Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 302-321.DOI: 10.13745/j.esf.sf.2024.10.31
Previous Articles Next Articles
WANG Qiang(), CHENG Zhizhong*(
), YAN Tingjie, LIN Chenggui, DU Zezhong, YUAN Huixiang, LI Xiaolei
Received:
2024-08-07
Revised:
2024-12-02
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
WANG Qiang, CHENG Zhizhong, YAN Tingjie, LIN Chenggui, DU Zezhong, YUAN Huixiang, LI Xiaolei. Geochemical exploration of blind sulfide-rich ore deposits: Sulphur gas geochemical detection[J]. Earth Science Frontiers, 2025, 32(1): 302-321.
Fig.1 A genetic model for gas geochemical anomalies in soil and rock above sulfide-rich concealed ore deposits. (a) In soil of transported covers (modified after [66]). (b) Bedrock outcrops along fault line.
序号仪器系统 | 成分和参数 | 原理 | 精度 | 参考文献 |
---|---|---|---|---|
ST-SO2-1型仪器 | SO2 | 未知 | 10-6级 | [ |
多组分羽流传感器系统 | CO2 | 便携式LI-COR红外CO2分析仪(LI-800) | 10-6级 | [ |
SO2 | 便携式SO2分析仪KP-1(Komyo Rikagaku KK),恒电位电解式传感器 | 10-6级 | ||
湿度和温度 | Vaisala HMP45D | |||
基于膜的气体收集/ 分析系统 | H2S | 通过它们与荧光素-乙酸汞(FMA)反应的能力来测量 | <10-9~10-9级 | [ |
SO2 | <10-9~10-9级 | |||
CH3-SH | <10-9~10-9级 | |||
PMGRA | CO2 | 红外吸收光谱法 | (1~99 999)×10-6 | [ |
CH4 | 红外吸收光谱法 | (0.1~10 000)×10-6 | ||
SO2 | 电化学气体测量传感器 | (0.001~5)×10-6 | ||
H2S | 电化学气体测量传感器 | (0.01~1)×10-6 | ||
实时气体测量装置 | 汞气 | Lumex© RA-915M便携式塞曼原子吸收光谱仪 | 10-9级 | [ |
H2S | Thermo© 450i脉冲荧光气体分析仪 | 10-6级 | ||
UV-DOAS痕量 气体检测平台 | SO2、CS2和 H2S | 紫外吸收光谱与最小二乘拟合 | SO2和H2S:(0.5~10)×10-6; CS2:(10~300)×10-9 | [ |
便携式气体分析仪 | CO2 | Gascard II红外光谱仪 | (0~4 000)×10-6 | [ |
SO2 | SO2-S-100型Membrapor气体电化学传感器 | (0~100)×10-6 | ||
H2S | H2S-S-50型Membrapor气体电化学传感器 | (0~50)×10-6 |
Table 1 Summary of portable gas detection systems
序号仪器系统 | 成分和参数 | 原理 | 精度 | 参考文献 |
---|---|---|---|---|
ST-SO2-1型仪器 | SO2 | 未知 | 10-6级 | [ |
多组分羽流传感器系统 | CO2 | 便携式LI-COR红外CO2分析仪(LI-800) | 10-6级 | [ |
SO2 | 便携式SO2分析仪KP-1(Komyo Rikagaku KK),恒电位电解式传感器 | 10-6级 | ||
湿度和温度 | Vaisala HMP45D | |||
