Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (6): 120-129.DOI: 10.13745/j.esf.sf.2024.7.13
Previous Articles Next Articles
WENG Wei1(), WU Shuo1, HE Yunchao1, LIN Wenjing2,3, FENG Meigui1, GAN Haonan2,3, LI Xiaodong1
Received:
2024-02-12
Revised:
2024-04-30
Online:
2024-11-25
Published:
2024-11-25
CLC Number:
WENG Wei, WU Shuo, HE Yunchao, LIN Wenjing, FENG Meigui, GAN Haonan, LI Xiaodong. New technologies, methodology and application in directional high-temperature hard rock drilling—a critical review[J]. Earth Science Frontiers, 2024, 31(6): 120-129.
钻压/kN | 扭矩/(kN·m) | 环空压力/MPa | 转速/(r·min-1) | 三轴振动量/g | 工作温度/℃ | 最大承压/MPa | 外径/内径 |
---|---|---|---|---|---|---|---|
300 | 30 | 0~140 | 0~255 | 0~20 | 175 | 140 | φ178 mm/φ72 mm |
(±5%) | (±5%) | (±5%) | (±1) | (±5%) |
Table 1 Technical parameters for measuring tool BJIEE-02-172
钻压/kN | 扭矩/(kN·m) | 环空压力/MPa | 转速/(r·min-1) | 三轴振动量/g | 工作温度/℃ | 最大承压/MPa | 外径/内径 |
---|---|---|---|---|---|---|---|
300 | 30 | 0~140 | 0~255 | 0~20 | 175 | 140 | φ178 mm/φ72 mm |
(±5%) | (±5%) | (±5%) | (±1) | (±5%) |
对比项 | 密度/ (g·cm-3) | 漏斗黏度/s | 表观黏度/ (mPa·s) | 塑性黏度/ (mPa·s) | 动切力/ Pa | 动塑比 | 静切力/ (Pa·Pa-1) | API 滤失量/mL | HTHP 滤失量/mL | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
入井前数值 | 1.18 | 78 | 39 | 26 | 13 | 0.5 | 5/16 | 6.4 | 10.1 | 9 | |
入井后数值 | 1.19 | 60 | 29 | 19 | 10 | 0.53 | 4/10 | 6.8 | 11.6 | 9 |
Table 2 Change of drilling fluid performances before and after 24-hour aging in well GH-03
对比项 | 密度/ (g·cm-3) | 漏斗黏度/s | 表观黏度/ (mPa·s) | 塑性黏度/ (mPa·s) | 动切力/ Pa | 动塑比 | 静切力/ (Pa·Pa-1) | API 滤失量/mL | HTHP 滤失量/mL | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
入井前数值 | 1.18 | 78 | 39 | 26 | 13 | 0.5 | 5/16 | 6.4 | 10.1 | 9 | |
入井后数值 | 1.19 | 60 | 29 | 19 | 10 | 0.53 | 4/10 | 6.8 | 11.6 | 9 |
进水温度/℃ | 温差/℃ | 出水温度/℃ | 冷却风机功率/kW | 系统处理量/ (m3·h-1) | 管线额定工作 压力/MPa |
---|---|---|---|---|---|
80~90 | 20~25 | 55~60 | 5.5×2 | 180 | 0.6 |
Table 3 Main technical parameters for cooling system
进水温度/℃ | 温差/℃ | 出水温度/℃ | 冷却风机功率/kW | 系统处理量/ (m3·h-1) | 管线额定工作 压力/MPa |
---|---|---|---|---|---|
80~90 | 20~25 | 55~60 | 5.5×2 | 180 | 0.6 |
井深/m | 井底静温/℃ | 分段循环井底温度/℃ | 开启冷却系统循环温度/℃ |
---|---|---|---|
3 179.72 | 171.9 | 143.2 | 113.9 |
3 546.59 | 185.9 | 154.6 | 124.3 |
3 865.35 | 198.6 | 166.3 | 132.8 |
Table 4 Effectiveness of downhole cooling technology in well GH-03
井深/m | 井底静温/℃ | 分段循环井底温度/℃ | 开启冷却系统循环温度/℃ |
---|---|---|---|
3 179.72 | 171.9 | 143.2 | 113.9 |
3 546.59 | 185.9 | 154.6 | 124.3 |
3 865.35 | 198.6 | 166.3 | 132.8 |
