Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (3): 133-153.DOI: 10.13745/j.esf.sf.2019.12.3
Previous Articles Next Articles
SHU Jinfu
Received:
2019-03-10
Revised:
2019-10-12
Online:
2020-05-20
Published:
2020-05-20
CLC Number:
SHU Jinfu. Space, Earth, ocean: mineralogical studies under extreme conditions[J]. Earth Science Frontiers, 2020, 27(3): 133-153.
Fig.3 (Left) Core-mantle boundary (CMB). (Right) Low and ultra-low velocity zones (LVZ, ULVZ), where Fe-rich post-perovskite (ppv) FexMg1-xSiO3 with CaIrO3 structure can have Fe concentration as high as x=0.8, which may explain the presence of LVZ and ULVZ in the D″ layer.
Fig.4 The crystal structure of Wüstite FeO, showing progressive transformations under increasing p-T. From left: cubic NaCl (Bl) structure at room temperature and lower pressure; rhombohedral structure at high p-T; highly distorted rhombohedral and NiAs (B8 or α-B8) structures at p> 90 GPa.
Fig.6 Crystal structures and spectrometric analysis of chromites. (a) FeCr2O4 structure;(b) Structure of high p-T FeCr2O4 (CF) from hemingite; (c) Structure of high p-T FeCr2O4 (CT) from Xieite;(d) Electron back scattering pattern; (e) X-ray diffraction patterns; and (f) Raman spectra.
Fig.7 (a) Kimberlitic diamond single crystal with graphite single crystal inclusion from Shandong, China. (b) Venezuela kimberlitic diamond with coesite inclusions.
[1] |
MARC M, MARIE C, LUDOVIC M, et al. Lopsided growth of Earth's inner core[J]. Science, 2010, 328(5981):1014-1017.
DOI URL |
[2] | ENGDAHL E R, FLYNN E A, MASSÉ R P. Differential PkiKP travel times and the radius of the core[J]. Geophysical Journal of the Royal Astronomical Society, 1974, 40(3):457-463. |
[3] |
ALFÈ D, GILLAN M, PRICE G D. Composition and temperature of the Earth's core constrained by combining ab initio calculations and seismic data[J]. Earth and Planetary Science Letters, 2002, 195(1/2):91-98.
DOI URL |
[4] | RONALD C, LARS S. Crystal at the center of the Earth[N]. Archived from the Original, 2007-02-05. |
[5] |
STIXRUDE L, COHEN R E. High-pressure elasticity of iron and anisotropy of Earth's inner core[J]. Science, 1995, 267:1972-1975.
DOI URL |
[6] |
MORELLI A, DZIEWONSKI A M, WOODHOUSE J H. Anisotropy of the core inferred from PKIKP travel times[J]. Geophysical Research Letters, 1986, 13:1545-1548.
DOI URL |
[7] |
JEANLOZ R, WENK H R. Convection and anisotropy of the inner core[J]. Geophysical Research Letters, 1988, 15:72-75.
DOI URL |
[8] |
POIRIER J P, PRICE G D. Primary slip system of e-iron and anisotropy of the Earth's inner core[J]. Physics of the Earth and Planetary Interiors, 1999, 110:147-156.
DOI URL |
[9] |
MAO H K, HEMLEY R J. The high-pressure dimension in Earth and planetary science[J]. Proceedings of the National Academy of Sciences, 2007, 104(22):9114-9115.
DOI URL |
[10] |
MAO H K, CHEN L C, SHU J F, et al. Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: implication for composition of the core[J]. Journal of Geophysical Research, 1990, 95(B13):21737-21742.
DOI URL |
[11] |
MAO H K, SHU J F, SHEN G, et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core[J]. Nature, 1998, 396:741-743.
DOI URL |
[12] |
WENK H R, MATTHIES S, HEMLEY R J, et al. The plastic deformation of iron at pressure of the Earth's inner core[J]. Nature, 2000, 405:1044-1046.
DOI URL |
[13] |
ANDERSON O L, ISAAK D G. Calculated melting curves for phases of iron[J]. American Mineralogist, 2000, 85:376-385.
