Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 322-342.DOI: 10.13745/j.esf.sf.2024.7.51
• Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 11) • Previous Articles Next Articles
WANG Guocan1,2(), ZHAO Zihao2, SHEN Tianyi1, MA Cheng1, ZHOU Yabo1
Received:
2024-04-01
Revised:
2024-12-10
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
WANG Guocan, ZHAO Zihao, SHEN Tianyi, MA Cheng, ZHOU Yabo. A brief analysis on the dynamic sources of the uplift and exhumation of the Tianshan Mountains during the Meso-Cenozoic based on the spatio-temporal differences of rock cooling in the Central Asia[J]. Earth Science Frontiers, 2025, 32(1): 322-342.
Fig.2 Frequency distribution of fission track ages of apatite (a) and (U-Th)/He ages of apatite (b) in the Tianshan Mountains and northern Central Asia regions
Fig.4 Interpolation maps of low-temperature thermochronology data for the Tianshan Mountains and northern Central Asia regions. a—Interpolation map of apatite fission track age distribution; b—Interpolation map of apatite fission track length distribution; c—Interpolation map of apatite (U-Th)/He age distribution.
[1] | ŞENGÖR A M C, NATAL’IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435): 299-307. |
[2] | CHARVET J, SHU L S, LAURENT-CHARVET S, et al. Palaeozoic tectonic evolution of the Tianshan belt, NW China[J]. Science China Earth Sciences, 2011, 54(2): 166-184. |
[3] | WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. |
[4] | XIAO W J, WINDLEY B F, HAO J, et al. Accretion leading to collision and the Permian solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6), doi: 10.1029/2002TC001484.6. |
[5] | FANG Y N, WU C D, WANG Y Z, et al. Topographic evolution of the Tianshan Mountains and their relation to the Junggar and Turpan Basins, central Asia, from the Permian to the Neogene[J]. Gondwana Research, 2019, 75: 47-67. |
[6] | XIANG D F, ZHANG Z Y, XIAO W J, et al. Episodic meso-Cenozoic denudation of Chinese Tianshan: evidence from detrital apatite fission track and zircon U-Pb data, southern Junggar Basin margin, NW China[J]. Journal of Asian Earth Sciences, 2019, 175: 199-212. |
[7] | MORIN J, JOLIVET M, BARRIER L, et al. Planation surfaces of the Tian Shan range (central Asia): insight on several 100 million years of topographic evolution[J]. Journal of Asian Earth Sciences, 2019, 177: 52-65. |
[8] | JEPSON G, GLORIE S, KONOPELKO D, et al. The low-temperature thermo-tectonic evolution of the western Tian Shan, Uzbekistan[J]. Gondwana Research, 2018, 64: 122-136. |
[9] | DUMITRU T A, ZHOU D, CHANG E Z, et al. Uplift, exhumation, and deformation in the Chinese Tian Shan[J]. Memoir of the Geological Society of America, 2001, 194: 71-99. |
[10] | CHEN Y, WANG G C, KAPP P, et al. Episodic exhumation and related tectonic controlling during Mesozoic in the Eastern Tian Shan, Xinjiang, Northwestern China[J]. Tectonophysics, 2020, 796: 228647. |
[11] | GLORIE S, DE GRAVE J, BUSLOV M M, et al. Structural control on meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: insights from multi-method thermochronometry[J]. Tectonophysics, 2012, 544: 75-92. |
[12] | JOLIVET M, BARRIER L, DAUTEUIL O, et al. Late Cretaceous-palaeogene topography of the Chinese Tian Shan: new insights from geomorphology and sedimentology[J]. Earth and Planetary Science Letters, 2018, 499: 95-106. |
