Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (3): 123-132.DOI: 10.13745/j.esf.sf.2020.4.13
Previous Articles Next Articles
ZHANG Zhuoying1,2(), MA Jinlong1,*(
), ZHANG Le1, ZENG Ti3, LIU Ying1, WEI Gangjian1
Received:
2019-06-28
Revised:
2020-02-27
Online:
2020-05-20
Published:
2020-05-20
Contact:
MA Jinlong
CLC Number:
ZHANG Zhuoying, MA Jinlong, ZHANG Le, ZENG Ti, LIU Ying, WEI Gangjian. Advances in rubidium isotope analysis method and applications in geological studies[J]. Earth Science Frontiers, 2020, 27(3): 123-132.
流程 | 树脂类型及体积 | 淋洗酸类型 | 实验流程及用酸量 | 最终残留元素 | 回收率 | 参考文献 |
---|---|---|---|---|---|---|
1 | AG50W-X8(8 mL) | 2.5 mol/L HCl | 9 mL 淋洗 3 mL 接取Rb | Na、K、Mg、 Ca等基体元素 | 约98% | [13,21,26] |
Sr-Spec树脂 (200 μL) | 3 mol/L HNO3 | 蒸干上步接取溶液, 提取至1 mL上样, 1 mL接取Rb | ||||
2 | DGA (1.8 mL) | 1 mol/L HNO3 | 1 mL上样 5 mL接取Rb | K/Rb<2 | 约100% | [27] |
AG50-X12 (20 mL) | 3 mol/L HCl | 蒸干上步接取溶液, 提取至1 mL上样 69 mL淋洗 50 mL接取Rb | ||||
AG50-X12 (10 mL) | 3 mol/L HCl | 蒸干上步接取溶液, 提取至1 mL上样 34 mL淋洗 15 mL接取Rb | ||||
AG50-X8 (1 mL) | 0.5 mol/L HCl | 蒸干上步接取溶液, 提取至0.25 mL上样 26.75 mL淋洗 40接取Rb | ||||
3 | Sr-Spec树脂 (200 μL) | 2 mol/L HNO3+ 0.07 mol/L HF 以及不同浓度HNO3 | 收集分离Ba、Sr、Pb 过程中含Rb及其他 基体元素的混合液 | 未明 | 未明 | [31] |
Cs-Rb树脂 (50 μL) | 2 mol/L HNO3+ 0.07 mol/L HF | 取100 μL混合液上样 150 μL淋洗 | ||||
1 mol/L HNO3 | 600 μL淋洗 | |||||
6 mol/L HNO3 | 1.5 mL接取Rb | |||||
4 | Sr-Spec树脂 (1.5 g) | 3 mol/L HNO3 | 100 μL上样 4.4 mL淋洗 7.5 mL接取Rb | Na/Rb<2、 Ca/Rb<4 | 约100% | [28] |
Table 1 Comparison of published Rb separation procedures
流程 | 树脂类型及体积 | 淋洗酸类型 | 实验流程及用酸量 | 最终残留元素 | 回收率 | 参考文献 |
---|---|---|---|---|---|---|
1 | AG50W-X8(8 mL) | 2.5 mol/L HCl | 9 mL 淋洗 3 mL 接取Rb | Na、K、Mg、 Ca等基体元素 | 约98% | [13,21,26] |
Sr-Spec树脂 (200 μL) | 3 mol/L HNO3 | 蒸干上步接取溶液, 提取至1 mL上样, 1 mL接取Rb | ||||
2 | DGA (1.8 mL) | 1 mol/L HNO3 | 1 mL上样 5 mL接取Rb | K/Rb<2 | 约100% | [27] |
AG50-X12 (20 mL) | 3 mol/L HCl | 蒸干上步接取溶液, 提取至1 mL上样 69 mL淋洗 50 mL接取Rb | ||||
AG50-X12 (10 mL) | 3 mol/L HCl | 蒸干上步接取溶液, 提取至1 mL上样 34 mL淋洗 15 mL接取Rb | ||||
AG50-X8 (1 mL) | 0.5 mol/L HCl | 蒸干上步接取溶液, 提取至0.25 mL上样 26.75 mL淋洗 40接取Rb | ||||
3 | Sr-Spec树脂 (200 μL) | 2 mol/L HNO3+ 0.07 mol/L HF 以及不同浓度HNO3 | 收集分离Ba、Sr、Pb 过程中含Rb及其他 基体元素的混合液 | 未明 | 未明 | [31] |
Cs-Rb树脂 (50 μL) | 2 mol/L HNO3+ 0.07 mol/L HF | 取100 μL混合液上样 150 μL淋洗 | ||||
