | 1.7 | — |
34.899 36 | 24.5 | 21.7 | 4.0 | 29.3 | 19.2 | 19.2 | 6.6 | — | — | — | — | — | — |
34.792 15 | 28.5 | 16.7 | — | 9.7 | 11.8 | 17.8 | — | — | 40.6 | — | — | — | 3.4 |
34.637 30 | 35.0 | 26.2 | 6.9 | 20.9 | 17.8 | 22.6 | 5.6 | — | — | — | — | — | — |
34.577 74 | 37.5 | 34.0 | 7.5 | 13.5 | 14.9 | 23.1 | — | 3.7 | — | — | — | 3.9 | — |
34.345 29 | 47.5 | 27.8 | 8.1 | 14.7 | 18.0 | 15.7 | 15.7 | — | — | — | — | — | — |
33.781 10 | 71.0 | 21.3 | 4.1 | 27.7 | 10.3 | 9.4 | 27.2 | — | — | — | — | — | — |
33.535 64 | 81.0 | 21.9 | 12.1 | 24.4 | 7.9 | 18.0 | 13.5 | — | — | — | 2.2 | — | — |
33.196 27 | 95.0 | 38.5 | 18.8 | 11.1 | 6.6 | 13.9 | 11.1 | — | — | — | — | — | — |
32.874 65 | 108.5 | 32.7 | 7.1 | 11.4 | 12.0 | 17.9 | 18.9 | — | — | — | — | — | — |
32.838 91 | 110.0 | 30.5 | 12.2 | 13.5 | 7.0 | 15.9 | 19.1 | — | — | — | — | — | — |
32.695 97 | 116.0 | 39.6 | 13.8 | 15.5 | 9.4 | 15.4 | 6.3 | — | — | — | — | — | — |
32.124 94 | 139.0 | 5.3 | 5.3 | 7.7 | 1.7 | 4.8 | 33.4 | — | 35.7 | 6.1 | — | — | — |
31.654 30 | 158.5 | 26.0 | 6.9 | 21.6 | 11.5 | 16.7 | 17.3 | — | — | — | — | — | — |
31.024 86 | 187.0 | 15.1 | 5.0 | 15.9 | 5.1 | 12.6 | 46.2 | — | — | — | — | — | — |
30.886 00 | 193.0 | 22.4 | 8.4 | 16.9 | 12.4 | 15.6 | 18.2 | — | — | — | 1.4 | 4.3 | 0.4 |
30.032 23 | 219.5 | 28.3 | 5.7 | 17.8 | 10.8 | 22.3 | 13.5 | — | — | — | 1.6 | — | |
29.497 44 | 243.5 | 22.7 | 9.6 | 23.5 | 6.6 | 12.8 | 12.9 | — | — | — | 2.5 | 9.4 | — |
29.106 47 | 260.0 | 27.0 | 5.4 | 11.8 | 13.9 | 21.0 | 19.1 | — | — | — | 1.8 | — | |
28.160 48 | 299.0 | 23.4 | 10.8 | 13.8 | 17.1 | 18.1 | 13.7 | — | — | — | — | 3.1 | — |
27.766 42 | 317.0 | 46.8 | 5.6 | 11.1 | 8.9 | 10.7 | 16.9 | — | — | — | — | — | — |
27.208 73 | 339.5 | 29.7 | 8.7 | 15.4 | 12.0 | 20.4 | 13.8 | — | — | — | — | — | — |
26.587 60 | 361.0 | 30.1 | 8.0 | 11.7 | 11.9 | 19.7 | 16.6 | — | — | — | 1.5 | — | 0.5 |
26.049 62 | 381.5 | 34.7 | 9.4 | 10.5 | 9.4 | 19.4 | 14.6 | — | — | — | 1.8 | — | 0.2 |
Table 1 Mineral content characteristics of the sediments in the Lühe Basin
年龄/ Ma | 深度/ m | 全岩矿物质量分数/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
石英 | 斜长石 | 钾长石 | 高岭石 | 云母 | 蒙脱石 | 绿泥石 | 白云石 | 方解石 | 方石英 | 菱铁矿 | 赤铁矿 | ||
— | 0.0 | 10.3 | 10.1 | 46.8 | 12.7 | 10.3 | 5.6 | — | — | — | 4.2 | — | — |
— | 7.0 | 6.3 | 0.2 | 29.6 | 3.2 | 12.5 | 42.5 | — | — | — | 5.7 | — | — |
34.935 09 | 22.5 | 32.0 | 10.3 | 19.2 | 11.3 | 17.4 | 9.7 | — | — | — | — | — | 0.1 |
34.923 18 | 23.0 | 23.8 | — | 13.2 | 10.2 | 13.5 | — | — | 37.6 | — | — | 1.7 | — |