[13] | LI Y J, ZHANG Q, ZHANG G Y, et al. Cenozoic faults and faulting phases in the western Tarim Basin (NW China): effects of the collisions on the southern margin of the Eurasian plate[J]. Journal of Asian Earth Sciences, 2016, 132: 40-57. |
[14] | ENGLAND P, MOLNAR P. Surface uplift, uplift of rocks, and exhumation of rocks[J]. Geology, 1990, 18(12): 1173. |
[15] | YUAN J, YANG Z Y, DENG C L, et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision[J]. National Science Review, 2021, 8(7): nwaa173. |
[16] | ANDJIĆ G, ZHOU R J, JONELL T N, et al. A single dras-kohistan-Ladakh arc revealed by volcaniclastic records[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(3): e2021GC010042. |
[17] | SUI Q L, WANG Q, ZHU D C, et al. Compositional diversity of Ca. 110 Ma magmatism in the northern Lhasa terrane, Tibet: implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168/169: 144-159. |
[18] | GOLONKA J. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic[J]. Tectonophysics, 2004, 381(1/2/3/4): 235-273. |
[19] | YANG Y T, GUO Z X, SONG C C, et al. A short-lived but significant Mongol-Okhotsk collisional orogeny in latest Jurassic-earliest Cretaceous[J]. Gondwana Research, 2015, 28(3): 1096-1116. |
[20] | JOLIVET M, DE BOISGROLLIER T, PETIT C, et al. How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology[J]. Tectonics, 2009, 28(3): TC3008. 1-21. |
[21] | MAHÉO G, FAYOUX X, GUILLOT S, et al. Relicts of an intra-oceanic arc in the sapi-shergol mélange zone (Ladakh, NW Himalaya, India): implications for the closure of the neo-Tethys ocean[J]. Journal of Asian Earth Sciences, 2006, 26(6): 695-707. |
[22] | 柳一鸣. 天山及邻区岩石圈密度结构及其地质意义[D]. 武汉: 中国地质大学(武汉), 2021. |
[23] | ZHAO G D, LIU J X, CHEN B, et al. Moho beneath Tibet based on a joint analysis of gravity and seismic data[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2): e2019GC008849. |
[24] | 刘洁. 天山上地幔对流与造山运动数值模拟[D]. 北京: 中国地震局地质研究所, 2006. |
[25] | ALEKSEEV D V, ARISTOV V A, DEGTYAREV K E. The age and tectonic setting of volcanic and cherty sequences in the ophiolite complex of the Atbashe Ridge (Southern Tien Shan)[J]. Doklady Earth Sciences, 2007, 413(2): 380-383. |
[26] | GLORIE S, DE GRAVE J, BUSLOV M M, et al. Multi-method chronometric constraints on the evolution of thenorthern kyrgyz Tien Shan granitoids (central Asian Orogenic Belt): from emplacement to exhumation[J]. Journal of Asian Earth Sciences, 2010, 38(3/4): 131-146. |
[27] | KONOPELKO D, BISKE G, SELTMANN R, et al. Deciphering Caledonian events: timing and geochemistry of the Caledonian magmatic arc in the Kyrgyz Tien Shan[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 131-141. |
[28] | DE GRAVE J, GLORIE S, BUSLOV M M, et al. The thermo-tectonic history of the song-kul plateau, kyrgyz Tien Shan: constraints by apatite and titanite thermochronometry and zircon U/Pb dating[J]. Gondwana Research, 2011, 20(4): 745-763. |
[29] | ALEXEIEV D V, KRÖNER A, HEGNER E, et al. Middle to late Ordovician arc system in the kyrgyz middle Tianshan: from arc-continent collision to subsequent evolution of a palaeozoic continental margin[J]. Gondwana Research, 2016, 39: 261-291. |