基于膜的气体收集/ 分析系统 | H2S | 通过它们与荧光素-乙酸汞(FMA)反应的能力来测量 | <10-9~10-9级 | [ |
SO2 | <10-9~10-9级 | |||
CH3-SH | <10-9~10-9级 | |||
PMGRA | CO2 | 红外吸收光谱法 | (1~99 999)×10-6 | [ |
CH4 | 红外吸收光谱法 | (0.1~10 000)×10-6 | ||
SO2 | 电化学气体测量传感器 | (0.001~5)×10-6 | ||
H2S | 电化学气体测量传感器 | (0.01~1)×10-6 | ||
实时气体测量装置 | 汞气 | Lumex© RA-915M便携式塞曼原子吸收光谱仪 | 10-9级 | [ |
H2S | Thermo© 450i脉冲荧光气体分析仪 | 10-6级 | ||
UV-DOAS痕量 气体检测平台 | SO2、CS2和 H2S | 紫外吸收光谱与最小二乘拟合 | SO2和H2S:(0.5~10)×10-6; CS2:(10~300)×10-9 | [ |
便携式气体分析仪 | CO2 | Gascard II红外光谱仪 | (0~4 000)×10-6 | [ |
SO2 | SO2-S-100型Membrapor气体电化学传感器 | (0~100)×10-6 | ||
H2S | H2S-S-50型Membrapor气体电化学传感器 | (0~50)×10-6 |
国家 | 矿区/矿床 | 景观和盖层 | 采样和测试方法 | 气体异常 | 参考文献 |
---|---|---|---|---|---|
美国 | Yankee金矿区 | 0.3~1 m土壤,植被稀疏 | 土壤气(孔深为1.0 m)、基岩界面处土壤解吸气、收集器(浅部0.3~0.7 m、深入基岩3 m) | CH4、COS和CS2;土壤解吸气效果较好 | [ |
科罗拉多矿带金银脉 | 矿体上方SO2含量高达50×10-9 | [ | |||
Gas Hills、Shirley盆地和Powder River铀矿 | SO2 | [ | |||
Tyrone硫化物矿床 | 矿体上方SO2含量高达25×10-9 | [ | |||
Johnson Camp铜锌矿 | 半干旱区,盖层厚度:Zone Ⅰ为10 m,Zone Ⅱ为90~150 m,Zone Ⅲ为225 m | 分子筛,深度为30~45 cm,8周 | COS含量为(0~300)×10-9,50×10-9为异常下限;H2S含量为(0~1 000)×10-9,300×10-9为异常下限 | [ | |
抽气法,孔深为1.0 m | Zone 1和Ⅱ上方CO2和ΔO2异常 | [ | |||
土壤表层0~2 cm,深层45~50 cm,150 ℃热解吸 | 表面微层含硫气体(COS、CS2和CH3)2S2和有机挥发物异常;深层样品效果差 | [ | |||
抽气法,孔深为0.5 m | Ⅱ号带上方COS、CS2、CO2和O2 | [ | |||
土壤微表层(粒径<150 μm)解吸 | Ⅱ号带,COS含量>0.3×10-9,背景区含量为0.1×10-9 | [ | |||
North Silver Bell斑岩铜矿 | 丘陵区,局部冲洪积物覆盖 | 土壤(0~5 cm,-30目)解吸气(均衡3天,47 ℃) | 矿体上方He、CS2和SO2;蚀变带:CO2和O2异常;H2S和COS异常少 | [ | |
Crandon块状硫化物矿床 | 盖层冰碛物,厚度约65 m | 抽气法,孔深为0.5 m | CO2和CH4正异常,O2负异常,未检测到含硫气体 | [ | |
抽气法,孔深为0.75 m | O2负异常,CO2正异常 | [ | |||
Torpedo铜矿 | 半干旱,冲洪积物,厚度为5~10 m | 微表层,粒径<150 μm土壤,解吸气 | 矿化带COS异常模式不规则,COS含量峰值为(0.4~0.8)×10-9 | [ | |
Quartzburg金矿脉 | 第四系覆盖,厚度为几米 | 孔深为0.75 m | 矿体上方:C3H8、CO2/O2值、含硫气体(COS) | [ | |
Cripple Creek金矿区 | H2S | [ | |||
爱尔兰 | Keel块状硫化物Pb-Zn矿床 | 湿润,牧场,富黏土耕地,2~7 m冰碛物覆盖 | 土壤解吸 | 矿化断层上方COS含量高达1.5×10-9,背景区含量<0.75×10-9 | [ |
表面微层,粒径<150 μm土壤,解吸气 | COS,矿化断层和氧化带上方含量>0.75×10-9 | [ | |||