34.899 36 | 24.5 | 21.7 | 4.0 | 29.3 | 19.2 | 19.2 | 6.6 | — | — | — | — | — | — |
34.792 15 | 28.5 | 16.7 | — | 9.7 | 11.8 | 17.8 | — | — | 40.6 | — | — | — | 3.4 |
34.637 30 | 35.0 | 26.2 | 6.9 | 20.9 | 17.8 | 22.6 | 5.6 | — | — | — | — | — | — |
34.577 74 | 37.5 | 34.0 | 7.5 | 13.5 | 14.9 | 23.1 | — | 3.7 | — | — | — | 3.9 | — |
34.345 29 | 47.5 | 27.8 | 8.1 | 14.7 | 18.0 | 15.7 | 15.7 | — | — | — | — | — | — |
33.781 10 | 71.0 | 21.3 | 4.1 | 27.7 | 10.3 | 9.4 | 27.2 | — | — | — | — | — | — |
33.535 64 | 81.0 | 21.9 | 12.1 | 24.4 | 7.9 | 18.0 | 13.5 | — | — | — | 2.2 | — | — |
33.196 27 | 95.0 | 38.5 | 18.8 | 11.1 | 6.6 | 13.9 | 11.1 | — | — | — | — | — | — |
32.874 65 | 108.5 | 32.7 | 7.1 | 11.4 | 12.0 | 17.9 | 18.9 | — | — | — | — | — | — |
32.838 91 | 110.0 | 30.5 | 12.2 | 13.5 | 7.0 | 15.9 | 19.1 | — | — | — | — | — | — |
32.695 97 | 116.0 | 39.6 | 13.8 | 15.5 | 9.4 | 15.4 | 6.3 | — | — | — | — | — | — |
32.124 94 | 139.0 | 5.3 | 5.3 | 7.7 | 1.7 | 4.8 | 33.4 | — | 35.7 | 6.1 | — | — | — |
31.654 30 | 158.5 | 26.0 | 6.9 | 21.6 | 11.5 | 16.7 | 17.3 | — | — | — | — | — | — |
31.024 86 | 187.0 | 15.1 | 5.0 | 15.9 | 5.1 | 12.6 | 46.2 | — | — | — | — | — | — |
30.886 00 | 193.0 | 22.4 | 8.4 | 16.9 | 12.4 | 15.6 | 18.2 | — | — | — | 1.4 | 4.3 | 0.4 |
30.032 23 | 219.5 | 28.3 | 5.7 | 17.8 | 10.8 | 22.3 | 13.5 | — | — | — | 1.6 | — | |
29.497 44 | 243.5 | 22.7 | 9.6 | 23.5 | 6.6 | 12.8 | 12.9 | — | — | — | 2.5 | 9.4 | — |
29.106 47 | 260.0 | 27.0 | 5.4 | 11.8 | 13.9 | 21.0 | 19.1 | — | — | — | 1.8 | — | |
28.160 48 | 299.0 | 23.4 | 10.8 | 13.8 | 17.1 | 18.1 | 13.7 | — | — | — | — | 3.1 | — |
27.766 42 | 317.0 | 46.8 | 5.6 | 11.1 | 8.9 | 10.7 | 16.9 | — | — | — | — | — | — |
27.208 73 | 339.5 | 29.7 | 8.7 | 15.4 | 12.0 | 20.4 | 13.8 | — | — | — | — | — | — |
26.587 60 | 361.0 | 30.1 | 8.0 | 11.7 | 11.9 | 19.7 | 16.6 | — | — | — | 1.5 | — | 0.5 |
26.049 62 | 381.5 | 34.7 | 9.4 | 10.5 | 9.4 | 19.4 | 14.6 | — | — | — | 1.8 | — | 0.2 |
Fig.1 Sampling site in the Lühe Basin and distribution points of Eocene-Oligocene paleoclimate terrestrial records in other regions of the Tibetan Plateau. Lanzhou Basin adapted from [31,56-57]; Xining Basin adapted from [58⇓⇓-61]; Qaidam Basin adapted from [62-63]; Junggar Basin adapted from [64⇓⇓-67]; Tarim Basin adapted from [68-69]; Tajik Basin adapted from [70-71]; Lunpola Basin adapted from [72]; Markam Basin adapted from [73-74]; Jianchuan Basin adapted from [75]; Lühe Basin adapted from [37] and this study.