[30] | KRÖNER A, ALEXEIEV D V, KOVACH V P, et al. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3-1.8 Ga Kuilyu Complex, East Kyrgyzstan-the oldest continental basement fragment in the Tianshan orogenic belt[J]. Journal of Asian Earth Sciences, 2017, 135: 122-135. |
[31] | SELTMANN R, KONOPELKO D, BISKE G, et al. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt[J]. Journal of Asian Earth Sciences, 2011, 42(5): 821-838. |
[32] | KONOPELKO D, BISKE G, SELTMANN R, et al. Hercynian post-collisional A-type granites of the kokshaal range, southern Tien Shan, Kyrgyzstan[J]. Lithos, 2007, 97(1/2): 140-160. |
[33] | KRÖNER A, HEGNER E, LEHMANN B, et al. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: shrimp zircon ages and whole-rock Nd isotopic systematics[J]. Journal of Asian Earth Sciences, 2008, 32(2/3/4): 118-130. |
[34] | DE GRAVE J, BUSLOV M M, VAN DEN HAUTE P. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in central Asia: constraints from apatite fission-track thermochronology[J]. Journal of Asian Earth Sciences, 2007, 29(2/3): 188-204. |
[35] | MACAULAY E A, SOBEL E R, MIKOLAICHUK A, et al. Cenozoic deformation and exhumation history of the Central Kyrgyz Tien Shan[J]. Tectonics, 2014, 33(2): 135-165. |
[36] | DE PELSMAEKER E, JOLIVET M, LABORDE A, et al. Source-to-sink dynamics in the kyrgyz Tien Shan from the Jurassic to the Paleogene: insights from sedimentological and detrital zircon U-Pb analyses[J]. Gondwana Research, 2018, 54: 180-204. |
[37] | GLORIE S, DE GRAVE J. Exhuming the meso-Cenozoic kyrgyz Tianshan and Siberian Altai-Sayan: a review based on low-temperature thermochronology[J]. Geoscience Frontiers, 2016, 7(2): 155-170. |
[38] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. |
[39] | KAPP P, DECELLES P G, GEHRELS G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933. |
[40] | SCHWAB M, RATSCHBACHER L, SIEBEL W, et al. Assembly of the Pamirs: age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet[J]. Tectonics, 2004, 23(4): TC4002. 1-31. |
[41] | JOLIVET M, BOURQUIN S, HEILBRONN G, et al. The Upper Jurassic-lower Cretaceous alluvial-fan deposits of the kalaza formation (central Asia): tectonic pulse or increased aridity?[J]. Geological Society, London, Special Publications, 2017, 427(1): 491-521. |
[42] | SOBEL E R, OSKIN M, BURBANK D, et al. Exhumation of basement-cored uplifts: example of the kyrgyz range quantified with apatite fission track thermochronology[J]. Tectonics, 2006, 25(2): TC2008.1-17. |
[43] | BANDE A, SOBEL E R, MIKOLAICHUK A, et al. Exhumation history of the western kyrgyz Tien Shan: implications for intramontane basin formation[J]. Tectonics, 2017, 36(1): 163-180. |
[44] | MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975, 189(4201): 419-426. |
[45] | BULLEN M E, BURBANK D W, GARVER J I, et al. Late Cenozoic tectonic evolution of the northwestern Tien Shan: new age estimates for the initiation of mountain building[J]. Geological Society of America Bulletin, 2001, 113(12): 1544-1559. |
[46] | KÄßNER A, RATSCHBACHER L, JONCKHEERE R, et al. Cenozoic intracontinental deformation and exhumation at the northwestern tip of the India-Asia collision-southwestern Tian Shan, Tajikistan, and Kyrgyzstan[J]. Tectonics, 2016, 35(9): 2171-2194. |