纳米 比亚 | Witvlei地区黄铜矿 | 半干旱,氧化深度达30 m,表层2 m沙覆盖 | 土壤深度为0.3~0.5 m;孔深约1.0 m | 土壤Cu异常;CO2正异常和O2负异常 | [ |
沙特 | AshSha‘ib锌铜矿 | 极端干旱气候区,松散砂质沉积物覆盖,厚度为4~8 m | 土壤深度为0.3~0.5 m;孔深约1.0 m | O2负异常,含硫气体和CO2正异常 | [ |
粒径<150 μm土壤,解吸气 | 异常区COS含量>0.4×10-9,局部含量高达1.5×10-9,背景区含量为0.2×10-9 | [ | |||
津巴 布韦 | Dalny矿区金矿 | 1 m残积土和0.3 m季节性积水土壤 | 抽气法,孔深为0.75 m | O2负异常,CO2正异常 | [ |
加纳 | Ashanti矿区金矿 | 热带雨林气候带,残余土壤厚度为5 m | 抽气法,孔深为0.75 m | CO2异常 | [ |
博茨 瓦纳 | Ngwako Pan铜矿 | 沙漠区 | 抽气法,孔深为0.75m | CO2和Tn异常(不同深度对比,埋深较大的异常弱) | [ |
序号 | 矿区/矿床 | 景观/盖层 | 采样和测试方法 | 气体异常 | 参考文献 |
澳大 利亚 | North Miitel镍矿 | 半干旱盐碱地,矿体深度为200~400 m | 被动式采样 | COS | [ |
Junction金矿 | 半干旱,风化壳上方1~3 m覆盖物 | 被动式采样,孔深为0.9 m | CO2-O2-轻烃异常 | [ | |
南非 | Geelvloer铅锌矿 | 干旱气候区,风成沙和残积物厚度为10 m | 表面微层,粒径<150 μm土壤,解吸气 | COS含量为(0.3~0.4)×10-9 | [ |
中国 | 江苏小茅山多金属矿区 | 高温潮湿区,第四系,厚度为50 m | 土壤深度为0.8~1.0 m,解吸气 | H2S、SO2、甲烷和丁烷异常 | [ |
甘肃铅锌多金属矿区 | 半干旱半荒漠区,50~100 m黄土,基岩面下约20 m | 土壤深度为0.5~1.0 m,解吸气 | H2S和SO2;烃类异常,衬度低 | [ | |
山西辛庄金矿区 | 风积黄土厚度几米至120 m,一般为30~40 m | 土壤深度为0.5~1.0 m,解吸气 | SO2、H2S和烃类 | [ | |
江西朱砂红斑岩型铜钼矿区 | 岩石裸露区盲矿 | 岩石解吸气 | SO2、H2S和烃类 | [ | |
安徽胡村夕卡岩铜钼矿区 | 岩石裸露区盲矿,埋深为250~300 m | 岩石解吸气 | SO2、H2S和烃类 | [ | |
湖北铜山口矿区某夕卡岩-斑岩复合型铜矿 | 岩石裸露区盲矿 | 岩石解吸气 | SO2、H2S和烃类 | [ | |
内蒙古拜仁达坝银铅锌矿 | 第四系,覆盖物厚度为0.2~34 m | 孔深为0.6~0.7 m | CO2、SO2和H2S,与矿体头部位置对应 | [ | |
江西景德镇朱溪钨铜矿 | 多为隐伏矿体,仅可见零星矿体出露 | 孔深为0.6~0.7 m | CO2、SO2和H2S | [ | |
江西乐平月形铜矿 | 第四系覆盖厚,矿体深度为180 m | 孔深为0.6~0.7 m | CO2、SO2和H2S | [ | |
湖南黄金洞金矿区 | 低山丘陵区 | 抽气法,孔深为0.6~0.7 m | CO2 | [ | |
辽宁五龙金矿区石英脉型金矿 | 湿润丘陵区,第四系盖层厚度分别为 0.7~5 m和1~10 m | 抽气法,孔深为0.7~1.0 m | CO2、CH4、SO2和H2S | [ | |
辽宁青城子矿田 | 湿润丘陵区,第四系 | 抽气法,孔深为0.7~1.0 m | CO2、CH4、SO2和H2S | [ | |
河北秦家营银铅锌矿区 | 半干旱地区,第四系 | 抽气法,孔深为0.7~1.0 m | CO2、CH4、SO2和H2S | [ | |
内蒙古皂火壕铀矿区 | 半干旱-干旱地区,第四系 | 抽气法 | Rn、CO2、4He、SO2和H2S | [ | |
葡萄牙 | Neves-Corvo铜锡矿 | 低渗透变质岩盖层,矿体埋深为400~500 m | 抽气法孔深约1.0 m | Rn、He、CO2(24.3%)、O2、烃气、SO2和COS | [ |
意大利 | Tolfa矿区块状硫化物矿 | 山区,废弃矿山,埋深为30~100 m | 抽气法孔深约1.0 m | Rn、CO2(9.5%)、O2、烃气、SO2(含量为0.3×10-6)和COS(含量为3.7×10-6) | [ |
哈萨克 斯坦 | 中部铜钼矿 | 盖层厚度为0.6~3.0 m | 孔深为1.0~1.8 m | 总硫 | [ |
