Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 470-485.DOI: 10.13745/j.esf.sf.2021.7.20
GUO Dongyi(), XIA Qingyin, DONG Hailiang*(
), WANG Xi, ZENG Qiang, ZHAO Yu
Received:
2020-12-08
Revised:
2021-04-28
Online:
2022-01-25
Published:
2022-02-22
Contact:
DONG Hailiang
CLC Number:
GUO Dongyi, XIA Qingyin, DONG Hailiang, WANG Xi, ZENG Qiang, ZHAO Yu. Antibacterial clay minerals: Research advances and outlook[J]. Earth Science Frontiers, 2022, 29(1): 470-485.
技术手段/仪器 | 目的 | 参考文献 |
---|---|---|
X射线衍射光谱(XRD) | 矿物物相鉴定 | [ |
扫描电子显微镜(SEM) | 形貌观察与化学成分分析 | [ |
透射电子显微镜(TEM) | 精细、细微结构观察与成分分析 | [ |
傅立叶变换红外光谱(FTIR) | 化合键鉴定 | [ |
热重分析(TGA) | 热稳定性分析 | [ |
Zeta电位分析仪 | 表面电性表征 | [ |
电感耦合等离子体发射光谱(ICP-OES) | 溶解金属定量测定 | [ |
比表面积分析仪(BET) | 矿物比表面积测定 | [ |
乙二醇二醚吸附法(EGME) | [ |
Table 1 Techniques for characterizing physical and chemical properties of clay minerals
技术手段/仪器 | 目的 | 参考文献 |
---|---|---|
X射线衍射光谱(XRD) | 矿物物相鉴定 | [ |
扫描电子显微镜(SEM) | 形貌观察与化学成分分析 | [ |
透射电子显微镜(TEM) | 精细、细微结构观察与成分分析 | [ |
傅立叶变换红外光谱(FTIR) | 化合键鉴定 | [ |
热重分析(TGA) | 热稳定性分析 | [ |
Zeta电位分析仪 | 表面电性表征 | [ |
电感耦合等离子体发射光谱(ICP-OES) | 溶解金属定量测定 | [ |
比表面积分析仪(BET) | 矿物比表面积测定 | [ |
乙二醇二醚吸附法(EGME) | [ |
黏土 名称 | 黏土 质量 浓度*/ (mg·mL-1) | 菌株 | 参考 文献 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
革兰氏阴性菌 | 革兰氏阳性菌 | ||||||||||||
大肠 杆菌 (E.coli) | EBSL 大肠 杆菌 (EBSL E.coli) | 铜绿假 单胞菌 (P.aeru ginosa) | 沙门 氏菌 (Sal monella) | 肺炎克 雷伯菌 (K.pneu monia) | 鲍曼不 动杆菌 (A.bau mannii) | 金黄色 葡萄 球菌 (S. aureus) | 耐甲氧 西林金 黄色葡 萄球菌 (MRSA) | 溃疡分 枝杆菌 (M. ulcerans) | 李斯 特菌 (Listeria) | ||||
ARG | 500 | +++ | +++ | +++ | +++ | ++ | ++ | ++ | [ | ||||
OMT | 100 | +++ | +++ | +++ | +++ | +++ | +++ | +++ | [ | ||||
Walker | 200 | +++ | +++ | +++ | +++ | ++ | [ | ||||||
AMZ | 80 | +++ | [ | ||||||||||
Kisameet | 10 | +++ | +++ | +++ | +++ | [ | |||||||
CB07 | 100 | +++ | +++ | +++ | +++ | ++ | ++ | +++ | [ | ||||
SAP | 42 | + | + | + | — | — | — | [ |
Table 2 Antibacterial activities of clays against various bacterial strains
黏土 名称 | 黏土 质量 浓度*/ (mg·mL-1) | 菌株 | 参考 文献 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
革兰氏阴性菌 | 革兰氏阳性菌 | ||||||||||||
大肠 杆菌 (E.coli) | EBSL 大肠 杆菌 (EBSL E.coli) | 铜绿假 单胞菌 (P.aeru ginosa) | 沙门 氏菌 (Sal monella) | 肺炎克 雷伯菌 (K.pneu monia) | 鲍曼不 动杆菌 (A.bau mannii) | 金黄色 葡萄 球菌 (S. aureus) | 耐甲氧 西林金 黄色葡 萄球菌 (MRSA) | 溃疡分 枝杆菌 (M. ulcerans) | 李斯 特菌 (Listeria) | ||||