区域 | 地点 | 风化指标 | 年代范围 | 来源 | 其他古气候指标 | 来源 |
---|---|---|---|---|---|---|
东北缘 | 兰州盆地 | Na/Al,赤铁矿/针铁矿 CIA,K2O/Al2O3 | 约35.25~31.20 Ma 约35.5~31.2 Ma | [ [ | 沉积相 | [ |
西宁盆地 | vogt残留指数 | 35~22 Ma | [ | 沉积相 古植物孢粉 | [ [ | |
北缘 | 柴达木盆地 | 黏土矿物特征 | 40.5~31.0 Ma | [ | 湖泊碳酸盐δ18O | [ |
西北缘 | 准噶尔盆地 | 黏土矿物含量 | 35.8~33.3 Ma | [ | 古生物化石 | [ |
塔里木盆地 | — | — | — | 沉积相 | [ | |
塔吉克盆地 | WIP | 28.39~30.19 Ma | [ | 湖泊碳酸盐δ18O 沉积相 | [ [ | |
中部 | 伦坡拉盆地 | — | — | — | 地貌学 | [ |
东南缘 | 芒康盆地 | — | — | — | 古植物孢粉 | [ |
剑川盆地 | — | — | — | 沉积相 | [ | |
吕合盆地 | CIA 黏土矿物含量 | 35.5~25.5 Ma 34.94~26.05 Ma | [ 本研究 | 古植物孢粉 | [ |
Table 2 Paleoclimate records of the Eocene-Oligocene Transition in the marginal basins of the Tibetan Plateau
区域 | 地点 | 风化指标 | 年代范围 | 来源 | 其他古气候指标 | 来源 |
---|---|---|---|---|---|---|
东北缘 | 兰州盆地 | Na/Al,赤铁矿/针铁矿 CIA,K2O/Al2O3 | 约35.25~31.20 Ma 约35.5~31.2 Ma | [ [ | 沉积相 | [ |
西宁盆地 | vogt残留指数 | 35~22 Ma | [ | 沉积相 古植物孢粉 | [ [ | |
北缘 | 柴达木盆地 | 黏土矿物特征 | 40.5~31.0 Ma | [ | 湖泊碳酸盐δ18O | [ |
西北缘 | 准噶尔盆地 | 黏土矿物含量 | 35.8~33.3 Ma | [ | 古生物化石 | [ |
塔里木盆地 | — | — | — | 沉积相 | [ | |
塔吉克盆地 | WIP | 28.39~30.19 Ma | [ | 湖泊碳酸盐δ18O 沉积相 | [ [ | |
中部 | 伦坡拉盆地 | — | — | — | 地貌学 | [ |
东南缘 | 芒康盆地 | — | — | — | 古植物孢粉 | [ |
剑川盆地 | — | — | — | 沉积相 | [ | |
吕合盆地 | CIA 黏土矿物含量 | 35.5~25.5 Ma 34.94~26.05 Ma | [ 本研究 | 古植物孢粉 | [ |
[1] | BROWNING J V, MILLER K G, PAK D K. Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain: the icehouse cometh[J]. Geology, 1996, 24(7): 639-642. |
[2] | WESTERHOLD T, MARWAN N, DRURY A J, et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387. |
[3] | HUTCHINSON D K, COXALL H K, LUNT D J, et al. The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons[J]. Climate of the Past, 2021, 17(1): 269-315. |
[4] | POUND M J, SALZMANN U. Heterogeneity in global vegetation and terrestrial climate change during the late Eocene to early Oligocene transition[J]. Scientific Reports, 2017, 7(1): 43386. |
[5] | SILVA I P, JENKINS D G. Decision on the Eocene-Oligocene boundary stratotype[J]. Episodes Journal of International Geoscience, 1993, 16(3): 379-382. |
[6] | KENNETT J P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 1977, 82(27): 3843-3860. |
[7] | SAVIN S M, DOUGLAS R G, STEHLI F G. Tertiary marine paleotemperatures[J]. Geological Society of America Bulletin, 1975, 86(11): 1499-1510. |
[8] | SHACKLETON N J. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281[J]. Initial Reports Deep Sea Drilling Project, 1975, 29: 743-755. |
[9] | COXALL H K, PEARSON P N. The Eocene-Oligocene Transition[M]. London: Geological Society of London, 2007. |
[10] | PETERSEN S V, SCHRAG D P. Antarctic ice growth before and after the Eocene-Oligocene transition: new estimates from clumped isotope paleothermometry[J]. Paleoceanography, 2015, 30(10): 1305-1317. |
[11] |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI PMID |
[12] |
PAGANI M, ZACHOS J C, FREEMAN K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science, 2005, 309(5734): 600-603.