DOI URL |
[14] | MERKEL S, SHU J F, GILLET P, et al. X-ray diffraction study of the single-crystal elastic moduli of ε-Fe up to 30 GPa[J]. Journal of Geophysical Research, 2005, 110:B05201. |
[15] | Science & Innovation, National Geographic. Earth's interior[EB/OL]. (2018-12-11)[2018-12-12]. https://www.nationalgeographic.com/science/earth/surface-of-the-earth/earths-interior 2019. |
[16] | GUTENBERG B. Physics of the Earth's interior[M]. Amsterdam: Elsevier, 2016: 115. |
[17] | First measurement of magnetic field inside Earth's core. (2010-12-19)[2018-12-11]. https://www.sciencedaily.com>Date:Dec.19,2010. |
[18] |
BUFFETT B A. Tidal dissipation and the strength of the Earth's internal magnetic field[J]. Nature, 2010, 468(7326):952.
DOI URL |
[19] |
MA Y, SOMAYAZULU M, et al. In situ X-ray diffraction studies of iron to Earth-core conditions[J]. Physics of Earth and Planetary Interiors, 2004, 143/144:455-467.
DOI URL |
[20] |
LEKIC V, COTTAAR S, DZIEWONSKI A, et al. Cluster analysis of global lower mantle[J]. Earth and Planetary Science Letters, 2012, 357-358(1/2/3):68-77.
DOI URL |
[21] |
THORNE H J, BUFFETT B A. Core-mantle boundary heat flow[J]. Nature Geoscience, 2008, 1(1):25-32.
DOI URL |
[22] |
DZIEWONSKI A M, ANDERSON D L. Preliminary reference Earth model[J]. Physics of the Earth and Planetary Interiors, 1981, 25(4):297-356.
DOI URL |
[23] |
MAO W L, MAO H K, PRAKAPENKA V B, et al. The effect of pressure on the structure and volume of ferromagnesian post-perovskite[J]. Geophysical Research Letters, 2006, 33: L12S02. DOI: 10.1029/2006GL025770
DOI |
[24] |
MAO W L, MAO H K, STURHAHN W, et al. Iron-rich post-perovskite and the origin of ultralow-velocity zones[J]. Science, 2006, 312:564-565.
DOI URL |
[25] |
MAO W L, SHEN G, PRAKAPENKA V B, et al. Ferromagnesian postperovskite silicates in the D″ layer of the Earth[J]. Proceedings of the National Academy of Sciences, 2004, 101(45):15867-15869.
DOI URL |
[26] |
HIROSE K, FEI Y, MA Y, et al. The fate of subducted basaltic crust in the Earth's lower mantle[J]. Nature, 1999, 397:53-56.
DOI URL |
[27] |
IDEHARA K, YAMADA A, ZHAO D. Seismological constraints on the ultralow velocity zones in the lowermost mantle from core-reflected waves[J]. Physics of the Earth and Planetary Interiors, 2007, 165(1):25-46.
DOI URL |
[28] |
MARUYAMA S, SANTOSH M, ZHAO D. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 11:7-37.
DOI URL |
[29] |
USUI Y, HIRAMATSU Y, FURUMOTO M, et al. Evidence of seismic anisotropy and a lower temperature condition in the D' layer beneath pacific Antarctic Ridge in the Antarctic Ocean[J]. Physics of the Earth and Planetary Interiors, 2008, 167:205-216.
DOI URL |
[30] |
WENTZCOVITCH R M, TSUCHIYA T, TSUCHIYA J. MgSiO3 postperovskite at D″ conditions[J]. Proceedings of the National Academy of Sciences, 2006, 103:543-546.
DOI URL |
[31] |
YAMAZAKI D, YOSHINO T, OHFUJI H, et al. Origin of the seismic anisotropy in the D″ layer inferred from shear deformation of post-perovskite phase[J]. Earth and Planetary Science Letters, 2006, 252:372-378.
DOI URL |
[32] |
YUAN H S, ZHANG L. In situ determination of crystal structure and chemistry of minerals at Earth's deep lower mantle conditions[J]. Matter and Radiation at Extremes, 2017, 2:117-128.
DOI URL |
[33] | LODDERS K, FEGLEY B. The planetary scientist's companion[M]. New York: Oxford University Press, 1998. |
[34] | BARKER L. What is the Earth's mantle made of?[EB/OL]. (2016-03-06)[2018-12-11]. https://www.universetoday.com. |
[35] | DRAGUTIN S. Andrija Mohorovicic[J]. USGS, 2000, 36:1-2. |
[36] |
HEMLEY R J, COHEN R E. Silicate perovskite[J]. Annual Review of Earth and Planetary Sciences, 1992, 20:553-600.
