Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 313-326.DOI: 10.13745/j.esf.sf.2023.2.87
Previous Articles Next Articles
LI Keran1,2(), YANG Di1,*(
), SONG Jinmin1,2, LI Zhiwu1, JIN Xin1,2, LIU Fang3, YANG Xiong3, LIU Shugen4, YE Yuehao1,2, FAN Jianping1,2, REN Jiaxin1,2, ZHAO Lingli1,2, XIA Shun1,2, CHEN Wei1,2
Received:
2022-07-05
Revised:
2023-04-14
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
LI Keran, YANG Di, SONG Jinmin, LI Zhiwu, JIN Xin, LIU Fang, YANG Xiong, LIU Shugen, YE Yuehao, FAN Jianping, REN Jiaxin, ZHAO Lingli, XIA Shun, CHEN Wei. Dolomitization in the Lower Cambrian Longwangmiao Formation in northeastern Yunnan: Insights from a simulation study[J]. Earth Science Frontiers, 2024, 31(2): 313-326.
Fig.1 The paleogeography, reginal geology and stratigraphy column of Guixi outcrop. (a) Paleogeography map of the Longwangmiao depositing period (adapted from [48]); (b) Distribution map of the research area; (c) The stratigraphy column of Longwangmiao Formation in the Guixi outcrop.
样品号 | 岩性 | 旋回 | wB/% | |
---|---|---|---|---|
CaO | MgO | |||
hx-3-1B | 粉屑泥晶灰岩 | 1 | 50.40 | 3.32 |
hx-3-2B | 粉屑泥晶灰岩 | 52.83 | 2.92 | |
hx-4-1B | 含灰白云岩 | 38.27 | 17.26 | |
hx-4-2B | 泥晶-粉晶白云岩 | 32.43 | 21.34 | |
hx-5-1B | 微晶灰岩 | 2 | 51.12 | 2.54 |
hx-5-2B | 灰质云岩 | 41.87 | 9.23 | |
hx-6-1B | 泥晶白云岩 | 31.54 | 20.03 | |
hx-6-2B | 含砂屑泥晶灰岩 | 3 | 49.24 | 3.93 |
hx-6-3B | 白云质灰岩 | 45.23 | 10.55 | |
hx-6-4B | 泥-粉晶白云岩 | 30.62 | 22.63 | |
hx-6-5B | 泥-粉晶灰岩 | 51.27 | 1.21 |
Table 1 Results of CaO and MgO contents from different sequences in the Guixi section
样品号 | 岩性 | 旋回 | wB/% | |
---|---|---|---|---|
CaO | MgO | |||
hx-3-1B | 粉屑泥晶灰岩 | 1 | 50.40 | 3.32 |
hx-3-2B | 粉屑泥晶灰岩 | 52.83 | 2.92 | |
hx-4-1B | 含灰白云岩 | 38.27 | 17.26 | |
hx-4-2B | 泥晶-粉晶白云岩 | 32.43 | 21.34 | |
hx-5-1B | 微晶灰岩 | 2 | 51.12 | 2.54 |
hx-5-2B | 灰质云岩 | 41.87 | 9.23 | |
hx-6-1B | 泥晶白云岩 | 31.54 | 20.03 | |
hx-6-2B | 含砂屑泥晶灰岩 | 3 | 49.24 | 3.93 |
hx-6-3B | 白云质灰岩 | 45.23 | 10.55 | |
hx-6-4B | 泥-粉晶白云岩 | 30.62 | 22.63 | |
hx-6-5B | 泥-粉晶灰岩 | 51.27 | 1.21 |