[1] | 杨寒. 我国首口万米科探井鸣笛开钻标志着我国深地探测系列技术跨入世界前列[J]. 天然气与石油, 2023, 41(3): 13. |
[2] | 李涛, 苏强, 杨哲, 等. 川西地区超深井钻井完井技术现状及攻关方向[J]. 石油钻探技术, 2023, 51(2): 7-15. |
[3] | 蔺文静, 王贵玲, 甘浩男. 华南陆缘火成岩区差异性地壳热结构及地热意义[J]. 地质学报, 2024, 98(2): 544-557. |
[4] | WANG G L, GAN H N, LIN W J, et al. Hydrothermal systems characterized by crustal thermally-dominated structures of southeastern China[J]. Acta Geologica Sinica (English Edition), 2023, 97(4): 1003-1013. |
[5] | DOUGLAS J, AOCHI H. Using estimated risk to develop stimulation strategies for enhanced geothermal systems[J]. Pure and Applied Geophysics, 2014, 171(8): 1847-1858. |
[6] | KITANI S, TEZUKA K. Geologic structure and fracture system of HDR reservoir on NEDO hijiori field in Yamagata prefecture, northeast Japan[J]. Journal of the Geothermal Research Society of Japan, 2002, 24(3): 283-297. |
[7] | 何跃文, 杨雄文, 高雁, 等. 北美地热井高温硬岩钻井技术[J]. 钻探工程, 2022, 49(1): 79-87. |
[8] |
贾军, 张德龙, 翁炜, 等. 干热岩钻探关键技术及进展[J]. 科技导报, 2015, 33(19): 40-44.
DOI |
[9] | 贾红军, 王攀, 冯伟雄, 等. 深井硬岩地层钻井高频低幅扭转振荡耦合冲击器研制与应用[J]. 特种油气藏, 2018, 25(4): 158-163. |
[10] | 谭现锋. 干热岩高效钻井关键技术研究与应用[D]. 武汉: 中国地质大学(武汉), 2022. |
[11] |
闫家, 王稳石, 张恒春, 等. 松科2井带涡轮钻具取心钻进探索[J]. 钻采工艺, 2019, 42(1): 31-34, 3.
DOI |
[12] | 郑宇轩, 单文军, 赵长亮, 等. 青海共和干热岩GR1井钻井工艺技术[J]. 地质与勘探, 2018, 54(5): 1038-1045. |
[13] | 张金成, 张东清, 张新军. 元坝地区超深井钻井提速难点与技术对策[J]. 石油钻探技术, 2011, 39(6): 6-10. |
[14] | 王学龙, 何选蓬, 刘先锋, 等. 塔里木克深9气田复杂超深井钻井关键技术[J]. 石油钻探技术, 2020, 48(1): 15-20. |
[15] | 张金昌. 科学超深井钻探技术方案预研究成果报告[M]. 北京: 地质出版社, 2016. |
[16] | 王贵玲, 蔺文静, 刘峰, 等. 地热系统深部热能聚敛理论及勘查实践[J]. 地质学报, 2023, 97(3): 639-660. |
[17] | 王贵玲, 马峰, 侯贺晟, 等. 松辽盆地坳陷层控地热系统研究[J]. 地球学报, 2023, 44(1): 21-32. |
[18] | LIN W J, WANG G L, GAN H N, et al. Heat source model for Enhanced Geothermal Systems (EGS) under different geological conditions in China[J]. Gondwana Research, 2023, 122: 243-259. |
[19] | 叶顺友, 杨灿, 王海斌, 等. 海南福山凹陷花东1R井干热岩钻井关键技术[J]. 石油钻探技术, 2019, 47(4): 10-16. |
[20] | 卜海, 孙金声, 王成彪, 等. 超高温钻井液的高温流变性研究[J]. 西南石油大学学报(自然科学版), 2012, 34(4): 122-126. |
[21] | 梁文利. 干热岩钻井液技术新进展[J]. 钻井液与完井液, 2018, 35(4): 7-13. |
[22] | 王永生. 深井超高温钻井液技术综述[J]. 中国高新技术企业, 2012(增刊2): 129-131. |
[23] | 郤保平, 吴阳春, 王帅, 等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报, 2020, 39(1): 69-83. |
[24] | 王贵玲, 刘峰, 蔺文静, 等. 我国陆区地壳生热率分布与壳幔热流特征研究[J]. 地球物理学报, 2023, 66(12): 5041-5056. |
[25] | 罗鸣, 冯永存, 桂云, 等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报, 2021, 6(2): 228-244. |
[26] | 吴海东. 高温条件下金刚石钻头钻进实验研究[D]. 长春: 吉林大学, 2017. |
[27] | 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7): 1923-1937. |