PMID |
[13] | PEARSON P N, VAN DONGEN B E, NICHOLAS C J, et al. Stable warm tropical climate through the Eocene Epoch[J]. Geology, 2007, 35(3): 211-214. |
[14] | THOMPSON N, SALZMANN U, LÓPEZ-QUIRÓS A, et al. Vegetation change across the Drake Passage region linked to late Eocene cooling and glacial disturbance after the Eocene-Oligocene transition[J]. Climate of the Past Discussions, 2022, 18 (2): 209-232. |
[15] | 张明宇, 常鑫, 胡利民, 等. 东海内陆架有机碳的源-汇过程及其沉积记录[J]. 沉积学报, 2021, 39(3): 593-609. |
[16] | GUO Z T, RUDDIMAN W F, HAO Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163. |
[17] | BÖHME M, PRIETO J, SCHNEIDER S, et al. The Cenozoic on-shore basins of Northern Vietnam: biostratigraphy, vertebrate and invertebrate faunas[J]. Journal of Asian Earth Sciences, 2011, 40(2): 672-687. |
[18] | BOARDMAN G S, SECORD R. Stable isotope paleoecology of White River ungulates during the Eocene-Oligocene climate transition in northwestern Nebraska[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 375: 38-49. |
[19] | PROTHERO D R, HEATON T H. Faunal stability during the early Oligocene climatic crash[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127(1/2/3/4): 257-283. |
[20] | SHELDON N D, COSTA E, CABRERA L, et al. Continental climatic and weathering response to the Eocene-Oligocene transition[J]. The Journal of Geology, 2012, 120(2): 227-236. |
[21] | BOZUKOV V, UTESCHER T, IVANOV D. Late Eocene to early Miocene climate and vegetation of Bulgaria[J]. Review of Palaeobotany and Palynology, 2009, 153(3/4): 360-374. |
[22] |
DUNN R E, STRÖMBERG C A E, MADDEN R H, et al. Linked canopy, climate, and faunal change in the Cenozoic of Patagonia[J]. Science, 2015, 347(6219): 258-261.
DOI PMID |
[23] | FAN M, AYYASH S A, TRIPATI A, et al. Terrestrial cooling and changes in hydroclimate in the continental interior of the United States across the Eocene-Oligocene boundary[J]. GSA Bulletin, 2018, 130(7/8): 1073-1084. |
[24] | SHELDON N D. Nonmarine records of climatic change across the Eocene-Oligocene transition[M]. Washington: Geological Society of America, 2009. |
[25] | WILSON D S, POLLARD D, DECONTO R M, et al. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene[J]. Geophysical Research Letters, 2013, 40(16): 4305-4309. |
[26] | HOOKER J J, COLLINSON M E, SILLE N P. Eocene-Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event[J]. Journal of the Geological Society, 2004, 161(2): 161-172. |
[27] | HREN M T, SHELDON N D, GRIMES S T, et al. Terrestrial cooling in Northern Europe during the Eocene-Oligocene transition[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7562-7567. |
[28] | ZANAZZI A, KOHN M J, MACFADDEN B J, et al. Large temperature drop across the Eocene-Oligocene transition in central North America[J]. Nature, 2007, 445(7128): 639-642. |
[29] | COLWYN D A, HREN M T. An abrupt decrease in Southern Hemisphere terrestrial temperature during the Eocene-Oligocene transition[J]. Earth and Planetary Science Letters, 2019, 512: 227-235. |
[30] | LAURETANO V, KENNEDY-ASSER A T, KORASIDIS V A, et al. Eocene to Oligocene terrestrial Southern Hemisphere cooling caused by declining pCO2[J]. Nature Geoscience, 2021, 14(9): 659-664. |
[31] |
AO H, DUPONT-NIVET G, ROHLING E J, et al. Orbital climate variability on the northeastern Tibetan Plateau across the Eocene-Oligocene transition[J]. Nature Communications, 2020, 11(1): 5249.