ARG | 500 | +++ | +++ | +++ | +++ | ++ | ++ | ++ | [ | ||||
OMT | 100 | +++ | +++ | +++ | +++ | +++ | +++ | +++ | [ | ||||
Walker | 200 | +++ | +++ | +++ | +++ | ++ | [ | ||||||
AMZ | 80 | +++ | [ | ||||||||||
Kisameet | 10 | +++ | +++ | +++ | +++ | [ | |||||||
CB07 | 100 | +++ | +++ | +++ | +++ | ++ | ++ | +++ | [ | ||||
SAP | 42 | + | + | + | — | — | — | [ |
黏土名称 | 黏土组分 | 非黏土组分 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
伊利石- 蒙脱石 | 蒙脱 石族* | 伊利 石 | 高岭 石 | 埃洛 石 | 云母** | 绿泥 石 | 非黏土组 分总和 | 石英 | 黄铁矿 | 石膏 | 角闪石 | 其他 | 非黏土组 分总和 | ||||
ARG | 24.5 | 32.6 | 15.6 | 3.3 | 76 | 2.7 | 12 | 14.7 | |||||||||
OMT | 49.6 | 3.1 | 52.7 | 38.3 | 8.2 | 0.9 | 0.5 | 47.9 | |||||||||
AMZ | 30 | 0.6 | 34.5 | 15.4 | 6.9 | 81.9 | 16.6 | 0.4 | 17 | ||||||||
CB*** | 36~ 37 | 9.7~ 14.2 | 1.4~3.6 | 47.1~ 54.8 | 34~ 37.2 | 4~ 5.5 | 2.5~ 12.9 | 40.5~ 55.6 | |||||||||
Walker | 45 | 17.2 | 62.2 | 11.1 | 1.8 | 8.7 | 17 | 38.6 | |||||||||
Kisameet | 11.3 | 2.4 | 16.6 | 6 | 36.3 | 6.2 | 0.7 | 2 | 5.9 | 44.7 | 59.5 |
Table 3 Mineral compositions of clay mixtures
黏土名称 | 黏土组分 | 非黏土组分 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
伊利石- 蒙脱石 | 蒙脱 石族* | 伊利 石 | 高岭 石 | 埃洛 石 | 云母** | 绿泥 石 | 非黏土组 分总和 | 石英 | 黄铁矿 | 石膏 | 角闪石 | 其他 | 非黏土组 分总和 | ||||
ARG | 24.5 | 32.6 | 15.6 | 3.3 | 76 | 2.7 | 12 | 14.7 | |||||||||
OMT | 49.6 | 3.1 | 52.7 | 38.3 | 8.2 | 0.9 | 0.5 | 47.9 | |||||||||
AMZ | 30 | 0.6 | 34.5 | 15.4 | 6.9 | 81.9 | 16.6 | 0.4 | 17 | ||||||||
CB*** | 36~ 37 | 9.7~ 14.2 | 1.4~3.6 | 47.1~ 54.8 | 34~ 37.2 | 4~ 5.5 | 2.5~ 12.9 | 40.5~ 55.6 | |||||||||
Walker | 45 | 17.2 | 62.2 | 11.1 | 1.8 | 8.7 | 17 | 38.6 | |||||||||
Kisameet | 11.3 | 2.4 | 16.6 | 6 | 36.3 | 6.2 | 0.7 | 2 | 5.9 | 44.7 | 59.5 |
[1] |
WILLIAMS L B, METGE D W, EBERL D D, et al. What makes a natural clay antibacterial?[J]. Environmental Science and Technology, 2011, 45(8):3768-3773.
DOI URL |
[2] |
FINKELMAN R B. The influence of clays on human health: a medical geology perspective[J]. Clays and Clay Minerals, 2019, 67(1):1-6.
DOI URL |
[3] |
WILLIAMS L B. Natural antibacterial clays: historical uses and modern advances[J]. Clays and Clay Minerals, 2019, 67(1):7-24.