加拿大 | 高地山谷硫化物矿床 | SO2 | [ |
Table 2 Statistics of field applications of sulfur gas detection in mineral exploration
国家 | 矿区/矿床 | 景观和盖层 | 采样和测试方法 | 气体异常 | 参考文献 |
---|---|---|---|---|---|
美国 | Yankee金矿区 | 0.3~1 m土壤,植被稀疏 | 土壤气(孔深为1.0 m)、基岩界面处土壤解吸气、收集器(浅部0.3~0.7 m、深入基岩3 m) | CH4、COS和CS2;土壤解吸气效果较好 | [ |
科罗拉多矿带金银脉 | 矿体上方SO2含量高达50×10-9 | [ | |||
Gas Hills、Shirley盆地和Powder River铀矿 | SO2 | [ | |||
Tyrone硫化物矿床 | 矿体上方SO2含量高达25×10-9 | [ | |||
Johnson Camp铜锌矿 | 半干旱区,盖层厚度:Zone Ⅰ为10 m,Zone Ⅱ为90~150 m,Zone Ⅲ为225 m | 分子筛,深度为30~45 cm,8周 | COS含量为(0~300)×10-9,50×10-9为异常下限;H2S含量为(0~1 000)×10-9,300×10-9为异常下限 | [ | |
抽气法,孔深为1.0 m | Zone 1和Ⅱ上方CO2和ΔO2异常 | [ | |||
土壤表层0~2 cm,深层45~50 cm,150 ℃热解吸 | 表面微层含硫气体(COS、CS2和CH3)2S2和有机挥发物异常;深层样品效果差 | [ | |||
抽气法,孔深为0.5 m | Ⅱ号带上方COS、CS2、CO2和O2 | [ | |||
土壤微表层(粒径<150 μm)解吸 | Ⅱ号带,COS含量>0.3×10-9,背景区含量为0.1×10-9 | [ | |||
North Silver Bell斑岩铜矿 | 丘陵区,局部冲洪积物覆盖 | 土壤(0~5 cm,-30目)解吸气(均衡3天,47 ℃) | 矿体上方He、CS2和SO2;蚀变带:CO2和O2异常;H2S和COS异常少 | [ | |
Crandon块状硫化物矿床 | 盖层冰碛物,厚度约65 m | 抽气法,孔深为0.5 m | CO2和CH4正异常,O2负异常,未检测到含硫气体 | [ | |
抽气法,孔深为0.75 m | O2负异常,CO2正异常 | [ | |||
Torpedo铜矿 | 半干旱,冲洪积物,厚度为5~10 m | 微表层,粒径<150 μm土壤,解吸气 | 矿化带COS异常模式不规则,COS含量峰值为(0.4~0.8)×10-9 | [ | |
Quartzburg金矿脉 | 第四系覆盖,厚度为几米 | 孔深为0.75 m | 矿体上方:C3H8、CO2/O2值、含硫气体(COS) | [ | |
Cripple Creek金矿区 | H2S | [ | |||
爱尔兰 | Keel块状硫化物Pb-Zn矿床 | 湿润,牧场,富黏土耕地,2~7 m冰碛物覆盖 | 土壤解吸 | 矿化断层上方COS含量高达1.5×10-9,背景区含量<0.75×10-9 | [ |
表面微层,粒径<150 μm土壤,解吸气 | COS,矿化断层和氧化带上方含量>0.75×10-9 | [ | |||
纳米 比亚 | Witvlei地区黄铜矿 | 半干旱,氧化深度达30 m,表层2 m沙覆盖 | 土壤深度为0.3~0.5 m;孔深约1.0 m | 土壤Cu异常;CO2正异常和O2负异常 | [ |
沙特 | AshSha‘ib锌铜矿 | 极端干旱气候区,松散砂质沉积物覆盖,厚度为4~8 m | 土壤深度为0.3~0.5 m;孔深约1.0 m | O2负异常,含硫气体和CO2正异常 | [ |
粒径<150 μm土壤,解吸气 | 异常区COS含量>0.4×10-9,局部含量高达1.5×10-9,背景区含量为0.2×10-9 | [ | |||
津巴 布韦 | Dalny矿区金矿 | 1 m残积土和0.3 m季节性积水土壤 | 抽气法,孔深为0.75 m | O2负异常,CO2正异常 | [ |
加纳 | Ashanti矿区金矿 | 热带雨林气候带,残余土壤厚度为5 m | 抽气法,孔深为0.75 m | CO2异常 | [ |
博茨 瓦纳 | Ngwako Pan铜矿 | 沙漠区 | 抽气法,孔深为0.75m | CO2和Tn异常(不同深度对比,埋深较大的异常弱) | [ |