[28] | BAKER HUGHES. Vanguard Geothermal tricone drill bits[EB/OL]. (2019-05-25)[2024-02-12]. https://www.bakerhughes.com/drilling/drill-bits/tricone-drill-bits/vanguard-premium-tricone-drill-bits/vanguard-geothermal-drill-bit. |
[29] | 祝效华, 但昭旺. PDC切削齿破碎干热岩数值模拟[J]. 天然气工业, 2019, 39(4): 125-134. |
[30] | 谢晗, 况雨春, 秦超. 非平面PDC切削齿破岩有限元仿真及试验[J]. 石油钻探技术, 2019, 47(5): 69-73. |
[31] | 刘伟吉, 阳飞龙, 董洪铎, 等. 异形PDC齿混合切削破碎花岗岩特性研究[J]. 工程力学, 2023, 40(3): 245-256. |
[32] | 李琴, 傅文韬, 黄志强, 等. 硬地层中新型PDC齿破岩机理及试验研究[J]. 工程设计学报, 2019, 26(6): 635-644. |
[33] | SAMUEL A, RICKARD W M, BIVAS E, et al. Improvement in rate of penetration in FORGE drilling through real time MSE analysis and improved PDC technology[C]// Proceedings of the 47th Workshop on Geothermal Reservoir Engineering. Stanford University, California, USA, 2022: 1089-1096. |
[34] | XIONG C, HUANG Z W, YANG R Y, et al. Comparative analysis cutting characteristics of stinger PDC cutter and conventional PDC cutter[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106792. |
[35] | 赵润琦, 陈振良, 史怀忠, 等. 斧形PDC齿破碎致密硬质砂岩特性数值模拟研究[J]. 石油机械, 2021, 49(10): 8-16. |
[36] | 魏秀艳, 赫文豪, 史怀忠, 等. 三轴应力下三棱形PDC齿破岩特性数值模拟研究[J]. 石油机械, 2021, 49(9): 17-23, 32. |
[37] |
刘维, 冯超超, 万绪新, 等. 适用于深层硬塑性泥岩的异形齿PDC钻头设计[J]. 新疆石油天然气, 2023, 19(3): 1-9.
DOI |
[38] | 刘伟吉, 阳飞龙, 祝效华, 罗云旭, 何灵. 异形PDC齿切削破岩提速机理研究[J]. 中国机械工程, 2022, 33(17): 2133-2141. |
[39] | 吴海霞, 沈立娜, 李春, 等. 博孜区块新型表孕镶金刚石全面钻头的研究与应用[J]. 钻探工程, 2021, 48(3): 101-105. |
[40] | 王滨, 李军, 邹德永, 等. 适合强研磨性硬地层PDC-金刚石孕镶块混合钻头设计与应用[J]. 特种油气藏, 2018, 25(1): 169-174. |
[41] | 沈立娜, 贾美玲, 蔡家品, 等. 金刚石钻头高效破岩技术新进展[J]. 金刚石与磨料磨具工程, 2022, 42(6): 662-666. |
[42] | SMITH BITS(A Schlumberger Company). Kinetic Diamond Impregnated drill bit[EB/OL]. (2021-03-22)[2024-02-12]. https://www.slb.com/-/media/files/smith/brochures/kinetic-br.ashx. |
[43] | MAURER W C, MCDONALD W J, NEUDECKER J W, et al. Geothermal turbodrill field tests[J]. Hot-Dry-Rock Systems, 1979, 31(2): 1-3. |
[44] | 刘璐, 王瑜, 王镇全, 等. 全金属螺杆钻具研究现状与关键技术[J]. 探矿工程(岩土钻掘工程), 2020, 47(4): 24-30. |
[45] | InFocus Energy Services Inc.,2020. Developing downhole oil and gas drilling products faster with structural simulation engineer[EB/OL].[2019-02-26]. https://www.solidworks.com/sites/default/files/infocus-energy-services-simulia-casestudy.pdf. |
[46] | 谭春飞. 深井超深井涡轮钻具复合钻井提高钻速技术研究[D]. 北京: 中国地质大学(北京), 2012. |
[47] | JONES S, FEDDEMA C, SUGIURA J. A gear-reduced drilling turbine provides game changing results: an alternative to downhole positive displacement motor[C]// Proceedings of the IADC/SPE Drilling Conference and Exhibition 2016. Society of Petroleum Engineers, Texas, USA, SPE-178851-MS: 332-334. |