DOI URL |
[4] |
VISERAS C, CARAZO E, BORREGO-SÁNCHEZ A, et al. Clay minerals in skin drug delivery[J]. Clays and Clay Minerals, 2019, 67(1):59-71.
DOI URL |
[5] |
AWAD M E, LÓPEZ-GALINDO A, SETTI M, et al. Kaolinite in pharmaceutics and biomedicine[J]. International Journal of Pharmaceutics, 2017, 533:34-48.
DOI URL |
[6] |
CARRETERO M I. Clay minerals and their beneficial effects upon human health. A review[J]. Applied Clay Science, 2002, 21(3/4):155-163.
DOI URL |
[7] |
CARRETERO M I, POZO M. Clay and non-clay minerals in the pharmaceutical industry: part I. Excipients and medical applications[J]. Applied Clay Science, 2009, 46:73-80.
DOI URL |
[8] |
CERVINI-SILVA J, NIETO-CAMACHO A, PALACIOS E, et al. Anti-inflammatory and anti-bacterial activity, and cytotoxicity of halloysite surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2013, 111:651-655.
DOI URL |
[9] |
CERVINI-SILVA J, NIETO-CAMACHO A, RAMÍREZ-APAN M T, et al. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays[J]. Colloids and Surfaces B: Biointerfaces, 2015, 129:1-6.
DOI URL |
[10] |
CERVINI-SILVA J, CAMACHO A N, PALACIOS E, et al. Anti-inflammatory, antibacterial, and cytotoxic activity by natural matrices of nano-iron(hydr)oxide/halloysite[J]. Applied Clay Science, 2016, 120:101-110.
DOI URL |
[11] |
MORRISON K D, WILLIAMS S N, WILLIAMS L B. The anatomy of an antibacterial clay deposit: a new economic geology[J]. Economic Geology, 2017, 112(7):1551-1570.
DOI URL |
[12] | WILLIAMS L B, HOLLAND M, EBERL D D, et al. Killer clays! Natural antibacterial clay minerals[J]. Mineralogical Society Bulletin, 2004(139):3-8. |
[13] |
LONDONO S C, WILLIAMS L B. Unraveling the antibacterial mode of action of a clay from the Colombian Amazon[J]. Environmental Geochemistry and Health, 2016, 38(2):363-379.
DOI URL |
[14] |
WILLIAMS L B, HAYDEL S E, GIESE R F, et al. Chemical and mineralogical characteristics of French green clays used for healing[J]. Clays and clay minerals, 2008, 56(4):437-452.
DOI URL |
[15] |
WILLIAMS L B, HAYDEL S E. Evaluation of the medicinal use of clay minerals as antibacterial agents[J]. International Geology Review, 2010, 52(7/8):745-770.
DOI URL |
[16] |
HAYDEL S E, REMENIH C M, WILLIAMS L B. Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens[J]. Journal of Antimicrobial Chemotherapy, 2008, 61(2):353-361.
DOI URL |
[17] |
WANG X, DONG H L, ZENG Q, et al. Reduced iron-containing clay minerals as antibacterial agents[J]. Environmental Science and Technology, 2017, 51(13):7639-7647.
DOI URL |
[18] |
XIA Q, WANG X, ZENG Q, et al. Mechanisms of enhanced antibacterial activity by reduced chitosan-intercalated nontronite[J]. Environmental Science and Technology, 2020, 54(8):5207-5217.
DOI URL |
[19] |
MORRISON K D, MISRA R, WILLIAMS L B. Unearthing the antibacterial mechanism of medicinal clay: a geochemical approach to combating antibiotic resistance[J]. Scientific Reports, 2016, 6:19043.
DOI URL |
[20] | 舒展, 张毅, 谢虹忆, 等. 硅酸盐黏土矿物在抗菌方面研究进展[J]. 材料工程, 2018, 46(4):23-30. |
[21] | ELBOURAKADI K, MEKHZOUM M E M, QAISS A E K, et al. Processing and biomedical applications of polymer/organo-modified clay bionanocomposites[M]// Nanostructured Polymer Composites for Biomedical Applications. Amsterdam: Elsevier, 2019: 405-428. |
[22] | SAIKIA P. Clay nanostructures for biomedical applications[M]// Two-Dimensional Nanostructures for Biomedical Technology. Amsterdam: Elsevier, 2020: 137-172. |
[23] |
GUGGENHEIM S, MARTIN R T. Definition of clay and clay mineral: joint report of the AIPEA and CMS Nomenclature Committees[J]. Clays and Clay Minerals, 1995, 43(2):255-256.