序号 | 矿区/矿床 | 景观/盖层 | 采样和测试方法 | 气体异常 | 参考文献 |
澳大 利亚 | North Miitel镍矿 | 半干旱盐碱地,矿体深度为200~400 m | 被动式采样 | COS | [ |
Junction金矿 | 半干旱,风化壳上方1~3 m覆盖物 | 被动式采样,孔深为0.9 m | CO2-O2-轻烃异常 | [ | |
南非 | Geelvloer铅锌矿 | 干旱气候区,风成沙和残积物厚度为10 m | 表面微层,粒径<150 μm土壤,解吸气 | COS含量为(0.3~0.4)×10-9 | [ |
中国 | 江苏小茅山多金属矿区 | 高温潮湿区,第四系,厚度为50 m | 土壤深度为0.8~1.0 m,解吸气 | H2S、SO2、甲烷和丁烷异常 | [ |
甘肃铅锌多金属矿区 | 半干旱半荒漠区,50~100 m黄土,基岩面下约20 m | 土壤深度为0.5~1.0 m,解吸气 | H2S和SO2;烃类异常,衬度低 | [ | |
山西辛庄金矿区 | 风积黄土厚度几米至120 m,一般为30~40 m | 土壤深度为0.5~1.0 m,解吸气 | SO2、H2S和烃类 | [ | |
江西朱砂红斑岩型铜钼矿区 | 岩石裸露区盲矿 | 岩石解吸气 | SO2、H2S和烃类 | [ | |
安徽胡村夕卡岩铜钼矿区 | 岩石裸露区盲矿,埋深为250~300 m | 岩石解吸气 | SO2、H2S和烃类 | [ | |
湖北铜山口矿区某夕卡岩-斑岩复合型铜矿 | 岩石裸露区盲矿 | 岩石解吸气 | SO2、H2S和烃类 | [ | |
内蒙古拜仁达坝银铅锌矿 | 第四系,覆盖物厚度为0.2~34 m | 孔深为0.6~0.7 m | CO2、SO2和H2S,与矿体头部位置对应 | [ | |
江西景德镇朱溪钨铜矿 | 多为隐伏矿体,仅可见零星矿体出露 | 孔深为0.6~0.7 m | CO2、SO2和H2S | [ | |
江西乐平月形铜矿 | 第四系覆盖厚,矿体深度为180 m | 孔深为0.6~0.7 m | CO2、SO2和H2S | [ | |
湖南黄金洞金矿区 | 低山丘陵区 | 抽气法,孔深为0.6~0.7 m | CO2 | [ | |
辽宁五龙金矿区石英脉型金矿 | 湿润丘陵区,第四系盖层厚度分别为 0.7~5 m和1~10 m | 抽气法,孔深为0.7~1.0 m | CO2、CH4、SO2和H2S | [ | |
辽宁青城子矿田 | 湿润丘陵区,第四系 | 抽气法,孔深为0.7~1.0 m | CO2、CH4、SO2和H2S | [ | |
河北秦家营银铅锌矿区 | 半干旱地区,第四系 | 抽气法,孔深为0.7~1.0 m | CO2、CH4、SO2和H2S | [ | |
内蒙古皂火壕铀矿区 | 半干旱-干旱地区,第四系 | 抽气法 | Rn、CO2、4He、SO2和H2S | [ | |
葡萄牙 | Neves-Corvo铜锡矿 | 低渗透变质岩盖层,矿体埋深为400~500 m | 抽气法孔深约1.0 m | Rn、He、CO2(24.3%)、O2、烃气、SO2和COS | [ |
意大利 | Tolfa矿区块状硫化物矿 | 山区,废弃矿山,埋深为30~100 m | 抽气法孔深约1.0 m | Rn、CO2(9.5%)、O2、烃气、SO2(含量为0.3×10-6)和COS(含量为3.7×10-6) | [ |
哈萨克 斯坦 | 中部铜钼矿 | 盖层厚度为0.6~3.0 m | 孔深为1.0~1.8 m | 总硫 | [ |
加拿大 | 高地山谷硫化物矿床 | SO2 | [ |
Fig.3 Typical results of case studies of gas geochemical detection in concealed ore deposits. (a) Characteristics of H2S, SO2, and CO2 amomalies along prospecting line No. 3, Weilasituo Cu-Zn mining area, Inner Mongolia. Adapted from [72]. (b) Characteristics of O2, and CO2 anomalies on profile 1 of the Neves-Corvo ore deposit area, Portugal. Adapted from [48]. Solid lines indicate the running averages (window width=3).