[48] | VARELA R, GUZMAN F, CRUZ D, et al. First application of turbodrill and hybrid bit to optimize drilling times in Cretaceous formations with high chert content in Mexico south region[C]// Proceedings of the SPE/IADC Drilling Conference and Exhibition 2014. Society of Petroleum Engineers, Texas, USA, SPE-167921-MS: 178-181. |
[49] | 王树超, 王维韬, 雨松. 塔里木山前井涡轮配合孕镶金刚石钻头钻井提速技术[J]. 石油钻采工艺, 2016, 38(2): 156-159. |
[50] | 王九龙, 曹聪, 王雅蓉, 等. 涡轮配合孕镶金刚石钻头技术在克深243井的应用[J]. 中国石油和化工标准与质量, 2020, 40(4): 246-247. |
[51] | 秦晓庆, 肖国益, 胡大梁. 高速涡轮钻井技术在川西深井强研磨地层的提速应用[J]. 重庆科技学院学报(自然科学版), 2013, 15(2): 18-21, 26. |
[52] | 翁炜, 张德龙, 赵志涛, 等. Φ127 mm涡轮钻具在干热岩钻井取心钻进中的试验研究[J]. 探矿工程(岩土钻掘工程), 2017, 44(9): 68-72. |
[53] | SMITH BITS. Impax-percussion drilling hammer system datasheet[EB/OL]. (2022-08-18)[2024-02-12]. https://www.slb.com/-/media/files/smith/product-sheets/impax-hammer-system-ps.ashx. |
[54] | 陈少成. 基于液动冲击器的硬地层高效破岩技术研究[D]. 西安: 西安石油大学, 2020. |
[55] | 付加胜, 李根生, 田守嶒, 等. 液动冲击钻井技术发展与应用现状[J]. 石油机械, 2014, 42(6): 1-6. |
[56] | 郭强, 翁炜, 袁文真, 等. 射流式液动冲击器在ZK01-2井提速应用研究[J]. 钻探工程, 2021, 48(10): 56-61. |
[57] | WANG Y, WU C, YANG S. A self-powered rotating speed sensor for downhole motor based on triboelectric nanogenerator[J]. IEEE Sensors Journal, 2021, 21(4): 4310-4316. |
[58] | LU J X, WANG Y, KONG L R, et al. Analysis of output performance of all-metal progressive cavity motor[J]. Geoenergy Science and Engineering, 2023, 222: 211456. |
[59] | 李垚, 梁升平, 居迎军, 等. 国外钻井工具与仪器新进展及国内发展建议[J]. 钻探工程, 2022, 49(5): 145-155. |
[60] | BAKER HUGHES. 300℃ directional drilling system drilled deepest, hottest geothermal well in Iceland[EB/OL]. (2020-10-24)[2024-02-12]. https://www.bakerhughes.com/sites/bakerhughes/files/2021-01/300C%20directional%20drilling%20system%20drilled%20deepest%20well%20Iceland%20cs.pdf. 2020. |
[61] | 宋红喜, 曾义金, 张卫, 等. 旋转导向系统现状及关键技术分析[J]. 科学技术与工程, 2021, 21(6): 2123-2131. |
[62] | SCHLUMBERGER. ICE UltraHT drilling services brochure[EB/OL]. (2022-02-18)[2024-02-12]. https://www.slb.com/-/media/files/drilling/brochure/ice-ultraht-drilling-service-br.ashx?la=ja-jp. |
[63] | 黎伟, 牟磊, 周贤成, 等. 旋转导向系统及其控制方法研究进展[J]. 煤田地质与勘探, 2023, 51(10): 167-179. |
[64] | WANG J, XUE Q L, LIU B L, et al. Dynamics of mechanical automatic vertical drilling system with a novel hydraulic balanced turbine[J]. IEEE Access, 2021, 9: 159382-159398. |
[65] | 陈绪跃, 樊洪海, 高德利, 等. 机械比能理论及其在钻井工程中的应用[J]. 钻采工艺, 2015, 38(1): 6-10. |
[66] |
路宗羽, 徐生江, 蒋振新, 等. 准噶尔南缘深井机械比能分析与钻井参数优化[J]. 西南石油大学学报(自然科学版), 2021, 43(4): 51-61.