样品号 | 岩性 | 旋回 | δ13C/‰ | δ18O/‰ | 87Sr/86Sr | δ44/40Ca/‰ | Z |
---|---|---|---|---|---|---|---|
hx-3-1B | 粉屑泥晶灰岩 | 1 | -0.49 | -8.96 | 0.709 486 69 | 0.56±0.038 | 121.83 |
hx-3-2B | 粉屑泥晶灰岩 | -0.78 | -9.51 | 0.709 795 54 | 0.54±0.098 | 120.96 | |
hx-4-1B | 含灰白云岩 | -0.54 | -8.82 | 0.713 720 45 | 0.92±0.072 | 121.80 | |
hx-4-2B | 泥晶-粉晶白云岩 | -0.64 | -9.28 | 0.712 183 18 | 1.12±0.105 | 121.36 | |
hx-5-1B | 微晶灰岩 | 2 | 0.412 | -9.765 | 0.710 087 11 | 0.63±0.053 | 123.27 |
hx-5-2B | 灰质云岩 | 0.33 | -8.79 | 0.709 236 59 | 0.77±0.067 | 123.59 | |
hx-6-1B | 泥晶白云岩 | 0.37 | -9.46 | 0.713 741 67 | 0.81±0.075 | 123.34 | |
hx-6-2B | 含砂屑泥晶灰岩 | 3 | -0.03 | -9.9 | 0.709 909 34 | 0.56±0.093 | 122.30 |
hx-6-3B | 白云质灰岩 | -0.04 | -8.69 | 0.712 437 24 | 0.47±0.041 | 122.89 | |
hx-6-4B | 泥-粉晶白云岩 | 0.23 | -9.245 | 0.712 376 17 | 0.94±0.042 | 123.16 | |
hx-6-5B | 泥-粉晶灰岩 | -0.68 | -9.55 | 0.710 639 33 | 0.59±0.088 | 121.15 |
Table 2 Isotopic results from different sequences in the Guixi section
样品号 | 岩性 | 旋回 | δ13C/‰ | δ18O/‰ | 87Sr/86Sr | δ44/40Ca/‰ | Z |
---|---|---|---|---|---|---|---|
hx-3-1B | 粉屑泥晶灰岩 | 1 | -0.49 | -8.96 | 0.709 486 69 | 0.56±0.038 | 121.83 |
hx-3-2B | 粉屑泥晶灰岩 | -0.78 | -9.51 | 0.709 795 54 | 0.54±0.098 | 120.96 | |
hx-4-1B | 含灰白云岩 | -0.54 | -8.82 | 0.713 720 45 | 0.92±0.072 | 121.80 | |
hx-4-2B | 泥晶-粉晶白云岩 | -0.64 | -9.28 | 0.712 183 18 | 1.12±0.105 | 121.36 | |
hx-5-1B | 微晶灰岩 | 2 | 0.412 | -9.765 | 0.710 087 11 | 0.63±0.053 | 123.27 |
hx-5-2B | 灰质云岩 | 0.33 | -8.79 | 0.709 236 59 | 0.77±0.067 | 123.59 | |
hx-6-1B | 泥晶白云岩 | 0.37 | -9.46 | 0.713 741 67 | 0.81±0.075 | 123.34 | |
hx-6-2B | 含砂屑泥晶灰岩 | 3 | -0.03 | -9.9 | 0.709 909 34 | 0.56±0.093 | 122.30 |
hx-6-3B | 白云质灰岩 | -0.04 | -8.69 | 0.712 437 24 | 0.47±0.041 | 122.89 | |
hx-6-4B | 泥-粉晶白云岩 | 0.23 | -9.245 | 0.712 376 17 | 0.94±0.042 | 123.16 | |
hx-6-5B | 泥-粉晶灰岩 | -0.68 | -9.55 | 0.710 639 33 | 0.59±0.088 | 121.15 |
Fig.6 Cross-plots of CaO-MgO and δ13C-δ18O from three cycles, Longwangmiao Formation, Guixi section. (a) Cross-plots of CaO-MgO ; (b) Cross-plots of δ13C-δ18O.