[47] | BANDE A, SOBEL E R, MIKOLAICHUK A, et al. Talas-Fergana Fault Cenozoic timing of deformation and its relation to Pamir indentation[J]. Geological Society, London, Special Publications, 2017, 427(1): 295-311. |
[48] | GAO J, LONG L L, KLEMD R, et al. Tectonic evolution of the South Tianshan Orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 2009, 98(6): 1221-1238. |
[49] | BISKE Y S, SELTMANN R. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan oceans[J]. Gondwana Research, 2010, 17(2/3): 602-613. |
[50] | ZHANG B, CHEN W, LIU J Q, et al. Thermochronological insights into the intracontinental orogeny of the Chinese western Tianshan orogen[J]. Journal of Asian Earth Sciences, 2020, 194: 103927. |
[51] | ALLEN M B, WINDLEY B F, ZHANG C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics, 1993, 220(1/2/3/4): 89-115. |
[52] | GAO J, LI M S, XIAO X C, et al. Paleozoic tectonic evolution of the Tianshan Orogen, Northwestern China[J]. Tectonophysics, 1998, 287(1/2/3/4): 213-231. |
[53] | WANG Y N, CAI K D, SUN M, et al. Tracking the multi-stage exhumation history of the western Chinese Tianshan by apatite fission track (AFT) dating: implication for the preservation of epithermal deposits in the ancient orogenic belt[J]. Ore Geology Reviews, 2018, 100: 111-132. |
[54] | WINDLEY B F, ALLEN M B, ZHANG C, et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia[J]. Geology, 1990, 18(2): 128-131. |
[55] | HAN B F, HE G Q, WANG X C, et al. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, Western China[J]. Earth-Science Reviews, 2011, 109(3/4): 74-93. |
[56] | JOLIVET M, DOMINGUEZ S, CHARREAU J, et al. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: reactivated tectonic structures and active deformation[J]. Tectonics, 2010, 29(6): 391-420. |
[57] | ZHANG Z Y, ZHU W B, ZHENG D W, et al. Apatite fission track thermochronology in the kuluketage and Aksu areas, NW China: implication for tectonic evolution of the northern Tarim[J]. Geoscience Frontiers, 2016, 7(2): 171-180. |
[58] | GLORIE S, OTASEVIC A, GILLESPIE J, et al. Thermo-tectonic history of the Junggar alatau within the Central Asian Orogenic Belt (SE Kazakhstan, NW China): insights from integrated apatite U/Pb, fission track and (U-Th)/He thermochronology[J]. Geoscience Frontiers, 2019, 10(6): 2153-2166. |
[59] | BURBANK, MCLEAN, BULLEN, et al. Partitioning of intermontane basins by thrust-related folding, Tien Shan, Kyrgyzstan[J]. Basin Research, 1999, 11(1): 75-92. |
[60] | CHANG J, LI D, MIN K, et al. Cenozoic deformation of the kalpin fold-and-thrust belt, southern Chinese Tian Shan: new insights from low-T thermochronology and sandbox modeling[J]. Tectonophysics, 2019, 766: 416-432. |
[61] | XIAO W J. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. |
[62] | 王国灿, 张孟, 冯家龙, 等. 东天山新元古代—古生代大地构造格架与演化新认识[J]. 地质力学学报, 2019, 25(5): 798-819. |
[63] | 王国灿, 张孟, 张雄华, 等. 天山东段“北天山洋” 构造涵义及演化模式再认识[J]. 地质学报, 2022, 96(10): 3494-3513. |
[64] | WANG Y F, CHEN H Y, FALLOON T J, et al. The Paleozoic-Mesozoic magmatic evolution of the eastern Tianshan, NW China: constraints from geochronology and geochemistry of the Sanchakou intrusive complex[J]. Gondwana Research, 2022, 103: 1-22. |