DOI URL |
[37] | JACKSON J M, ZHANG J, SHU J F, et al. High-pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: implications for lateral heterogeneity in Earth D″ lower mantle[J]. Geophysical Research Letters, 2005, 32. |
[38] |
MURAKAMI M, OHISHI Y, HIRAO N, et al. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data[J]. Nature, 2012, 485(7396):90-94.
DOI URL |
[39] |
TSCHAUNER O, MA C, BECKETT J R, et al. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite[J]. Science, 2014, 346:1100-1102.
DOI URL |
[40] | JOANNA W. Mineral named after Nobel physicist[J]. Eos, Transactions American Geophysical Union, 2014, 95:195. |
[41] |
SHARP T. Bridgmanite-named at last[J]. Science, 2014, 346(6213):1057-1508.
DOI URL |
[42] | SHU J F, MAO H K, HU J Z, et al. Single-crystal X-ray diffraction of wustite to 30 GPa hydrostatic pressure[J]. Neues Jahrbuch fur Mineralogie Abhandlungen, 1998, 172:309-323. |
[43] |
MAO H K, SHU J F, FEI Y, et al. The wustite enigma[J]. Physics of the Earth and Planetary Interiors, 1996, 96:135-145.
DOI URL |
[44] | FEI Y, MAO H K, SHU J F, et al. P-V-T equation of state of magnesiowüstite(Mg0.6Fe0.4)O[J]. Physics and Chemistry of Minerals, 1992, 18:416-422. |
[45] |
MAO W L, SHU J F, HU J Z, et al. Displacive transition in magnesiowüstite[J]. Journal of Physics: Condensed Matter, 2002, 14(44):11349-11354.
DOI URL |
[46] |
LIN J F, WENK H R, VOLTOLINI M, et al. Deformation of lower-mantle ferropericlase(Mg, Fe)O across the electronic spin transition[J]. Physics and Chemistry Minerals, 2009, 36:585-592.
DOI URL |
[47] |
BADRO J, STRUZHKIN V V, SHU J F, et al. Magnetism in FeO at megabar pressure from X-ray emission spectroscopy[J]. Physical Review Letters, 1999, 83(20):4101-4104.
DOI URL |
[48] | MERKEL S, WENK H R, SHU J F, et al. Deformation of polycrystalline MgO at pressures of the lower mantle[J]. Journal of Geophysical Research, 2002, 107(B11):2271. |
[49] |
SINGH A K, MAO H K, SHU J F, et al. Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron[J]. Physical Review Letters, 1998, 80(10):2157-2160.
DOI URL |
[50] |
YAMAZAKI D, KARATO S. Fabric development in(Mg, Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth's lower mantle[J]. Physics of the Earth and Planetary Interiors, 2002, 131:251-267.
DOI URL |
[51] | MAO H K, BELL P M. High-pressure transformation in magnesioferrite(MgFe2O4)[M]. Washington: Carnegie Institution of Washington Year Book, 1974, 75:555-557. |
[52] | CHEN M, SHU J, XIE X, et al. IMA Commission on New Minerals, Nomenclature and Classification(CNMNC) NEWSLETTER 39 New minerals and nomenclature modification approved in 2017, New mineral: Maohokite IMA 2017-047[J]. Mineralogic Magazine, 2017, 81(5):1279-1286. |
[53] |
CHEN M, SHU J, XIE X, et al. Natural diamond formation by self-redox of ferromagnesian carbonate[J]. Proceedings of the National Academy of Sciences, 2018, 115(11):2676-2680.
DOI URL |
[54] | CHEN M, SHU J, XIE X, et al. Maohokite, a post-spinel polymorph of MgFe2O4 in shocked gneiss from the Xiuyan crater in China[J]. Meteoritics & Planetary Science, 2019, 54(3):495-502. |
[55] | DEUSS A, WOODHOUSE J. Seismic observations of splitting of the mid-transition zone discontinuity in Earth's mantle[J]. Science, New Series, 2001, 294(5541):354-357. |
[56] |
HELFFRICH G R, WOOD B J. The Earth's mantle[J]. Nature, 2001, 412:501-507.