DOI PMID |
[32] | SUN J, NI X, BI S, et al. Synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in Asia[J]. Scientific Reports, 2014, 4(1): 7463. |
[33] | MENG J, MCKENNA M C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau[J]. Nature, 1998, 394(6691): 364-367. |
[34] | SUN J, WINDLEY B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J]. Geology, 2015, 43(11): 1015-1018. |
[35] | QUAN C, LIU Y S C, UTESCHER T. Eocene monsoon prevalence over China: a paleobotanical perspective[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365: 302-311. |
[36] | LI Y X, JIAO W J, LIU Z H, et al. Terrestrial responses of low-latitude Asia to the Eocene-Oligocene climate transition revealed by integrated chronostratigraphy[J]. Climate of the Past, 2016, 12(2): 255-272. |
[37] | TANG H, CUI H, LI S F, et al. Orbital-paced silicate weathering intensity and climate evolution across the Eocene-Oligocene transition in the southeastern margin of the Tibetan Plateau[J]. Global and Planetary Change, 2024, 234: 104388. |
[38] | BERNER R A, CALDEIRA K. The need for mass balance and feedback in the geochemical carbon cycle[J]. Geology, 1997, 25(10): 955-956. |
[39] | WALKER J C G, HAYS P B, KASTING J F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature[J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9776-9782. |
[40] | KUTZBACH J E, PRELL W L, RUDDIMAN W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau[J]. The Journal of Geology, 1993, 101(2): 177-190. |
[41] | RAYMO M E, RUDDIMAN W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122. |
[42] |
MOLNAR P, TAPPONNIER P. Cenozoic Tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4201): 419-426.
PMID |
[43] | FANG X, YAN M, ZHANG W, et al. Paleogeography control of Indian monsoon intensification and expansion at 41 Ma[J]. Science Bulletin, 2021, 66(22): 2320-2328. |
[44] | WEST A J. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks[J]. Geology, 2012, 40(9): 811-814. |
[45] | XING Q, MUNDAY D, KLOCKER A, et al. The sensitivity of the Eocene-Oligocene Southern Ocean to the strength and position of wind stress[J]. Climate of the Past, 2022, 18(12): 2669-2693. |
[46] | YIN A, DANG Y Q, WANG L C, et al. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): the southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin[J]. Geological Society of America Bulletin, 2008, 120(7/8): 813-846. |
[47] | ZHANG K X, WANG G C, JI J L, et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau[J]. Science China Earth Sciences, 2010, 53: 1271-1294. |
[48] | JIA W J, WANG M F, ZHOU C H, et al. Analysis of the spatial association of geographical detector-based landslides and environmental factors in the southeastern Tibetan Plateau, China[J]. PLoS One, 2021, 16(5): e0251776. |
[49] | MYERS N, MITTERMEIER R A, MITTERMEIER C G, et al. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6772): 853-858. |
[50] | LI S, SPICER R A, SU T, et al. An updated chronostratigraphic framework for the Cenozoic sediments of southeast margin of the Tibetan Plateau: implications for regional tectonics[J]. Global and Planetary Change, 2024, 236: 104436. |
[51] | LI X H, ZHU X X, NIU Y, et al. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China[J]. Journal of Systematics and Evolution, 2014, 52(3): 280-288. |
[52] | SPICER R A, FARNSWORTH A, SU T. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: an evolving story[J]. Plant Diversity, 2020, 42(4): 229-254. |
[53] | LI S, SU T, SPICER R A, et al. Oligocene deformation of the Chuandian terrane in the SE margin of the Tibetan Plateau related to the extrusion of Indochina[J]. Tectonics, 2020, 39(7): e2019TC005974. |
[54] | 云南地矿局. 云南省区域地质志[M]. 北京: 地质出版社, 1990. |
[55] | LINNEMANN U, SU T, KUNZMANN L, et al. New U-Pb dates show a Paleogene origin for the modern Asian biodiversity hot spots[J]. Geology, 2018, 46(1): 3-6. |
[56] | 张鹏. 兰州盆地中始新世至早中新世磁性地层与古环境演化[D]. 西安: 中国科学院研究生院(地球环境研究所), 2015. |
[57] |
李兆雨, 李永项, 李文厚, 等. 青藏高原东北部兰州盆地新生代沉积相与古环境演化[J]. 古地理学报, 2023, 25(3): 648-670.