DOI |
[67] | SCHLUMBERGER. Drilling fluid catalog[EB/OL].(2020-08-27)[2024-02-12]. https://www.slb.com/-/media/files/mi/catalog/drilling-fluids-catalog.ashx?la=ja-jp |
[68] | DUPRIEST F, NOYNAERT S. Drilling practices and workflows for geothermal operations[C]//Proceedings of the IADC/SPE Inter-national Drilling Conference and Exhibition 2022. Society of Petroleum Engineers, Texas, USA, SPE-208798-MS: 256-261. |
[69] | 马青芳. 钻井液冷却技术及装备综述[J]. 石油机械, 2016, 44(10): 42-46. |
[1] | ZHOU Wei, MA Xiao, CHEN Wenyi, GAO Rui, WANG Yan, HU Dawei. Carbonates of the Wumishan Formation, Jixian System in the North China Plain: Mechanical properties under in-situ geothermal conditions [J]. Earth Science Frontiers, 2024, 31(6): 95-103. |
[2] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[3] | ZENG Zuoxun, CHEN Zhigeng, LU Chengdong, YANG Yu, CHEN Kangli, XIANG Shimin, DAI Qingqin, ZHANG Jun, DENG Yanting, FU Yan, DU Qiujiao, LIU Lilin, YANG Weiran. Earth system science research on earthquake mechanisms: Theory and validation of a new model [J]. Earth Science Frontiers, 2021, 28(6): 263-282. |
[4] | BIAN Shaoju, LIU Xin, LI Dongdong, DONG Yaping, LI Wu. Potassium extraction from potassium-rich brine in Puguang region, northeastern Sichuan, China [J]. Earth Science Frontiers, 2021, 28(6): 171-178. |
[5] | SHU Jinfu. Space, Earth, ocean: mineralogical studies under extreme conditions [J]. Earth Science Frontiers, 2020, 27(3): 133-153. |
[6] | LUO Shengyin, DOU Bin, TIAN Hong, CHEN Jie, XIAO Peng, ZHANG Shitao. Comparative experimental study on physical and mechanical properties of granite after natural cooling and under real-time high temperature [J]. Earth Science Frontiers, 2020, 27(1): 178-184. |
[7] | LIU Quan-Wei Bernhard.M.Krooss JIN Zhi-Jun WANG Yi Jan Hollenstein. Determination of kinetic parameters in open system nonisothermal pyrolysis with ultrahigh temperature for coal and its macerals and geological extrapolation of natural gas [J]. Earth Science Frontiers, 2009, 16(1): 167-172. |
[8] | ZHOU Wen-Ge FAN Da-Wei MO Fang GENG Yi-Suo LIU Yong-Gang XIE Hong-Sen. Textural development of dehydrationmelting in amphibolite at 1035 GPa and 950 ℃—Effect of pressure and time [J]. Earth Science Frontiers, 2009, 16(1): 146-154. |
[9] | ZHANG Rong-Hua ZHANG Xue-Tong HU Shu-Min. Critical fluids and mineral(rock)interactions in extreme conditions of the Earth interior [J]. Earth Science Frontiers, 2009, 16(1): 53-67. |
[10] | CHEN Jin-Yang LIU Gui-Xiang JIN Lu-Jiang. Water in the Earth's interior and abiotic formation of hydrocarbon [J]. Earth Science Frontiers, 2009, 16(1): 33-40. |
[11] | SU Gen-Li LI He-Beng LIU Cong-Jiang DAI Li-Dong. A review of methods of determining pH of fluids at high temperature and pressure [J]. Earth Science Frontiers, 2009, 16(1): 27-32. |
[12] | ZHENG Hai-Fei JIAO Er-Wei YANG Yu-Ping DUAN Ben-Yu. Determination of inner pressure for fluid inclusion by Raman spectroscopy and its application [J]. Earth Science Frontiers, 2009, 16(1): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||