DOI URL |
[57] | PRICE G D, PUTNIS A, AGRELL S O, et al. Wadsleyite, natural β-(Mg,Fe)2SiO4 from the Peace River meteorite[J]. Canadian Mineralogist, 1983, 21:29-35. |
[58] | SMYTH J R. β-Mg2SiO4: a potential host for water in the mantle[J]. American Mineralogist 1987, 72(11):1051-1055. |
[59] | SMYTH J R. A crystallographic model for hydrous wadsleyite: an ocean in the Earth's interior[J]. American Mineralogist, 1994, 79:1021-1024. |
[60] | HORIUCHI H, SAWAMOTO H. β-(Mg, Fe)2SiO4: single crystal X-ray diffraction study[J]. American Mineralogist, 1981, 66:568-575. |
[61] |
KLEPPE A K. High-pressure Raman spectroscopic studies of hydrous wadsleyite II[J]. American Mineralogist, 2006, 91(7):1102-1109.
DOI URL |
[62] |
BINNS R A, DAVIS R J, REED N S J B. Ringwoodite, natural (Mg, Fe)2SiO4 spinel group in the Tenham meteorite[J]. Nature, 1969, 221:943-944.
DOI URL |
[63] |
YE Y, BROWN D A, SMYTH J R, et al. Compressibility and thermal expansion study of hydrous Fo100 ringwoodite with 2.5(3) wt% H2O[J]. American Mineralogist, 2012, 97:573-582.
DOI URL |
[64] |
HUANG X G, XU Y S, KARATO S H. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite[J]. Nature, 2005, 434:746-749.
DOI URL |
[65] |
CHI M, OLIVER T, BECKETT J R, et al. Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: implications for the Tissint shock event on Mars[J]. Geochimica et Cosmochimica Acta, 2016, 184:240-256.
DOI URL |
[66] | SMYTH J R, MCCORMICK T C. Crystallographic data for minerals[M]// AHRENS T J. Mineral physics and crystallography: a handbook of physical constants. Washington DC: AGU, 1995: 1-17. |
[67] | KATSURA T, YOKOSHI S, SONG M, et al. Thermal expansion of Mg2SiO4 ringwoodite at high pressures[J]. Journal of Geophysical Research: Solid Earth, 2004, 109:B102. |
[68] | NISHIHARA Y, TAKAHASHI E, MATSUKAGE K N, et al. Thermal equation of state of (Mg0.91Fe0.09)2SiO4 ringwoodite[J]. Physics of the Earth and Planetary Interiors, 2004, 143:33-46. |
[69] | ARMENTROUT M, KAVNER A. High pressure, high temperature equation of state for Fe2SiO4 ringwoodite and implications for the Earth's transition zone[J]. Geophysical Research Letters, 2011, 38(8):L08309. |
[70] | RUSSELL J, HEMLEY. Ultrahigh-pressure mineralogy, physics and chemistry of the Earth's deep interior[J]. Reviews in Mineralogy, 1998, 37:275-279. |
[71] |
COLLERSON K D, HAPUGODA S, BALZ S K, et al. Rocks from the mantle transition zone: majorite-bearing xenoliths from Malaita, Southwest Pacific[J]. Science, 2000, 288(5469):1215-1223.
DOI URL |
[72] |
KUNIAKI K, MATSUMOTO T, IMAMURA M. Structural change of orthorhombic-I tridymite with temperature: a study based on second-order thermal-vibrational parameters[J]. Zeitschrift für Kristallographie, 1986, 177:27-38.
DOI URL |
[73] | DEER W A, HOWIE R A, WISE W S. Rock-forming minerals, Vol. B: framework silicates: silica minerals, feldspathoids and the zeolites[M]. [S.l.]: Geological Society, 2004. |
[74] |
WRIGHT A F, LEADBETTER A J. The structures of the β-cristobalite phases of SiO2and AlPO4[J]. Philosophical Magazine, 1975, 31(6):1391-1401.
DOI URL |
[75] | ANTHONY J W, BIDEAUX R A, BLADH, et al. Coesite[M]//Handbook of mineralogy(PDF). II(Silica, silicates). Chantilly, VA, US: Mineralogical Society of America, 2011. |
[76] |
COES L Jr. A new dense crystalline silica[J]. Science, 1953, 118(3057):131-132.