[65] | JI H J, TAO H F, WANG Q, et al. Petrography, geochemistry, and geochronology of lower Jurassic sedimentary rocks from the northern Tianshan (west bogda area), Northwest China: implications for provenance and tectonic evolution[J]. Geological Journal, 2019, 54(3): 1688-1714. |
[66] | MA X X, SHU L S, MEERT J G. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids[J]. Gondwana Research, 2015, 27(1): 228-243. |
[67] | 汪传胜, 顾连兴, 张遵忠, 等. 东天山哈尔里克山区二叠纪高钾钙碱性花岗岩成因及地质意义[J]. 岩石学报, 2009, 25(6): 1499-1511. |
[68] | WARTES M A, CARROLL A R, GREENE T J. Permian sedimentary record of the Turpan-Hami Basin and adjacent regions, Northwest China: constraints on postamalgamation tectonic evolution[J]. Geological Society of America Bulletin, 2002, 114(2): 131-152. |
[69] | 舒良树, 朱文斌, 王博, 等. 新疆博格达南缘后碰撞期陆内裂谷和水下滑塌构造[J]. 岩石学报, 2005, 21(1): 25-36. |
[70] | JI H J, TAO H F, WANG Q, et al. Early to Middle Jurassic tectonic evolution of the bogda mountains, Northwest China: evidence from sedimentology and detrital zircon geochronology[J]. Journal of Asian Earth Sciences, 2018, 153: 57-74. |
[71] | HE Z Y, ZHANG Z M, ZONG K Q, et al. Zircon U-Pb and Hf isotopic studies of the xingxingxia complex from eastern Tianshan (NW China): significance to the reconstruction and tectonics of the southern Central Asian Orogenic Belt[J]. Lithos, 2014, 190: 485-499. |
[72] | SUN J B, CHEN W, QIN K Z, et al. Mesozoic exhumation of the jueluotage area, eastern Tianshan, NW China: constraints from (U-Th)/He and fission-track thermochronology[J]. Geological Magazine, 2021, 158(11): 1960-1976. |
[73] | 孙敬博, 孙腾飞, 陈文, 等. 新疆东天山红云滩地区构造-热演化探讨: 来自Ar-Ar和(U-Th)/He热年代学的约束[J]. 岩石学报, 2015, 31(12): 3732-3742. |
[74] | HE Z Y, WANG B, GLORIE S, et al. Mesozoic building of the Eastern Tianshan and East Junggar (NW China) revealed by low-temperature thermochronology[J]. Gondwana Research, 2022, 103: 37-53. |
[75] | GONG L, KOHN B P, ZHANG Z Y, et al. Exhumation and preservation of Paleozoic porphyry Cu deposits: insights from the yandong deposit, southern Central Asian Orogenic Belt[J]. Economic Geology, 2021, 116(3): 607-628. |
[76] | TANG W H, ZHANG Z C, LI J F, et al. Mesozoic and Cenozoic uplift and exhumation of the bogda mountain, NW China: evidence from apatite fission track analysis[J]. Geoscience Frontiers, 2015, 6(4): 617-625. |
[77] | 朱文斌, 舒良树, 万景林, 等. 新疆博格达—哈尔里克山白垩纪以来剥露历史的裂变径迹证据[J]. 地质学报, 2006, 80(1): 16-22. |
[78] | CHEN Y, WANG G C, SHEN T Y, et al. Tectono-geomorphic evolution of Harlik Mountain in the Eastern Tian Shan, insight from thermochronological data and geomorphic analysis[J]. Geological Journal, 2020, 55(11): 7322-7334. |
[79] | GILLESPIE J, GLORIE S, JEPSON G, et al. Differential exhumation and crustal tilting in the easternmost Tianshan (Xinjiang, China), revealed by low-temperature thermochronology[J]. Tectonics, 2017, 36(10): 2142-2158. |
[80] | HUANGFU P P, LI Z H, FAN W M, et al. Dynamics of crustal overthrust versus underthrust in the continental collision zones: numerical modelling[J]. Terra Nova, 2019, 31(4): 332-342. |
[81] | YIN A, RUMELHART P E, BUTLER R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114(10): 1257-1295. |
[82] |
HARRISON T M, COPELAND P, KIDD W S F, et al. Raising Tibet[J]. Science, 1992, 255: 1663-1670.