DOI URL |
[24] |
GRIM R E. Clay mineralogy: the clay mineral composition of soils and clays is providing an understanding of their properties[J]. Science, 1962, 135(3507):890-898.
DOI URL |
[25] | BRIGATTI M F, GALAN E, THENG B K G. Chapter 2 Structures and mineralogy of clay minerals[M]// Developments in Clay Science. Amsterdam: Elsevier, 2006: 19-86. |
[26] | SCHOONHEYDT R A, JOHNSTON C T. Chapter 3 surface and interface chemistry of clay minerals[M]// Developments in Clay Science. Amsterdam: Elsevier, 2006: 87-113. |
[27] |
YUAN S H, LIU X X, LIAO W J, et al. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals[J]. Geochimica et Cosmochimica Acta, 2018, 223:422-436.
DOI URL |
[28] |
ILGEN A G, KUKKADAPU R K, LEUNG K, et al. “Switching on” iron in clay minerals[J]. Environmental Science: Nano, 2019, 6(6):1704-1715.
DOI URL |
[29] |
ZENG Q, DONG H L, WANG X, et al. Degradation of 1, 4-dioxane by hydroxyl radicals produced from clay minerals[J]. Journal of Hazardous Materials, 2017, 331:88-98.
DOI URL |
[30] |
XIE W, YUAN S, TONG M, et al. Contaminant degradation by •OH during sediment oxygenation: dependence on Fe(II) species[J]. Environmental Science and Technology, 2020, 54(5):2975-2984.
DOI URL |
[31] |
SUN H, WANG J, JIANG Y, et al. Rapid aerobic inactivation and facile removal of escherichia coli with amorphous zero-valent iron microspheres: indispensable roles of reactive oxygen species and iron corrosion Products[J]. Environmental Science and Technology, 2019, 53(7):3707-3717.
DOI URL |
[32] | MOORE D M, REYNOLDS R C. X-ray diffraction and the identification and analysis of clay minerals[M]. 2nd ed. Oxford: Oxford University Press, 1997. |
[33] |
NAYAK P S, SINGH B K. Instrumental characterization of clay by XRF, XRD and FTIR[J]. Bulletin of Materials Science, 2007, 30(3):235-238.
DOI URL |
[34] | EARNEST C M. Thermal analysis of clays, minerals and coal[M]. Norwalk: Perkin-Elmer Corporation, 1984. |
[35] |
MACHT F, EUSTERHUES K, PRONK G J, et al. Specific surface area of clay minerals: comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods[J]. Applied Clay Science, 2011, 53(1):20-26.
DOI URL |
[36] |
GOMES C F, GOMES J H, DA SILVA E F. Bacteriostatic and bactericidal clays: an overview[J]. Environmental Geochemistry and Health, 2020, 42(11):3507-3527.
DOI URL |
[37] |
BAUER A W, KIRBY W M M, SHERRIS J C, et al. Antibiotic susceptibility testing by a standardized single disk method[J]. American Journal of Clinical Pathology, 1966, 45:493-496.
DOI URL |
[38] |
MORRISON K D, UNDERWOOD J C, METGE D W, et al. Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit[J]. Environmental Geochemistry and Health, 2014, 36(4):613-631.
DOI URL |
[39] | BEHROOZIAN S, SVENSSON S L, DAVIES J. Kisameet clay exhibits potent antibacterial activity against the ESKAPE pathogens[J]. mBio, 2016, 7(1):e01842-e01815. |
[40] | ZHANEL G G, KARLOWSKY J A. Kisameet clay isolated from the central coast of British Columbia, Canada, demonstrates broad-spectrum antimicrobial activity[J]. mBio, 2016, 7(2):e00169. |
[41] |
OTTO C C, HAYDEL S E. Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures[J]. PLoS One, 2013, 8(5):e64068.
DOI URL |
[42] |
OTTO C C, KOEHL J L, SOLANKY D, et al. Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity[J]. PLoS One, 2014, 9(12):e115172.