1 mol/L HNO3 | 600 μL淋洗 | |||||
6 mol/L HNO3 | 1.5 mL接取Rb | |||||
4 | Sr-Spec树脂 (1.5 g) | 3 mol/L HNO3 | 100 μL上样 4.4 mL淋洗 7.5 mL接取Rb | Na/Rb<2、 Ca/Rb<4 | 约100% | [28] |
仪器 | 仪器分馏 校正方法 | 精度(2 SD) | 参考文献 |
---|---|---|---|
VG Sector 54 TIMS | 1.3% | [13] | |
VG Axiom MC-ICP-MS | 外标元素 加入法 | 0.5% | [13] |
Micromass IsoProbe MC-ICP-MS | 外标元素 加入法 | 0.5‰~0.2‰ | [21,26] |
Neptune Plus MC-ICP-MS | SSB | 0.25‰~0.06‰ | [27-28] |
Table 2 Method comparison for Rb isotope measurement by mass spectrometry
仪器 | 仪器分馏 校正方法 | 精度(2 SD) | 参考文献 |
---|---|---|---|
VG Sector 54 TIMS | 1.3% | [13] | |
VG Axiom MC-ICP-MS | 外标元素 加入法 | 0.5% | [13] |
Micromass IsoProbe MC-ICP-MS | 外标元素 加入法 | 0.5‰~0.2‰ | [21,26] |
Neptune Plus MC-ICP-MS | SSB | 0.25‰~0.06‰ | [27-28] |
[1] |
HALLIDAY A N, LEE D C, CHRISTENSEN J N, et al. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1995, 146/147:21-33.
DOI URL |
[2] |
REHKÄMPER M, SCHÖNBÄCHLER M, STIRLING C H. Multiple collector ICP-MS: introduction to instrumentation, measurement techniques and analytical capabilities[J]. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 2001, 25:23-40.
DOI URL |
[3] |
ELARDO S M, SHAHAR A. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation[J]. Nature Geoscience, 2017, 10:317-321.
DOI URL |
[4] | GERBER S, BURKHARDT C, BUDDE G, et al. Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules[J]. The Astrophysical Journal Letters, 2017, 841(L17):1-7. |
[5] |
ZHU X K, GUO Y, WILLIAMS R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planetary Science Letters, 2002, 200(1/2):47-62.
DOI URL |
[6] |
LI S G, YANG W, KE S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 4(1):111-120.
DOI URL |
[7] |
LARSON P B, MAHER K, RAMOS F C, et al. Copper isotope ratios in magmatic and hydrothermal ore-forming environments[J]. Chemical Geology, 2003, 201(3/4):337-350.
DOI URL |
[8] |
MARKL G, BLANCKENBURG F V, WAGNER T. Iron isotope fractionation during hydrothermal ore deposition and alteration[J]. Geochimica et Cosmochimica Acta, 2006, 70(12):3011-3030.
DOI URL |
[9] |
STYLO M, NEUBERT N, WANG Y H, et al. Uranium isotopes fingerprint biotic reduction[J]. Proceedings of the National Academy of Sciences, 2015, 112(18):5619-5624.