PMID |
[83] | MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396. |
[84] | TAPPONNIER P, MOLNAR P. Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and baykal regions[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B7): 3425-3459. |
[85] | MOLNAR P, TAPPONNIER P. Relation of the tectonics of Eastern China to the India-Eurasia collision: application of slip-line field theory to large-scale continental tectonics[J]. Geology, 1977, 5(4): 212. |
[86] | SCHILDGEN T F, VAN DER BEEK P A, SINCLAIR H D, et al. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology[J]. Nature, 2018, 559(7712): 89-93. |
[87] | GALLAGHER K, BROWN R, JOHNSON C. Fission track analysis and its applications to geological problems[J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 519-572. |
[88] | 蒋毅, 常宏. 磷灰石(U-Th)/He定年方法综述[J]. 岩石矿物学杂志, 2012, 31(5): 757-766. |
[89] | CHANG J, QIU N S. Closure temperature of (U-Th)/He system in apatite obtained from natural drillhole samples in the Tarim basin and its geological significance[J]. Chinese Science Bulletin, 2012, 57(26): 3482-3490. |
[90] | 杨静, 施炜, 王森, 等. 磷灰石裂变径迹实验流程的建立及验证: 外探测器法和LA-ICP-MS/FT法[J]. 地质学报, 2023, 97(5): 1701-1710. |
[91] | KETCHAM R A, CARTER A, DONELICK R A, et al. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 2007, 92(5/6): 799-810. |
[92] | CARLSON W D, DONELICK R A, KETCHAM R A. Variability of apatite fission-track annealing kinetics; I, Experimental results[J]. American Mineralogist, 1999, 84(9): 1213-1223. |
[93] | REINERS P W, BRANDON M T. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 419-466. |
[94] | SIBSON R. A brief description of natural neighbor interpolation[M]//BARNETT V. Interpreting multivariate data. New York: John Wiley and Sons, 1981: 21-36. |
[95] | WATSON D F. Contouring: a guide to the analysis and display of spatial data[M]. New York: Pergamon Press, 1992. |
[96] | DE PELSMAEKER E, GLORIE S, BUSLOV M M, et al. Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement[J]. Tectonophysics, 2015, 662: 416-433. |
[97] | ZHAO R, ZHANG J Y, ZHOU C M, et al. Tectonic evolution of Tianshan-Bogda-Kelameili mountains, clastic wedge basin infill and chronostratigraphic divisions in the source-to-sink systems of Permian-Jurassic, southern Junggar Basin[J]. Marine and Petroleum Geology, 2020, 114: 104200. |
[98] | SHEN T Y, CHEN Y, WANG G C, et al. Detrital zircon geochronology analysis of the late Mesozoic deposition in the Turpan-Hami Basin: implications for the uplift history of the eastern Tian Shan, north-Western China[J]. Terra Nova, 2020, 32(2): 166-178. |
[99] | HENDRIX M S, GRAHAM S A, CARROLL A R, et al. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: evidence from Mesozoic strata of the North Tarim, South Junggar, and Turpan Basins, Northwest China[J]. Geological Society of America Bulletin, 1992, 104(1): 53-79. |
[100] | XIANG D F, ZHANG Z Y, CHEW D, et al. Mesozoic-Cenozoic topographic evolution of the South Tianshan (NW China): insights from detrital apatite geo-thermochronological and geochemical analyses[J]. Lithosphere, 2023, 2023(Special 14): https://doi.org/10.2113/2023/lithosphere_2023_190. |
[101] | ZHANG W, CHEN W, SUN J B, et al. Thermal history and exhumation processes in the Chinese South Tianshan: constraints from 40Ar/39Ar and (U-Th)/He ages[J]. International Journal of Earth Sciences, 2021, 110(5): 1575-1592. |
[102] | CHANG J, ZHANG Y L, QIU N S, et al. Uplift and exhumation in the Tianshan, Western China: new insights from detrital zircon morphology and thermochronology[J]. Science China Earth Sciences, 2022, 65(3): 449-461. |