DOI URL |
[43] |
ZARATE-REYES L, LOPEZ-PACHECO C, NIETO-CAMACHO A, et al. Antibacterial clay against gram-negative antibiotic resistant bacteria[J]. Journal of Hazardous Materials, 2018, 342:625-632.
DOI URL |
[44] |
CAFLISCH K M, SCHMIDT-MALAN S M, MANDREKAR J N, et al. Antibacterial activity of reduced iron clay against pathogenic bacteria associated with wound infections[J]. International Journal of Antimicrobial Agents, 2018, 52(5):692-696.
DOI URL |
[45] |
LONDONO S C, HARTNETT H E, WILLIAMS L B. Antibacterial activity of aluminum in clay from the Colombian Amazon[J]. Environmental Science and Technology, 2017, 51(4):2401-2408.
DOI URL |
[46] | ADUSUMILLI S, HAYDEL S E. In vitro antibacterial activity and in vivo efficacy of hydrated clays on Mycobacterium ulcerans growth[J]. BMC Complementary and Alternative Medicine, 2016(1):1-8. |
[47] |
FERRIS F G, FYFE W S, BEVERIDGE T J. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment[J]. Chemical Geology, 1987, 63(3/4):225-232.
DOI URL |
[48] |
KONHAUSER K O, URRUTIA M M. Bacterial clay authigenesis: a common biogeochemical process[J]. Chemical Geology, 1999, 161(4):399-413.
DOI URL |
[49] |
LEMIRE J A, HARRISON J J, TURNER R J. Antimicrobial activity of metals: mechanisms, molecular targets and applications[J]. Nature Reviews Microbiology, 2013, 11(6):371-384.
DOI URL |
[50] |
SCHOONEN M A A, COHN C A, ROEMER E, et al. Mineral-induced formation of reactive oxygen species[J]. Reviews in Mineralogy and Geochemistry, 2006, 64(1):179-221.
DOI URL |
[51] |
PARK S, IMLAY J A. High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction[J]. Journal of Bacteriology, 2003, 185(6):1942-1950.
DOI URL |
[52] |
HAN S K, HWANG T M, YOON Y, et al. Evidence of singlet oxygen and hydroxyl radical formation in aqueous goethite suspension using spin-trapping electron paramagnetic resonance (EPR)[J]. Chemosphere, 2011, 84(8):1095-1101.
DOI URL |
[53] |
IMLAY J A. Where in the world do bacteria experience oxidative stress?[J]. Environmental Microbiology, 2019, 21(2):521-530.
DOI URL |
[54] |
PARK H J, NGUYEN T T M, YOON J, et al. Role of reactive oxygen species in escherichia coli inactivation by cupric ion[J]. Environmental Science and Technology, 2012, 46(20):11299-11304.
DOI URL |
[55] |
HU C H, XU Z R, XIA M S. Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism[J]. Veterinary Microbiology, 2005, 109(1/2):83-88.
DOI URL |
[56] |
CUNNINGHAM T M, KOEHL J L, SUMMERS J S, et al. pH-Dependent metal ion toxicity influences the antibacterial activity of two natural mineral mixtures[J]. PLoS One, 2010, 5(3):e9456.
DOI URL |
[57] |
WARD W L, PLAKOS K, DEROSE V J. Nucleic acid catalysis: metals, nucleobases, and other cofactors[J]. Chemical Reviews, 2014, 114(8):4318-4342.
DOI URL |
[58] | 夏庆银. 还原态壳聚糖插层改性绿脱石的高效抗菌机理研究[D]. 北京: 中国地质大学(北京), 2020. |
[59] |
TONG M, YUAN S, MA S, et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science and Technology, 2016, 50(1):214-221.
DOI URL |
[60] | 王曦. 还原态含铁黏土矿物的抗菌效果及机理研究[D]. 北京: 中国地质大学(北京), 2020. |
[61] |
RAETZ C R H, WHITFIELD C. Lipopolysaccharide endotoxins[J]. Annual Review of Biochemistry, 2002, 71:635-700.
DOI URL |
[62] |
PLACHÁ D, ROSENBERGOVÁ K, SLABOTÍNSKÝ J, et al. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection[J]. Journal of Hazardous Materials, 2014, 271:65-72.