样品号 | 1 000lnδ44/40Cacalcite-dolomite/‰ | Mg/(Mg+Ca) | 温度/℃ | |
---|---|---|---|---|
hx-3-1B | 粉屑泥晶灰岩 | -0.34 | 0.06 | 56.09 |
hx-3-2B | 粉屑泥晶灰岩 | -0.36 | 0.05 | 61.59 |
hx-4-1B | 含灰白云岩 | 0.02 | 0.29 | 36.71 |
hx-4-2B | 泥晶-粉晶白云岩 | 0.22 | 0.37 | 29.76 |
hx-5-1B | 微晶灰岩 | -0.27 | 0.04 | 57.35 |
hx-5-2B | 灰质云岩 | -0.13 | 0.07 | 49.98 |
hx-6-1B | 泥晶白云岩 | -0.09 | 0.07 | 35.52 |
hx-6-2B | 含砂屑泥晶灰岩 | -0.34 | 0.03 | 59.40 |
hx-6-3B | 白云质灰岩 | -0.2 | 0.17 | 34.52 |
hx-6-4B | 泥-粉晶白云岩 | 0.04 | 0.34 | 37.78 |
hx-6-5B | 泥-粉晶灰岩 | -0.31 | 0.02 | 49.78 |
Table 3 Results of temperature simulation
样品号 | 1 000lnδ44/40Cacalcite-dolomite/‰ | Mg/(Mg+Ca) | 温度/℃ | |
---|---|---|---|---|
hx-3-1B | 粉屑泥晶灰岩 | -0.34 | 0.06 | 56.09 |
hx-3-2B | 粉屑泥晶灰岩 | -0.36 | 0.05 | 61.59 |
hx-4-1B | 含灰白云岩 | 0.02 | 0.29 | 36.71 |
hx-4-2B | 泥晶-粉晶白云岩 | 0.22 | 0.37 | 29.76 |
hx-5-1B | 微晶灰岩 | -0.27 | 0.04 | 57.35 |
hx-5-2B | 灰质云岩 | -0.13 | 0.07 | 49.98 |
hx-6-1B | 泥晶白云岩 | -0.09 | 0.07 | 35.52 |
hx-6-2B | 含砂屑泥晶灰岩 | -0.34 | 0.03 | 59.40 |
hx-6-3B | 白云质灰岩 | -0.2 | 0.17 | 34.52 |
hx-6-4B | 泥-粉晶白云岩 | 0.04 | 0.34 | 37.78 |
hx-6-5B | 泥-粉晶灰岩 | -0.31 | 0.02 | 49.78 |
[1] | HUGGETT J, CUADROS J, GALE A S, et al. Low temperature, authigenic illite and carbonates in a mixed dolomite-clastic lagoonal and pedogenic setting, Spanish Central System, Spain[J]. Applied Clay Science, 2016, 132/133: 296-312. |
[2] | YANG L L, ZHU G Y, LI X W, et al. Influence of crystal nucleus and lattice defects on dolomite growth: geological implications for carbonate reservoirs[J]. Chemical Geology, 2022, 587(1): 120631. |
[3] | WANG X Y. Equilibrium between dolomitization and dedolomitization of a global set of surface water samples: a new theoretical insight on the dolomite inorganic formation mechanism[J]. Marine Chemistry, 2021, 235: 104017. |
[4] | MCKENZIE J A. Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, U.A.E.: a stable isotope study[J]. Journal of Geology, 1981, 89(2): 185-198. |
[5] | MITCHELL J T, LAND L S, MISER D E. Modern marine dolomite cement in a North Jamaican fringing reef[J]. Geology, 1987, 15(6): 557-560. |
[6] | 张晓宝. 准噶尔盆地南缘东部中二叠流芦草沟组黑色页岩中白云岩夹层的成因探讨[J]. 沉积学报, 1993, 11(2): 133-140. |
[7] | SÁNCHEZ-ROMÁN M, MCKENZIE J A, DE LUCA REBELLO WAGENER A, et al. Experimentally determined biomediated Sr partition coefficient for dolomite: significance and implication for natural dolomite[J]. Geochimica et Cosmochineca Acta, 2011, 75(3): 887-904 |
[8] | 王小林, 胡文瑄, 张军涛, 等. 塔里木盆地和田1井中寒武统膏岩层段发现原生白云石[J]. 地质论评, 2016, 62(2): 419-433. |
[9] | 张学丰, 胡文瑄, 张军涛. 白云岩成因相关问题及主要形成模式[J]. 地质科技情报, 2006, 25(5): 32-40. |
[10] | 赫云兰, 刘波, 秦善. 白云石化机理与白云岩成因问题研究[J]. 北京大学学报(自然科学版), 2010, 46(6): 1010-1020. |
[11] | HSU K J, SIEGENTHALER C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology, 1969, 12(1/2): 11-25. |