DOI URL |
[77] |
CHAO E C T, SHOEMAKER E M, MADSEN B M. First natural occurrence of coesite[J]. Science, 1960, 132(3421):220-222.
DOI URL |
[78] | ROSS N L, SHU J F, HAZEN R M, et al. High-pressure crystal chemistry of stishovite[J]. American Mineralogist, 1990, 75:739-747. |
[79] |
HEMLEY R J, SHU J F, CARPENTER M A, et al. Strain/order parameter coupling in ferroelastic transition in dense SiO2[J]. Solid State Communications, 2000, 114(10):527-532.
DOI URL |
[80] |
EL GORESY A, DERA P, SHARP T G, et al. Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami[J]. European Journal of Mineralogy, 2008, 20(4):523-528.
DOI URL |
[81] |
DERA P, PREWITT C T, BOCTOR N Z, et al. Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty[J]. American Mineralogist, 2002, 87:1018-1023.
DOI URL |
[82] | AOUDJEHANE H C, JAMBON A. First evidence of high-pressure silica: stishovite and seifertite in lunar meteorite Northwest Africa 4734[J]. Meteoritics & Planetary Science, 2008, 43(7):A32. |
[83] | SHU J F, MAO W L, HEMLEY R J, et al. Pressure-induced distortive phase transition in chromite-spinel at 29 GPa[J]. Materials Research Society Symposium Proceedings, 2007, 987:179-184. |
[84] |
CHEN M, SHU J F, MAO H K, et al. Natural occurrence and synthesis of two new postspinel polymorphs of chromite[J]. Proceedings of the National Academy of Sciences, 2003, 100:14651-14654.
DOI URL |
[85] |
CHEN M, SHU J F, XIE X, et al. Natural CaTi2O4-structured FeCr2O4 polymorph in Suizhou meteorite and its significance in mantle mineralogy[J]. Geochimica et Cosmochimica Acta, 2003, 67(20):3937-3942.
DOI URL |
[86] | CARTIGNY P, PALOT M, THOMASSOT E, et al. Diamond formation: a stable isotope perspective[J]. Annual Review of Earth and Planetary, 2014, 42:699-732. |
[87] | SHIREY S B, SHIGLEY J E. Recent advances in understanding the geology of diamonds[J]. Gems & Gemology, 2013, 49(4):188-222. |
[88] |
SOBOLEV N V, FURSENKO B A, GORYAINOV S V, et al. Fossilized high pressure from the Earth's deep interior: the coesite-in-diamond barometer r[J]. Proceedings of the National Academy of Sciences, 2000, 97(22):11875-11879.
DOI URL |
[89] | 张仲明, 杨经绥, 戎合, 等. 苏鲁超高压变质带中国大陆科学钻探主孔(CCSD-MH)榴辉岩中发现金刚石[J]. 岩石学报, 2007, 23(12):3201-3206. |
[90] | 戎合, 杨经绥, 张仲明, 等. 西藏罗布莎橄榄岩与中国大陆科学钻探主孔(CCSD-MH) 榴辉岩中金刚石的红外特征初探[J]. 岩石学报, 2013, 29(6):1861-1866. |
[91] | 杨经绥, 白文吉, 戎合, 等. 中国大陆科学钻探(CCSD)主孔石榴石橄榄岩中发现Fe2P合金矿物[J]. 岩石学报, 2005, 21(2):271-276. |
[92] |
DEUTSCH A, MASAITIS V L, LANGENHORST F, et al. Popigai, Siberia: well preserved giant impact structure, national treasury, and world's geological heritage[J]. Episodes, 2000, 23(1):3-12.
DOI URL |
[93] |
FRONDEL C, MARVIN U B. Lonsdaleite, a hexagonal polymorph of diamond[J]. Nature, 1967, 214:587-589.
DOI URL |
[94] |
YANG J S, PAUL T R, YILDIRIM D. Diamonds in ophiolites[J]. Gondwana Research, 2015, 27:459-485.
DOI URL |
[95] |
XU X Z, YANG J S, PAUL T R, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015, 27:686-700.