DOI URL |
[63] | 朱润良, 曾淳, 周青, 等. 改性蒙脱石及其污染控制研究进展[J]. 矿物岩石地球化学通报, 2017, 36(5):697-705, 696. |
[64] | DO ROSÁRIO J A, DE MOURA G B G, GUSATTI M, et al. Synjournal of silver-treated bentonite: evaluation of its antibacterial properties[J]. Chemical Engineering Transactions, 2009, 17:1795-1800. |
[65] |
VALÁŠKOVÁ M, HUNDÁKOVÁ M, KUTLÁKOVÁ K M, et al. Preparation and characterization of antibacterial silver/vermiculites and silver/montmorillonites[J]. Geochimica et Cosmochimica Acta, 2010, 74(22):6287-6300.
DOI URL |
[66] |
MALACHOVÁ K, PRAUS P, RYBKOVÁ Z, et al. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites[J]. Applied Clay Science, 2011, 53(4):642-645.
DOI URL |
[67] |
XU G N, QIAO X L, QIU X L, et al. Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property[J]. Journal of Materials Science and Technology, 2011, 27(8):685-690.
DOI URL |
[68] |
LI T, ZHANG Y Y, SONG Z Y, et al. Preparation and characterization of antibacterial silver loaded montmorillonite under microwave irradiation[J]. Science and Engineering of Composite Materials, 2013, 20:15-22.
DOI URL |
[69] |
CAO G F, SUN Y, CHEN J G, et al. Sutures modified by silver-loaded montmorillonite with antibacterial properties[J]. Applied Clay Science, 2014, 93/94:102-106.
DOI URL |
[70] |
DAS G, KALITA R D, GOGOI P, et al. Antibacterial activities of copper nanoparticle-decorated organically modified montmorillonite/epoxy nanocomposites[J]. Applied Clay Science, 2014, 90:18-26.
DOI URL |
[71] |
SOHRABNEZHAD S, POURAHMAD A, MEHDIPOUR MOGHADDAM M J, et al. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 136:1728-1733.
DOI URL |
[72] |
GIRALDO L F, CAMILO P, KYU T. Incorporation of silver in montmorillonite-type phyllosilicates as potential antibacterial material[J]. Current Opinion in Chemical Engineering, 2016, 11:7-13.
DOI URL |
[73] |
LOMBARDO P C, POLI A L, CASTRO L F, et al. Photochemical deposition of silver nanoparticles on clays and exploring their antibacterial activity[J]. ACS Applied Materials and Interfaces, 2016, 8(33):21640-21647.
DOI URL |
[74] |
SOHRABNEZHAD S, RASSA M, MOHAMMADI DAHANESARI E. Spectroscopic study of silver halides in montmorillonite and their antibacterial activity[J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 163:150-155.
DOI URL |
[75] |
JANA S, KONDAKOVA A V, SHEVCHENKO S N, et al. Halloysite nanotubes with immobilized silver nanoparticles for anti-bacterial application[J]. Colloids and Surfaces B: Biointerfaces, 2017, 151:249-254.
DOI URL |
[76] |
MARTUCCI J F, RUSECKAITE R A. Antibacterial activity of gelatin/copper (II)-exchanged montmorillonite films[J]. Food Hydrocolloids, 2017, 64:70-77.
DOI URL |
[77] |
BENLI B, YALIN C. The influence of silver and copper ions on the antibacterial activity and local electrical properties of single sepiolite fiber: a conductive atomic force microscopy (C-AFM) study[J]. Applied Clay Science, 2017, 146:449-456.
DOI URL |
[78] | POURABOLGHASEM H, GHORBANPOUR M, SHAYEGH R, et al. Antibacterial activity of copper-doped montmorillonite nanocomposites prepared by alkaline ion exchange method[J]. Journal of Physical Science, 2016, 27(2):1-12. |
[79] |
KRISHNAN B, MAHALINGAM S. Ag/TiO2/bentonite nanocomposite for biological applications: synjournal, characterization, antibacterial and cytotoxic investigations[J]. Advanced Powder Technology, 2017, 28(9):2265-2280.
DOI URL |
[80] |
MOTSHEKGA S C, RAY S S, ONYANGO M S, et al. Microwave-assisted synjournal, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay[J]. Journal of Hazardous Materials, 2013, 262:439-446.