DOI URL |
[10] |
SUN H, XIAO Y L, GAO Y J, et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian-Triassic boundary[J]. Proceedings of the National Academy of Sciences, 2018, 115:3782-3787.
DOI URL |
[11] |
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506:307-315.
DOI URL |
[12] | White W M, Casey W H, Marty B, et al. Encyclopedia of geochemistry: a comprehensive reference source on the chemistry of the Earth[M]. Cham, Switzerland: Springer International Publishing AG, Part of Springer Nature, 2018: 1316-1318. |
[13] |
WAIGHT T, BAKER J, WILLIGERS B. Rb isotope dilution analyses by MC-ICPMS using Zr to correct for mass fractionation: towards improved Rb-Sr geochronology?[J]. Chemical Geology, 2002, 186(1/2):99-116.
DOI URL |
[14] |
TENG F Z, DAUPHAS N, WATKINS J M. Non-traditional stable isotopes: retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82:1-26.
DOI URL |
[15] | MCDONOUGH W F. Treatise on geochemistry: compositional model for the Earth's core[M]. Amsterdam: Elsevier, 2014: 559-577. |
[16] | RUDNICK R L, GAO S. Treatise on geochemistry: composition of the continental crust[M]. Amsterdam: Elsevier, 2014: 1-51. |
[17] |
LODDERS K. Solar system abundances and condensation temperatures of the elements[J]. The Astrophysical Journal, 2003, 591:1220-1247.
DOI URL |
[18] |
NESAITT H W, MARKOVICS G, PRICE R C. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta, 1980, 44:1659-1666.
DOI URL |
[19] | 张霜华. 浅谈拓宽我国铷铯的应用领域[J]. 新疆有色金属, 1998, 2:43-47. |
[20] |
NEBEL O, SCHERER E E, MEZGER K. Evaluation of the87Rb decay constant by age comparison against the U-Pb system[J]. Earth and Planetary Science Letters, 2011, 301(1/2):1-8.
DOI URL |
[21] |
NEBEL O, MEZGER K, SCHERER E E, et al. High precision determinations of 87Rb/85Rb in geologic materials by MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2005, 246(1/2/3):10-18.
DOI URL |
[22] |
MOYNIER F, AGRANIER A, HEZEL D C, et al. Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites[J]. Earth and Planetary Science Letters, 2010, 300(3/4):359-366.
DOI URL |
[23] |
MA J L, WEI G J, LIU Y, et al. Precise measurement of stable neodymium isotopes of geological materials by using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(12):1926-1931.
DOI URL |
[24] |
LIU H C, YOU C F, ZHOU H Y, et al. Effect of calcite precipitation on stable strontium isotopic compositions: Insights from riverine and pool waters in a karst cave[J]. Chemical Geology, 2017, 456:85-97.
DOI URL |
[25] |
SHALEV N, GAVRIELI I, HALICZ L, et al. Enrichment of88Sr in continental waters due to calcium carbonate precipitation[J]. Earth and Planetary Science Letters, 2017, 459:381-393.
DOI URL |
[26] |
NEBEL O, MEZGER K, WESTRENEN V W. Rubidium isotopes in primitive chondrites: constraints on Earth's volatile element depletion and lead isotope evolution[J]. Earth and Planetary Science Letters, 2011, 305(3/4):309-316.
DOI URL |
[27] |
PRINGLE E A, MOYNIER F. Rubidium isotopic composition of the Earth, meteorites, and the Moon: evidence for the origin of volatile loss during planetary accretion[J]. Earth and Planetary Science Letters, 2017, 473:62-70.
DOI URL |
[28] |
ZHANG Z Y, MA J L, ZHANG L, et al. Rubidium purification via a single chemical column and its isotope measurement on geological standard materials by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2):322-328.
DOI URL |
[29] |
STRELOW F W E. An ion exchange selectivity scale of cations based on equilibrium distribution coefficients[J]. Analytical Chemistry, 1960, 32:1185-1188.