[12] | FRIEDMAN G M, SANDERS J E. Chapter 6 origin and occurrence of dolostones[J]. Developments in Sedimentology, 1967, 9: 267-348. |
[13] | WARREN J. Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81. |
[14] | ADAMS J E, RHODES M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920. |
[15] | MACHEL H G. Concepts and models of dolomitization: a critical reappraisal[J]. Geological Society of London Special Publications, 2004, 235(1): 7-63. |
[16] | MATTES B W, MOUNTJOY E W. Burial dolomitization of the Upper Devonian miette buildup, Jasper National Park, Alberta[M]// ZENGERD H, DUNHAMJ B, ETHINGTONR L. Concepts and models of dolomitization. London: Society for Sedimentary Geology, 1980: 259-297. |
[17] | WIERZBICKI R, DRAVIS J J, AL-AASM I, et al. Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke Reservoir, Nova Scotia, Canada[J]. AAPG Bulletin, 2006, 90(11): 1843-1861. |
[18] | MACHEL G H, LONNEE J. Hydrothermal dolomite: a product of poor definition and imagination[J]. Sedimentary Geology, 2002, 152(3/4): 163-171. |
[19] | ANDERSON G M, MACQUEEN R W. Mississippi valley -type lead-zinc deposits[J]. Geoscience Reprint Series: Ore Deposit Models, 1987, 3(1): 79-90. |
[20] | CERVATO C. Hydrothermal dolomitization of Jurassic-Cretaceous limestones in the southern Alps (Italy): relation to tectonics and volcanism[J]. Geology, 1990, 18(5): 458. |
[21] | LUCZAJ J A. Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsinarch: a case for hydrothermal diagenesis[J]. Bulletin of the American Association of Petroleum Geologists, 2006, 90(11): 1719-1738. |
[22] | MOUNTJOY E W, HALIM-DIHARDJA M. Multiple phase fracture and fault-controlled burial dolomitization, Upper Devonian Wabamun Group, Alberta[J]. SEPM Journal of Sedimentary Research, 1991, 61(4): 590-612. |
[23] | BADIOZAMANI K. The Dorag dolomitization model: application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Petrology, 1973, 43(4): 965-984. |
[24] | 郑荣才, 柳梅青. 试论块状白云岩的混合水成因模式[J]. 矿物岩石, 1992, 12(1): 55-64. |
[25] | MELIM L A, SWART P K, EBERLI G P. Mixing-zone diagenesis in the subsurface of Florida and the Bahamas[J]. Journal of Sedimentary Research, 2004, 74(6): 904-913. |
[26] | 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. |
[27] | 刘树根, 宋金民, 赵异华, 等. 四川盆地龙王庙组优质储层形成与分布的主控因素[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 657-670. |
[28] | 田艳红, 刘树根, 赵异华, 等. 四川盆地中部龙王庙组储层成岩作用[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 671-683. |
[29] | 杨雪飞, 王兴志, 杨跃明, 等. 川中地区下寒武统龙王庙组白云岩储层成岩作用[J]. 地质科技情报, 2015, 34(1): 35-41. |
[30] | 张天付, 付小东, 李文正, 等. 四川盆地安岳特大型气田不同产能状态下龙王庙组的储层特征[J]. 石油学报, 2020, 41(9): 1049-1059, 1116. |
[31] | 杨威, 魏国齐, 谢武仁, 等. 川中地区龙王庙组优质储层发育的主控因素及成因机制[J]. 石油学报, 2020, 41(4): 421-432. |