DOI |
[58] | ZHANG C, ZHANG R, HU B, et al. A relatively warm and humid Oligocene climate in the northeastern Tibetan Plateau based on a high-resolution clay mineralogical and geochemical record[J]. Global and Planetary Change, 2023, 227: 104178. |
[59] | XIAO G Q, ABELS H A, YAO Z Q, et al. Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT) in obliquity: dominated terrestrial records (Xining Basin, China)[J]. Climate of the Past, 2010, 6(4): 501-513. |
[60] | DUPONT-NIVET G, KRIJGSMAN W, LANGEREIS C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445(7128): 635-638. |
[61] | HOORN C, STRAATHOF J, ABELS H A, et al. A late Eocene palynological record of climate change and Tibetan Plateau uplift (Xining Basin, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 344: 16-38. |
[62] | YE C, YANG Y, FANG X, et al. Chlorite chemical composition change in response to the Eocene-Oligocene climate transition on the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512: 23-32. |
[63] | LI Y, SUN P, ZHANG Q, et al. Middle Eocene Climatic Optimum sensitivity of a continental lake basin from geochemical records of the Fushun Basin, Northeastern China[J]. Ore Geology Reviews, 2023, 161: 105637. |
[64] | ZHANG R, KRAVCHINSKY V A, YUE L. Link between global cooling and mammalian transformation across the Eocene-Oligocene boundary in the continental interior of Asia[J]. International Journal of Earth Sciences, 2012, 101: 2193-2200. |
[65] | WU W, MENG J I N, YE J I E, et al. Propalaeocastor (Rodentia, Mammalia) from the Early Oligocene of Burqin Basin, Xinjiang[J]. American Museum Novitates, 2004, 2004(3461): 1-16. |
[66] | 叶捷, 孟津, 吴文裕, 等. 新疆布尔津盆地晚始新世—早渐新世岩石及生物地层[J]. 古脊椎动物学报, 2005(1): 49-60. |
[67] | NI X, MENG J, WU W, et al. A new Early Oligocene peradectine marsupial (Mammalia) from the Burqin region of Xinjiang, China[J]. Naturwissenschaften, 2007, 94: 237-241. |
[68] | BOSBOOM R E, DUPONT-NIVET G, HOUBEN A J P, et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 385-398. |
[69] | BOSBOOM R, DUPONT-NIVET G, GROTHE A, et al. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene[J]. Basin Research, 2014, 26(5): 621-640. |
[70] | SUN J, LIU W, GUO Z, et al. Enhanced aridification across the Eocene/Oligocene transition evidenced by geochemical record in the Tajik Basin, Central Asia[J]. Global and Planetary Change, 2022, 211: 103789. |
[71] | CARRAPA B, DECELLES P G, WANG X, et al. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia[J]. Earth and Planetary Science Letters, 2015, 424: 168-178. |
[72] | ROWLEY D B, CURRIE B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681. |
[73] | DENG C, ZHU R, VEROSUB K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE transect in the Chinese loess plateau[J]. Geophysical Research Letters, 2000, 27(22): 3715-3718. |
[74] | SU T, SPICER R A, LI S H, et al. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet[J]. National Science Review, 2019, 6(3): 495-504. |
[75] |
SORREL P, EYMARD I, LELOUP P H, et al. Wet tropical climate in SE Tibet during the Late Eocene[J]. Scientific Reports, 2017, 7(1): 7809.