DOI URL |
[30] |
STRELOW F W E, RETHEMEYER R, BOTHMA C J C. Ion exchange selectivity scales for cations in nitric acid and sulfuric acid media with a sulfonated polystyrene resin[J]. Analytical Chemistry, 1965, 37:106-111.
DOI URL |
[31] |
PIN C, GANNOUN A. Integrated extraction chromatographic separation of the lithophile elements involved in long-lived radiogenic isotope systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) useful in geochemical and environmental sciences[J]. Analytical Chemistry, 2017, 89(4):2411-2417.
DOI URL |
[32] |
PIN C, BASSIN C. Evaluation of a strontium-specific extraction chromatographic method for isotopic analysis in geological materials[J]. Analytica Chimica Acta, 1992, 269:249-255.
DOI URL |
[33] | JAKOPIČ R, BENEDIK L. Tracer studies on Sr resin and determination of90Sr in environmental samples[J]. Acta Chimica Slovenica, 2005, 52:297-302. |
[34] |
YOBREGAT E, FITOUSSI C, BOURDON B. A new method for TIMS high precision analysis of Ba and Sr isotopes for cosmochemical studies[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(7):1388-1399.
DOI URL |
[35] |
DODSON M H. A theoretical study of the use of internal standards for precise isotopic analysis by the surface ionization technique: Part I. General first-order algebraic solutions[J]. Journal of Scientific Instruments, 1963, 40:289-295.
DOI URL |
[36] | SIEBERT C, NÄGLER T F, KRAMERS J D. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2001, 2:1032-1047. |
[37] | FIETZKE J, EISENHAUER A. Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8):1-6. |
[38] | PALME H, LODDERS K, JONES A. Treatise on geochemistry: cosmochemical estimates of mantle composition[M]. Amsterdam: Elsevier, 2003: 1-38. |
[39] |
HALLIDAY A N, PORCELLI D. In search of lost planets-the paleocosmochemistry of the inner solar system[J]. Earth and Planetary Science Letters, 2001, 192:545-559.
DOI URL |
[40] |
CASSEN P. Models for the fractionation of moderately volatile elements in the solar nebula[J]. Meteoritics and Planetary Science, 1996, 31:793-806.
DOI URL |
[41] |
LUCK J M, OTHMAN D B, ALBARÈDE F. Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes[J]. Geochimica et Cosmochimica Acta, 2005, 69(22):5351-5363.
DOI URL |
[42] |
PRINGLE E A, MOYNIER F, BECK P, et al. The origin of volatile element depletion in early solar system material: clues from Zn isotopes in chondrules[J]. Earth and Planetary Science Letters, 2017, 468:62-71.
DOI URL |
[43] |
RICHES A J V, DAY J M D, WALKER R J, et al. Rhenium-osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites[J]. Earth and Planetary Science Letters, 2012, 353-354:208-218.
DOI URL |
[44] |
HANS U, KLEINE T, BOURDON B. Rb-Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited[J]. Earth and Planetary Science Letters, 2013, 374:204-214.
DOI URL |
[45] |
BECK P, GARENNE A, QUIRICO E, et al. Transmission infrared spectra (2-25 μm) of carbonaceous chondrites (CI, CM, CV-CK, CR, C2 ungrouped): mineralogy, water, and asteroidal processes[J]. Icarus, 2014, 229:263-277.
DOI URL |
[46] | NAKATO A, BREARLEY A J, NAKAMURA T, et al. PCA 02012: a unique thermally metamorphosed carbonaceous chondrite[C]// Proceedings of the 44th Lunar and Planetary Science Conference. Houston, America, 2013: A2078. |
[47] |
WANG K, JACOBSON S B. Potassium isotopic evidence for a high-energy giant impact origin of the Moon[J]. Nature, 2016, 538:487-491.