[32] | FU Q L, HU S Y, XU Z H, et al. Depositional and diagenetic controls on deeply buried Cambrian carbonate reservoirs: Longwangmiao Formation in the Moxi-Gaoshiti Area, Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology, 2020, 117: 104318. |
[33] | 沈安江, 陈娅娜, 潘立银, 等. 四川盆地下寒武统龙王庙组沉积相与储层分布预测研究[J]. 天然气地球科学, 2017, 28(8): 1176-1190. |
[34] | 刘大卫, 蔡春芳, 扈永杰, 等. 深层白云岩多期白云石化及其对孔隙演化的影响: 以川中地区下寒武统龙王庙组为例[J]. 中国矿业大学学报, 2020, 49(6): 1150-1165. |
[35] | LIU D, CAI C F, HU Y J, et al. Multistage dolomitization and formation of ultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China[J]. Marine and Petroleum Geology, 2021, 123(1): 104752. |
[36] | 任影, 钟大康, 高崇龙, 等. 川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义[J]. 石油学报, 2016, 37(9): 1102-1115. |
[37] | 孙海涛, 张玉银, 柳慧林, 等. 四川盆地东部下寒武统龙王庙组白云岩类型及其成因[J]. 石油与天然气地质, 2018, 39(2): 318-329. |
[38] | REN Y, ZHONG D K, GAO C L, et al. Dolomite geochemistry of the Cambrian Longwangmiao Formation, eastern Sichuan Basin: implication for dolomitization and reservoir prediction[J]. Petroleum Research, 2017, 2(1): 64-76. |
[39] | 余晶洁, 宋金民, 刘树根, 等. 川东北地区下寒武统龙王庙组白云岩成因分析[J]. 沉积学报, 2020, 38(6): 1284-1295. |
[40] | 韩波, 李新, 钟晓勤, 等. 中上扬子地区龙王庙组储层特征及白云石化作用[J]. 西安石油大学学报(自然科学版), 2021, 36(1): 1-12. |
[41] | 王东, 王海军, 王莹, 等. 川西南井研地区龙王庙组储层特征及主控因素[J]. 断块油气田, 2022, 29(1): 14-19. |
[42] | WANG Y, SHI Z J, QING H R, et al. Petrological characteristics, geochemical characteristics, and dolomite model of the Lower Cambrian Longwangmiao Formation in the periphery of the Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 202(1): 108432. |
[43] | CHAKRABARTI R, MONDAL S, JACOBSON A D, et al. Review of techniques, challenges, and new developments for calcium isotope ratio measurements[J]. Chemical Geology, 2021, 581: 120398. |
[44] | GUSSONE N, BÖHM F, EISENHAUER A, et al. Calcium isotope fractionation in calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2005, 69(18): 4485-4494. |
[45] | DEPAOLO D J. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1039-1056. |
[46] | FANTLE M S, TIPPER E T. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy[J]. Earth-Science Reviews, 2014, 129: 148-177. |
[47] | SUN J, ZHU X K, BELSHAW N S, et al. Ca isotope systematics of carbonatites: insights into carbonatite source and evolution[J]. Geochemical Perspectives Letters, 2021, 17: 11-15. |
[48] | 杜金虎, 张宝民, 汪泽成, 等. 四川盆地下寒武统龙王庙组碳酸盐缓坡双颗粒滩沉积模式及储层成因[J]. 天然气工业, 2016, 36(6): 1-10. |
[49] | 刘树根, 刘殊, 孙玮, 等. 绵阳-长宁拉张槽北段构造-沉积特征[J]. 成都理工大学学报(自然科学版), 2018, 45(1): 1-13. |
[50] | 钟勇, 李亚林, 张晓斌, 等. 川中古隆起构造演化特征及其与早寒武世绵阳-长宁拉张槽的关系[J]. 成都理工大学学报(自然科学版), 2014, 41(6): 703-712. |
[51] | 宋金民, 刘树根, 孙玮, 等. 兴凯地裂运动对四川盆地灯影组优质储层的控制作用[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 658-670. |
[52] | 刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520. |