DOI PMID |
[76] | OPITZ S, RAMISCH A, IJMKER J, et al. Spatio-temporal pattern of detrital clay-mineral supply to a lake system on the north-eastern Tibetan Plateau, and its relationship to late Quaternary paleoenvironmental changes[J]. Catena, 2016, 137: 203-218. |
[77] | SINGER A. The paleoclimatic interpretation of clay minerals in soils and weathering profiles[J]. Earth-Science Reviews, 1980, 15(4): 303-326. |
[78] | CRUZ M D R. Clay mineral assemblages in flysch from the Campo de Gibraltar area (Spain)[J]. Clay minerals, 1999, 34(2): 345-364. |
[79] | BISCAYE P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-832. |
[80] | WITKOWSKI C R, LAURETANO V, FARNSWORTH A, et al. Dynamic environment but no temperature change since the late Paleogene at Lühe Basin (Yunnan, China)[J]. EGUsphere, 2023, 2023: 1-31. |
[81] | ZHAO J, LI S, FARNSWORTH A, et al. The Paleogene to Neogene climate evolution and driving factors on the Qinghai-Tibetan Plateau[J]. Science China Earth Sciences, 2022, 65(7): 1339-1352. |
[82] | XIA G, WU C, MANSOUR A, et al. Eocene-Oligocene glaciation on a high central Tibetan Plateau[J]. Geology, 2023, 51(6): 559-564. |
[83] | TANG H, LI S F, SU T, et al. Early Oligocene vegetation and climate of southwestern China inferred from palynology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 109988. |
[84] | WU M, HUANG J, SPICER R A, et al. The early Oligocene establishment of modern topography and plant diversity on the southeastern margin of the Tibetan Plateau[J]. Global and Planetary Change, 2022, 214: 103856. |
[85] | NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. |
[86] | VOGT T. Sulitelmafeltets geologi og petrografi[M]. Oslo: Aschehoug & Company, 1927. |
[87] | PARKER A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504. |
[88] | HARNOIS L. The CIW index: a new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3): 319-322. |
[89] | TREMBLIN M, HERMOSO M, MINOLETTI F. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic[J]. Proceedings of the National Academy of Sciences, 2016, 113(42): 11782-11787. |
[90] | SUN J, ZHANG Z, CAO M, et al. Timing of seawater retreat from proto-Paratethys, sedimentary provenance, and tectonic rotations in the late Eocene-early Oligocene in the Tajik Basin, Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109657. |
[91] | ZHAO C, XIONG Z, FARNSWORTH A, et al. The late Eocene rise of SE Tibet formed an Asian ‘Mediterranean’ climate[J]. Global and Planetary Change, 2023, 231: 104313. |
[92] | WANG C, DAI J, ZHAO X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 2014, 621: 1-43. |
[93] |
方小敏. 青藏高原隆升阶段性[J]. 科技导报, 2017, 35(6): 42-50.
DOI |
[94] | 刘晓惠, 许强, 丁林. 差异抬升: 青藏高原新生代古高度变化历史[J]. 中国科学: 地球科学, 2017, 47(1): 40-56. |
[95] | DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-218. |
[96] |
TAPPONNIER P, ZHIQIN X, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.
PMID |
[97] | LEUTERT T J, AUDERSET A, MARTÍNEZ-GARCÍA A, et al. Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene[J]. Nature Geoscience, 2020, 13(9): 634-639. |
[98] | ZHANG Y, SUN D, LI Z, et al. Cenozoic record of aeolian sediment accumulation and aridification from Lanzhou, China, driven by Tibetan Plateau uplift and global climate[J]. Global and Planetary Change, 2014, 120: 1-15. |
[99] |
REA D K, LEINEN M, JANECEK T R. Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227(4688): 721-725.
PMID |
[100] | REA D K, SNOECKX H, JOSEPH L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224. |
[101] | ABELS H A, DUPONT-NIVET G, XIAO G, et al. Step-wise change of Asian interior climate preceding the Eocene-Oligocene Transition (EOT)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3/4): 399-412. |
[102] | FARNSWORTH A, LUNT D J, ROBINSON S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2[J]. Science Advances, 2019, 5(10): eaax1697. |
[103] | GE F, SIELMANN F, ZHU X, et al. The link between Tibetan Plateau monsoon and Indian summer precipitation: a linear diagnostic perspective[J]. Climate Dynamics, 2017, 49: 4201-4215. |
[104] | RAMSTEIN G, FLUTEAU F, BESSE J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6627): 788-795. |
[105] | WU F, FANG X, YANG Y, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3(10): 684-700. |
[106] | LICHT A, VAN CAPPELLE M, ABELS H A, et al. Asian monsoons in a late Eocene greenhouse world[J]. Nature, 2014, 513(7519): 501-506. |
[107] | WANG C, ZHAO X, LIU Z, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4987-4992. |
[108] | SARR A C, DONNADIEU Y, BOLTON C T, et al. Neogene South Asian monsoon rainfall and wind histories diverged due to topographic effects[J]. Nature Geoscience, 2022, 15(4): 314-319. |
[109] | SPICER R A, YANG J, HERMAN A B, et al. Asian Eocene monsoons as revealed by leaf architectural signatures[J]. Earth and Planetary Science Letters, 2016, 449: 61-68. |
[110] | DECONTO R M, POLLARD D, WILSON P A, et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature, 2008, 455(7213): 652-656. |
[111] | SU T, FARNSWORTH A, SPICER R A, et al. No high Tibetan plateau until the Neogene[J]. Science Advances, 2019, 5(3): eaav2189. |
[112] | 孙东怀, 王鑫, 李宝锋, 等. 新生代特提斯海演化过程及其内陆干旱化效应研究进展[J]. 海洋地质与第四纪地质, 2013, 33(4): 135-151. |
[113] | WANG Q, WYMAN D A, XU J, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 2008, 272(1/2): 158-171. |
[114] |
HE S, DING L, XIONG Z, et al. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet[J]. Science Bulletin, 2022, 67(21): 2245-2258.