[103] | JEPSON G, GLORIE S, KHUDOLEY A K, et al. The Mesozoic exhumation history of the Karatau-Talas range, western Tian Shan, Kazakhstan-Kyrgyzstan[J]. Tectonophysics, 2021, 814: 228977. |
[104] | GILLESPIE J, GLORIE S, JEPSON G, et al. Inherited structure as a control on Late Paleozoic and Mesozoic exhumation of the Tarbagatai Mountains, southeastern Kazakhstan[J]. Journal of the Geological Society, 2021, 178(6): jgs2020-121. |
[105] | DE GRAVE J, GLORIE S, BUSLOV M M, et al. Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia)[J]. Gondwana Research, 2013, 23(3): 998-1020. |
[106] | NACHTERGAELE S, DE PELSMAEKER E, GLORIE S, et al. Meso-Cenozoic tectonic evolution of the Talas-Fergana region of the Kyrgyz Tien Shan revealed by low-temperature basement and detrital thermochronology[J]. Geoscience Frontiers, 2018, 9(5): 1495-1514. |
[107] | DE GRAVE J, DE PELSMAEKER E, ZHIMULEV F I, et al. Meso-Cenozoic building of the northern Central Asian Orogenic Belt: thermotectonic history of the tuva region[J]. Tectonophysics, 2014, 621: 44-59. |
[108] | DE GRAVE J, VAN DEN HAUTE P, BUSLOV M M, et al. Apatite fission-track thermochronology applied to the Chulyshman Plateau, Siberian Altai Region[J]. Radiation Measurements, 2008, 43(1): 38-42. |
[109] | DE GRAVE J, VAN DEN HAUTE P. Denudation and cooling of the Lake Teletskoye Region in the Altai Mountains (South Siberia) as revealed by apatite fission-track thermochronology[J]. Tectonophysics, 2002, 349(1/2/3/4): 145-159. |
[110] | WANG Q C, LI S J, DU Z L. Differential uplift of the Chinese Tianshan since the Cretaceous: constraints from sedimentary petrography and apatite fission-track dating[J]. International Journal of Earth Sciences, 2009, 98(6): 1341-1363. |
[111] | 汪新, 贾承造, 杨树锋, 等. 南天山库车冲断褶皱带构造变形时间: 以库车河地区为例[J]. 地质学报, 2002, 76(1): 55-63. |
[112] | CHANG J, TIAN Y T, QIU N S. Mid-late Miocene deformation of the northern kuqa fold-and-thrust belt (southern Chinese Tian Shan): an apatite (U-Th-Sm)/He study[J]. Tectonophysics, 2017, 694: 101-113. |
[113] | CHEN H L, LIN X B, CHENG X G, et al. Two-phase intracontinental deformation mode in the context of India-Eurasia collision: insights from a structural analysis of the West Kunlun-southern Junggar transect along the NW margin of the Tibetan Plateau[J]. Journal of the Geological Society, 2022, 179(2): jgs2021-029. |
[114] | 汪新伟, 汪新文, 马永生. 新疆博格达山晚中生代以来的差异剥露史[J]. 地质学报, 2007, 81(11): 1507-1517. |
[115] | GILLESPIE J, GLORIE S, XIAO W J, et al. Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: insights from low-temperature thermochronology[J]. Gondwana Research, 2017, 43: 107-122. |
[116] | YIN J Y, CHEN W, HODGES K V, et al. The thermal evolution of Chinese central Tianshan and its implications: insights from multi-method chronometry[J]. Tectonophysics, 2018, 722: 536-548. |
[117] | ALEXEIEV D V, COOK H E, BUVTYSHKIN V M, et al. Structural evolution of the Ural-Tian Shan junction: a view from karatau ridge, South Kazakhstan[J]. Comptes Rendus Géoscience, 2009, 341(2/3): 287-297. |
[118] | ALLEN M B, VINCENT S J. Fault reactivation in the Junggar Region, Northwest China: the role of basement structures during Mesozoic-Cenozoic compression[J]. Journal of the Geological Society, 1997, 154(1): 151-155. |
[119] | ALLEN M B, ALSOP G I, ZHEMCHUZHNIKOV V G. Dome and basin refolding and transpressive inversion along the Karatau Fault System, southern Kazakstan[J]. Journal of the Geological Society, 2001, 158(1): 83-95. |