[53] | 谢武仁, 姜华, 马石玉, 等. 四川盆地德阳—安岳裂陷晚震旦世—早寒武世沉积演化特征与有利勘探方向[J]. 天然气地球科学, 2022, 33(8): 1240-1250. |
[54] | 马腾, 谭秀成, 李凌, 等. 四川盆地早寒武世龙王庙期沉积特征与古地理[J]. 沉积学报, 2016, 34(1): 33-48. |
[55] | 任影, 钟大康, 高崇龙, 等. 川东及其周缘地区下寒武统龙王庙组沉积相[J]. 古地理学报, 2015, 17(3): 335-346. |
[56] | 杨威, 魏国齐, 谢武仁, 等. 四川盆地下寒武统龙王庙组沉积模式新认识[J]. 天然气工业, 2018, 38(7): 8-15. |
[57] | 王龙, 沈安江, 陈宇航, 等. 四川盆地下寒武统龙王庙组岩相古地理特征和沉积模式[J]. 海相油气地质, 2016, 21(3): 13-21. |
[58] | LIU F, ZHANG Z F, LI X, et al. A practical guide to the double-spike technique for calcium isotope measurements by thermal ionization mass spectrometry (TIMS)[J]. International Journal of Mass Spectrometry, 2020, 450(4): 116307. |
[59] | LIU F, ZHANG Z F, ZHANG Z K, et al. Ca isotopic compositions of zoned granitoid intrusion: implications for the emplacement and evolution of magma bodies[J]. Geochimica et Cosmochimica Acta, 2022, 326(1): 149-165. |
[60] | JÁN V, DAVIN A, KAREM A, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1998, 161(1/2/3): 59-88. |
[61] | 黄思静, 石和, 张萌, 等. 锶同位素地层学在碎屑岩成岩研究中的应用[J]. 沉积学报, 2002, 20(3): 359-366. |
[62] | 胡作维, 黄思静, 王春梅, 等. 锶同位素方法在油气储层成岩作用研究中的应用[J]. 地质找矿论丛, 2009, 24(2): 160-165. |
[63] | MARRIOTT C S, HENDERSON G M, BELSHAW N S, et al. Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate[J]. Earth and Planetary Science Letters, 2004, 222(2): 615-624. |
[64] | GUSSONE N, AHM A S C, LAU K V, et al. Calcium isotopes in deep time: potential and limitations[J]. Chemical Geology, 2020, 544: 119601. |
[65] | WIEGAND B, CHADWICKO, VITOUSEK P, et al. Ca cycling and isotopic fluxes in forested ecosystems in Hawaii[J]. Geopyscial Research Letters, 2005, 32(11): L11404. |
[66] | GUSSONE N, EISENHAUER A, HEUSER A, et al. Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1375-1382. |
[67] | LEMARCHAND D, WASSERBURG G J, PAPANASTASSIOU D A. Rate-controlled calcium isotope fractionation in synthetic calcite[J]. Geochimica et Cosmochimica Acta, 2004, 68(22): 4665-4678. |
[68] | FANTLE M S, DEPAOLO D J. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: the Ca2+(aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2524-2546. |
[69] | BLÄTTLER C L, HONG W L, KIRSIMÄE K, et al. Small calcium isotope fractionation at slow precipitation rates in methane seep authigenic carbonates[J]. Geochimica et Cosmochimica Acta, 2021, 298: 227-239. |
[70] | NIELSEN L C, DEPAOLO D J, DE YOREO J J. Self-consistent ion-by-ion growth model for kinetic isotopic fractionation during calcite precipitation[J]. Geochimica et Cosmochimica Acta, 2012, 86: 166-181. |
[71] | SONG Y H, LI Y H, WANG W Z, et al. First-principles investigation of the concentration effect on equilibrium fractionation of Ca isotopes in forsterite[J]. Acta Geochimica, 2019, 38(4): 497-507. |