DOI PMID |
[115] | LYU H, LU H, WANG Y, et al. East Asian paleoclimate change in the Weihe Basin (central China) since the middle Eocene revealed by clay mineral analysis[J]. Science China Earth Sciences, 2021, 64: 1285-1304. |
[116] | KOCSIS Á T, SCOTESE C R. Mapping paleocoastlines and continental flooding during the Phanerozoic[J]. Earth-Science Reviews, 2021(213): 1-15. |
[1] | CAO Chenxi, ZHANG Maoliang, WANG Lisheng, WANG Xuefeng, DUAN Wuhui, XU Sheng. Preliminary study on hydrothermal CO2 flux from active fault zones in southern Tibet: Constraints from travertine geochronology and geochemistry [J]. Earth Science Frontiers, 2025, 32(3): 334-349. |
[2] | XIE Xiangang, ZHAO Wenbin, ZHANG Maoliang, GUO Zhengfu, XU Sheng. Carbon output fluxes of volcanic activity during typical geological periods on the Tibetan Plateau and related environmental implications [J]. Earth Science Frontiers, 2025, 32(3): 350-361. |
[3] | LIU Xiaohui, LIU Yimin, DING Lin, GUO Xiaoyu, HUANG Xingfu, LI Huilin, GAO Rui. Crustal thickness evolution of the Central Lhasa Terrane inferred from trace elements in zircon of Tangra Yumco [J]. Earth Science Frontiers, 2025, 32(1): 343-366. |
[4] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[5] | ZHANG Mengwei, GAO Liang, ZHAO Yue, PEI Junling, YANG Zhenyu, GUO Xiaoqian, HU Xinwei. The interaction between the opening of the Drake Passage and global paleoceanographic-paleoclimatic change [J]. Earth Science Frontiers, 2024, 31(6): 415-435. |
[6] | WANG Chengshan, GAO Yuan, WANG Pujun, WU Huaichun, LÜ Qingtian, ZHU Yongyi, WAN Xiaoqiao, ZOU Changchun, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Wenshi, HE Huaiyu, FENG Zihui, YANG Guang, DENG Chenglong, ZHANG Laiming, WANG Tiantian, HU Bin, CUI Liwei, PENG Cheng, YU Enxiao, HUANG He, YANG Liu, WU Zhengxuan. International Continental Scientific Drilling Project of the Songliao Basin: Terrestrial Geological Records of the Cretaceous Dinosaur Age [J]. Earth Science Frontiers, 2024, 31(1): 412-430. |
[7] | CHENG Yongzhi, GAO Rui, LU Zhanwu, LI Wenhui, WANG Guangwen, CHEN Si, WU Guowei, CAI Yuguo. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(5): 314-333. |
[8] | ZHANG Jin, ZHANG Beihang, ZHAO Heng, YUN Long, QU Junfeng, WANG Zhenyi, YANG Yaqi, ZHAO Shuo. Late Cenozoic deformation characteristics and mechanism of the Beishan-Alxa region [J]. Earth Science Frontiers, 2023, 30(5): 334-357. |
[9] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[10] | TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas [J]. Earth Science Frontiers, 2023, 30(4): 270-282. |
[11] | LIU Xiaoyu, YANG Wencai, CHEN Zhaoxi, QU Chen, YU Changqing. Attributes and evolution of the eastern massif in the Qinghai-Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(3): 233-241. |
[12] | WU Chen, CHEN Xuanhua, DING Lin. Tectonic evolution and Cenozoic deformation history of the Qilian orogen [J]. Earth Science Frontiers, 2023, 30(3): 262-281. |
[13] | JIA Chengzao, CHEN Zhuxin, LEI Yongliang, WANG Lining, REN Rong, SU Nan, YANG Geng. Deformation mechanisms and structural models of the fold-thrust belts of central and western China [J]. Earth Science Frontiers, 2022, 29(6): 156-174. |
[14] | LIU Yonggang, ZHANG Ming, LIN Qifan, LIU Peng, HU Yongyun. Variation of atmospheric dust loading and its climate impacts in different geological periods [J]. Earth Science Frontiers, 2022, 29(5): 285-299. |
[15] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||