DOI URL |
[96] | 白文吉, 杨经绥, ROBINSON P, 等. 西藏罗布莎蛇绿岩铬铁矿中金刚石的研究[J]. 地质学报, 2001, 75(3):404-409. |
[97] | 杨经绥, 徐向珍, 白文吉, 等. 蛇绿岩型金刚石的特征[J]. 岩石学报, 2014, 30(8):2113-2124. |
[98] | 杨经绥, 徐向珍, 戎合, 等. 蛇绿岩地幔橄榄岩中的深部矿物: 发现与研究进展[J]. 矿物岩石地球化学通报, 2013, 32(2):159-170. |
[99] | Wikipedia. Category: Earth's crust[EB/OL]. [2019-04-23]. http://www.wikipedia.org. |
[100] |
SHU J F, CHEN X J, CHOU I M, et al. Structural stability of methane hydrate at high pressures[J]. Geoscience Frontiers, 2011, 2(1):93-100.
DOI URL |
[1] | YANG Xiaoyong, SUN Chao, CAO Jingya, SHI Jianbin. High purity quartz: Research progress and perspective review [J]. Earth Science Frontiers, 2022, 29(1): 231-244. |
[2] | GUO Dongyi, XIA Qingyin, DONG Hailiang, WANG Xi, ZENG Qiang, ZHAO Yu. Antibacterial clay minerals: Research advances and outlook [J]. Earth Science Frontiers, 2022, 29(1): 470-485. |
[3] | DONG Guochen, LI Shengrong, SHEN Junfeng, DONG Pengsheng, LI Huawei, YIN Guodong, TANG Jiahui. Genetic mineralogy of natural heavy placer minerals and its effectiveness in mineral prospecting [J]. Earth Science Frontiers, 2020, 27(5): 171-178. |
[4] | REN Guiping, LU Anhuai, LI Yan, WANG Changqiu, DING Hongrui. The evolutionary process of microbial community structure influenced by photoelectron from semiconducting minerals occurring at the “mineral membrane” on the Earth surface [J]. Earth Science Frontiers, 2020, 27(5): 195-206. |
[5] | SHEN Junfeng, SHEN Xuhui, LI Shengrong, XU Liwei, DU Baisong, WANG Dongli, WANG Shuhao. Relationship between the effects of mineral thermoelectricity and abnormal geoelectricity [J]. Earth Science Frontiers, 2020, 27(5): 207-217. |
[6] | LUO Shaoyong, ZHOU Yuefei, LIU Xing. Effect of apatite on the stability of ferrihydrite in lacustrine sediments [J]. Earth Science Frontiers, 2020, 27(5): 218-226. |
[7] | HAN Xiuli, SI Tianhang, LI Mingduo, ZHOU Xiang, LIU Lei, ZHAO Kai. Influences of MgO and Al2O3 on the mineralogical properties of calcium ferrite in iron ore sinter [J]. Earth Science Frontiers, 2020, 27(5): 280-290. |
[8] | LI Yuan, WANG Changqiu, LU Anhuai, LI Yan, YANG Chongqing, LI Kang. Mineralogical characteristics and distribution patterns of different types of calcification in a cerebrovascular atherosclerotic lesion [J]. Earth Science Frontiers, 2020, 27(5): 291-299. |
[9] | . [J]. Earth Science Frontiers, 2017, 24(5): 159-166. |
[10] | ZHENG Hai-Fei JIAO Er-Wei YANG Yu-Ping DUAN Ben-Yu. Determination of inner pressure for fluid inclusion by Raman spectroscopy and its application [J]. Earth Science Frontiers, 2009, 16(1): 1-5. |
[11] | CHEN Yong GE Yun-Jin ZHOU Yao-Qi LIU Chao-Yang ZHOU Zhen-Zhu MAO Cui. Hydrocarbonbearing inclusions synthesized in carbonate at the temperature and pressure of natural reservoir: Some important implications for the study of petroleum geology [J]. Earth Science Frontiers, 2009, 16(1): 11-16. |
[12] | ZHANG Hui TANG Yong LIU Cong-Jiang CHEN Jian-Feng. An experimental study of REE partitioning between phosphorusrich peraluminous melt and coexisting aqueous fluid at 1 kbar and 800 ℃ [J]. Earth Science Frontiers, 2009, 16(1): 114-124. |
[13] | TUN Hong-Hai LIN Yi-Yang TUN Jia-Yi CENG Li-Xuan CENG Ding-Cai DU Juan. A preliminary study of surface adsorption of iron oxide minerals for phenol and DOM. [J]. Earth Science Frontiers, 2008, 15(6): 133-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||