DOI URL |
[48] |
MILLOT R, PETELET-GIRAUD E, GUERROT C, et al. Multi-isotopic composition (δ7Li-δ11B-δD-δ18O) of rainwaters in France: origin and spatio-temporal characterization[J]. Applied Geochemistry, 2010, 25(10):1510-1524.
DOI URL |
[49] |
HU Y, CHEN X Y, XU Y K, et al. High-precision analysis of potassium isotopes by HR-MC-ICPMS[J]. Chemical Geology, 2018, 493:100-108.
DOI URL |
[50] |
ELLIOTT T, JEFFCOATE A, BOUMAN C. The terrestrial Li isotope cycle: light-weight constraints on mantle convection[J]. Earth and Planetary Science Letters, 2004, 220(3/4):231-245.
DOI URL |
[51] |
TENG F Z, RUDNICK R L, MCDONOUGH W F, et al. Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust[J]. Chemical Geology, 2009, 262(3/4):370-379.
DOI URL |
[52] |
WANG K, JACOBSEN S B. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts[J]. Geochimica et Cosmochimica Acta, 2016, 178:223-232.
DOI URL |
[53] |
STELGER R H, JÄGER E. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology[J]. Earth and Planetary Science Letters, 1977, 36:359-362.
DOI URL |
[54] |
MCCULLOCH M T, WASSERBURG G J. Sm-Nd and Rb-Sr chronology of continental crust formation[J]. Science, 1978, 200:1003-1011.
DOI URL |
[55] |
CLERGUE C, DELLINGER M, BUSS H L, et al. Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles)[J]. Chemical Geology, 2015, 414:28-41.
DOI URL |
[56] |
DELLINGER M, GAILLARDET J, BOUCHEZ J, et al. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion[J]. Earth and Planetary Science Letters, 2014, 401:359-372.
DOI URL |
[57] | HUH Y, CHAN L H, CHADWICK O A. Behavior of lithium and its isotopes during weathering of Hawaiian basalt[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(9):1-22. |
[58] |
TENG F Z, LI W Y, RUDNICK R L, et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters, 2010, 300(1/2):63-71.
DOI URL |
[59] |
LI S L, LI W Q, BEARD B L, et al. K isotopes as a tracer for continental weathering and geological K cycling[J]. Proceedings of the National Academy of Sciences, 2019, 116:8740-8745.
DOI URL |
[60] |
DELLINGER M, BOUCHEZ J, GAILLARDET J, et al. Tracing weathering regimes using the lithium isotope composition of detrital sediments[J]. Geology, 2017, 45(5):411-414.
DOI URL |
[61] |
JEFFCOATE A B, ELLIOTT T, KASEMANN S A, et al. Li isotope fractionation in peridotites and mafic melts[J]. Geochimica et Cosmochimica Acta, 2007, 71(1):202-218.
DOI URL |
[62] |
LUNDSTROM C C, CHAUSSIDON M, HSUI A T, et al. Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting[J]. Geochimica et Cosmochimica Acta, 2005, 69(3):735-751.
DOI URL |
[63] |
MORGAN L E, RAMOS D P S, DAVIDHEISER-KROLL B, et al. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2):175-186.
DOI URL |
[64] | 李静萍, 许世红. 长眼睛的金属铯和铷[J]. 化学世界, 2005, 2:85-107. |
[65] | 洪丽芳, 付利波, 苏帆, 等. 生长素对烟株中钾的分配和积累的影响[J]. 作物学报, 2003, 29(3):457-461. |
[66] | 王核, 李沛, 马华东, 等. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 2017, 41(6):1053-1062. |
[67] | 贾宏翔. 广东省龙川县天堂山锡多金属矿床地质地球化学特征和成因[D]. 北京: 中国地质大学(北京), 2016: 1-86. |
[1] | CHEN Yu, XU Fei, CHENG Hongfei, CHEN Xianzhe, WEN Hanjie. Lithium isotope geochemistry—a review [J]. Earth Science Frontiers, 2023, 30(5): 469-490. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||