[120] | ARZHANNIKOVA A V, DEMONTEROVA E I, SIZOV A V, et al. Early Cretaceous topographic evolution associated with the collapse of the Mongol-okhotsk Orogen in western transbaikalia: an integrated analysis[J]. International Geology Review, 2023, 65(15): 2348-2369. |
[121] | WANG T, TONG Y, XIAO W J, et al. Rollback, scissor-like closure of the Mongol-okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data[J]. National Science Review, 2022, 9(5): 162-173. |
[122] | JIANG S H, JIANG Y, LIU Y M, et al. The bangong-Nujiang suture zone, Tibet Plateau: its role in the tectonic evolution of the eastern Tethys Ocean[J]. Earth-Science Reviews, 2021, 218: 103656. |
[123] | 曹勇, 孙知明, 李海兵, 等. 羌塘地块西部晚三叠世灰岩古地磁研究及其构造意义[J]. 地质学报, 2019, 93(10): 2463-2476. |
[124] | TIAN P F, YUAN W M, YANG X Y, et al. Multi-stage tectonic events of the Eastern Kunlun Mountains, Northern Tibetan Plateau constrained by fission track thermochronology[J]. Journal of Asian Earth Sciences, 2020, 198: 104428. |
[125] | 丁林, MAKSATBEK S, 蔡福龙, 等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学: 地球科学, 2017, 47(3): 293-309. |
[126] | CHEN Z L, WANG Z X, HAN F B, et al. Late Cretaceous-Cenozoic uplift, deformation, and erosion of the SW Tianshan Mountains in Kyrgyzstan and Western China[J]. International Geology Review, 2018, 60(8): 1019-1037. |
[127] |
VAN HINSBERGEN D J J, LIPPERT P C, DUPONT-NIVET G, et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20): 7659-7664.
DOI PMID |
[128] | SUO Y H, LI S Z, CAO X Z, et al. Two-stage eastward diachronous model of India-Eurasia collision: constraints from the intraplate tectonic records in northeast Indian Ocean[J]. Gondwana Research, 2022, 102: 372-384. |
[129] | 王国灿, 张克信, 曹凯, 等. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程[J]. 地球科学: 中国地质大学学报, 2010, 35(5): 713-727. |
[130] | WANG G C, CAO K, ZHANG K X, et al. Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic[J]. Science China Earth Sciences, 2011, 54(1): 29-44. |
[131] | DING L, KAPP P, CAI F L, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth and Environment, 2022, 3(10): 652-667. |
[132] | SOBEL E R, CHEN J, HEERMANCE R V. Late Oligocene-early Miocene initiation of shortening in the southwestern Chinese Tian Shan: implications for Neogene shortening rate variations[J]. Earth and Planetary Science Letters, 2006, 247(1/2): 70-81. |
[133] | RUTTE D, RATSCHBACHER L, KHAN J, et al. Building the Pamir-Tibetan Plateau-crustal stacking, extensional collapse, and lateral extrusion in the central Pamir: 2. timing and rates[J]. Tectonics, 2017, 36(3): 385-419. |
[134] | SOBEL E R, SCHOENBOHM L M, CHEN J, et al. Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: implications for Pamir orogenesis[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 369-378. |
[1] | ZHOU Qijie, LIU Yongjiang, WANG Deying, GUAN Qingbin, WANG Guangzeng, WANG Yu, LI Zunting, LI Sanzhong. Mesozoic-Cenozoic tectonic evolution and buried hill formation in central Bohai Bay [J]. Earth Science Frontiers, 2022, 29(5): 147-160. |
[2] | . The uplift and erosion of the Tianshan Mountains recorded by detrital zircon geochronology from the Cenozoic sediments in the southern Junggar Basin. [J]. Earth Science Frontiers, 2012, 19(5): 225-233. |
[3] | CHEN Zheng-Le LU Ke-Gai WANG Guan CHEN Bai-Lin LI Li JIANG Rong-Bao CUI Ling-Ling GONG Gong-Liang. Characteristics of the Cenozoic deformation in basin/range coupling regions on both sides of Tianshan Mountains and its geodynamics [J]. Earth Science Frontiers, 2009, 16(3): 149-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||