[72] | WANG W Z, QIN T, ZHOU C, et al. Concentration effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals: insights from first-principles calculations[J]. Geochimica et Cosmochimica Acta, 2017, 208: 185-197. |
[73] | 涂郗, 丘梅清, 陆小钏, 等. 一个广义Camassa-Holm方程的行波解[J]. 中山大学学报(自然科学版), 2018, 57(3): 70-75. |
[74] | SITEPU H. Texture and structural refinement using neutron diffraction data from molybdite (MoO3) and calcite (CaCO3) powders and a Ni-rich Ni50.7Ti49.30 alloy[J]. Powder Diffraction, 2009, 24(4): 315-326. |
[75] | STEINFINK H, SANS F J. Refinement of the crystal structure of dolomite[J]. American Mineralogist, 1959, 44(5/6): 679-682. |
[76] | AHM A S C, BJERRUM C J, BLÄTTLER C L, et al. Quantifying early marine diagenesis in shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2018, 236: 140-159. |
[77] | KRAMER P A, SWART P K, DE CARLO E H, et al. Overview of interstitial fluid and sediment geochemistry, Sites 1003-1007 (Bahamas Transect)[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 2000, 168(8): 179-195. |
[78] | SWART P K, EBERLI G P, MALONE M J, et al. The oxygen isotopic composition of interstitial waters: evidence for fluid flow and recrystallization in the margin of Great Bahama Bank[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 2000, 166(8): 91-98. |
[79] | HIGGINS J A, BLÄTTLER C L, LUNDSTROM E A, et al. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments[J]. Geochimica et Cosmochimica Acta, 2018, 220: 512-534. |
[80] | WARREN J K. Evaporites: a geological compendium[M]. Berlin: Springer, 2016. |
[81] | WOOD W W, SANFORD W E, AL HABSHI A R S. Source of solutes to the coastal sabkha of Abu Dhabi[J]. Geological Society of America Bulletin, 2002, 114(3): 259-268. |
[82] | WOOD W W, SANFORD W E, FRAPE S K. Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat[J]. Chemical Geology, 2005, 215(1/2/3/4): 361-372. |
[83] | CHANG B, LI C, LIU D, et al. Massive formation of early diagenetic dolomite in the Ediacaran Ocean: constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14005-14014. |
[1] | ZHANG Manlang, GUO Zhenhua, ZHANG Lin, FU Jing, ZHENG Guoqiang, XIE Wuren, Ma Shiyu. Characteristics of and main factors controlling the karst shoal reservoir of the lower Cambrian Longwangmiao Formation in the Anyue gas field, central Sichuan Basin, China [J]. Earth Science Frontiers, 2021, 28(1): 235-248. |
[2] | XU Liang, CHEN Tianhu, GAO Yang, CHEN Ping, XIE Qiaoqin, ZHOU Yuefei. Genesis of bird's-eye structure in the Triassic Dongmaanshan Formation in Chaohu, Anhui Province [J]. Earth Science Frontiers, 2020, 27(4): 294-301. |
[3] | ZHANG Bao-Min LIU Jing-Jiang BIAN Li-Ceng SHEN Yin-Min GU Jin-Hua ZHANG Li-Beng CAO Hong YANG Xiao-Ping. Reefbanks and reservoirconstructive diagenesis [J]. Earth Science Frontiers, 2009, 16(1): 270-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||