DOI URL |
[81] |
MA Y L, YANG B, GUO T, et al. Antibacterial mechanism of Cu2+-ZnO/cetylpyridinium-montmorillonite in vitro[J]. Applied Clay Science, 2010, 50(3):348-353.
DOI URL |
[82] |
PHUKAN A, BHATTACHARJEE R P, DUTTA D K. Stabilization of SnO2 nanoparticles into the nanopores of modified montmorillonite and their antibacterial activity[J]. Advanced Powder Technology, 2017, 28:139-145.
DOI URL |
[83] | VALÁKOVÁ M, MATĚJOVÁ K, TOMÁEK V, et al. Silver and/or copper vermiculites and their antibacterial effect[J]. Acta Geodynamica et Geomaterialia, 2013, 10:97-104. |
[84] |
MAGAÑA S M, QUINTANA P, AGUILAR D H, et al. Antibacterial activity of montmorillonites modified with silver[J]. Journal of Molecular Catalysis A: Chemical, 2008, 281(1/2):192-199.
DOI URL |
[85] |
TOH H S, BATCHELOR-MCAULEY C, TSCHULIK K, et al. Chemical interactions between silver nanoparticles and thiols: a comparison of mercaptohexanol against cysteine[J]. Science China Chemistry, 2014, 57(9):1199-1210.
DOI URL |
[86] |
DANIEL S C G K, THARMARAJ V, SIRONMANI T A, et al. Toxicity and immunological activity of silver nanoparticles[J]. Applied Clay Science, 2010, 48(4):547-551.
DOI URL |
[87] |
HAMILTON A R, HUTCHEON G A, ROBERTS M, et al. Formulation and antibacterial profiles of clay-ciprofloxacin composites[J]. Applied Clay Science, 2014, 87:129-135.
DOI URL |
[88] |
BUJDÁKOVÁ H, BUJDÁKOVÁ V, MÁJEKOVÁ-KOŠĆOVÁ H, et al. Antimicrobial activity of organoclays based on quaternary alkylammonium and alkylphosphonium surfactants and montmorillonite[J]. Applied Clay Science, 2018, 158:21-28.
DOI URL |
[89] |
MARYAN A S, MONTAZER M. Natural and organo-montmorillonite as antibacterial nanoclays for cotton garment[J]. Journal of Industrial and Engineering Chemistry, 2015, 22:164-170.
DOI URL |
[90] |
NINAN N, MUTHIAH M, PARK I K, et al. Natural polymer/inorganic material based hybrid scaffolds for skin wound healing[J]. Polymer Reviews, 2015, 55(3):453-490.
DOI URL |
[91] | BARDONOVÁ L, KOTZIANOVÁ A, MAMULOVÁ KUTLAKOVÁ K, et al. Incorporating antibacterial clay minerals into nanofibrous layers by electrospinning[C]. 10th International Conference on Nanomaterials - Research & Application. Brno, 2019:483-488. |
[92] |
MARYAN A S, MONTAZER M, RASHIDI A, et al. Antibacterial properties of clay layers silicate: a special study of montmorillonite on cotton fiber[J]. Asian Journal of Chemistry, 2013, 25(5):2889-2892.
DOI URL |
[93] |
BHOWMICK A, BANERJEE S L, PRAMANIK N, et al. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering[J]. International Journal of Biological Macromolecules, 2018, 106:11-19.
DOI URL |
[94] |
LIU P. Polymer modified clay minerals: a review[J]. Applied Clay Science, 2007, 38(1/2):64-76.
DOI URL |
[95] |
AGUZZI C, SANDRI G, BONFERONI C, et al. Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing[J]. Colloids and Surfaces B: Biointerfaces, 2014, 113:152-157.
DOI URL |
[1] | YANG Jiayi, JIANG Fuqing, YAN Yu, ZHENG Hao, CHANG Fengming. Provenance and paleoclimatic significance of clay minerals from Izu-Ogasawara Ridge since Pliocene [J]. Earth Science Frontiers, 2022, 29(4): 73-83. |
[2] | . A study of contact metamorphism of Late Paleozoic strata in the Middle of Inner Mongolia. [J]. Earth Science Frontiers, 2011, 18(2): 223-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||