Fig.5 Results of the soil gas geochemical survey in the Qinjiaying Ag-Pb-Zn prospect using PMGRA. Adapted from [80]. (a) H2S, SO2, CH4, and CO2 contents in soil along prospecting line No.23. (b) H2S, SO2, CH4, and CO2 contents in soil along prospecting line No.24. (c) H2S anomaly map. (d) SO2 anomaly map. (e) CH4 anomaly map. (f) CO2 anomaly map.
Fig.6 Results of soil gas geochemical survey along prospecting line No.68, Zhugongtang Pb-Zn mining area, shown as three-point running average curves. Adapted from [72].
Fig.7 Results of soil gas geochemical survey along prospecting line AS3, Ash Sha’ib Cu-Zn prospecting area, shown as three point running average curves. Adapted from [16].
[1] | GOVETT G J S. Detection of deeply buried and blind sulphide deposits by measurement of H+ and conductivity of closely spaced surface soil samples[J]. Journal of Geochemical Exploration, 1976, 6(1/2): 359-382. |
[2] | HAMILTON S. Electrochemical mass-transport in overburden: a new model to account for the formation of selective leach geochemical anomalies in glacial terrain[J]. Journal of Geochemical Exploration, 1998, 63(3): 155-172. |
[3] | WANG X Q, CHENG Z Z, LU Y X, et al. Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J]. Journal of Geochemical Exploration, 1997, 58(1): 63-72. |
[4] | WANG X Q, ZHANG B M, LIN X, et al. Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J]. Ore Geology Reviews, 2016, 73: 417-431. |
[5] | SMEE B W. A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid environments[J]. Journal of Geochemical Exploration, 1998, 61(1-3): 149-172. |
[6] | 谢学锦, 王学求. 深穿透勘查地球化学[J]. 物探与化探, 1998, 22(3): 166-169. |
[7] | CAMERON E M, HAMILTON S M, LEYBOURNE M I, et al. Finding deeply buried deposits using geochemistry[J]. Geochemistry: Exploration, Environment, Analysis, 2004, 4(1): 7-32. |
[8] | CAO J J. Migration mechanisms of gold nanoparticles explored in geogas of the Hetai ore district, Southern China[J]. Geochemical Journal, 2011, 45(3): e9-e13. |
[9] | ANAND R, LINTERN M, NOBLE R, et al. Geochemical dispersion through transported cover in regolith-dominated terrains: toward an understanding of process[M]// KELLEY K D, GOLDEN H C. Building exploration capability for the 21st century. Littleton: Society of Economic Geologists Special Publication, 2014: 97-126. |
[10] | YE R, ZHANG B M, WANG Y. Mechanism of the migration of gold in desert regolith cover over a concealed gold deposit[J]. Geochemistry: Exploration, Environment, Analysis, 2015, 15(1): 62-71. |
[11] | ZHANG B M, HAN Z X, WANG X Q, et al. Metal-bearing nanoparticles observed in soils and fault gouges over the Shenjiayao gold deposit and their significance[J]. Minerals, 2019, 9: 414. |
[12] | GLEBOVSKAYA U S, GLEBOVSKI S S. The possibility of the application of gas surveys in prospecting for sulphide ore deposits[J]. Voprosy Rudnoy Geofiziki, 1960, 1: 48-56. |
[13] | MCCARTHY J H. Mercury vapor and other volatile components in the air as guides to ore deposits[J]. Journal of Geochemical Exploration, 1972, 1(2): 143-162. |
[14] | HINKLE M E, HARMS T F. CS2 and COS in soil gases of the Roosevelt Hot Springs known geothermal resource area, Beaver County, Utah[J]. Journal of Research of the U.S. Geological Survey, 1978, 6: 571-578. |
[15] | HALE M, MOON C J. Geochemical expressions at surface of mineralization concealed beneath glacial till at Keel, Eire[C]// DAVENPORT P H. Prospecting in areas of glaciated terrain-1982. St. John’s Newfoundland: Canadian Institute Mining Metallurgy, 1982: 228-239. |
[16] | LOVELL J S, HALE M, WEBB J S. Soil air carbon dioxide and oxygen measurements as a guide to concealed mineralization in semi-arid and arid regions[J]. Journal of Geochemical Exploration, 1983, 19(1-3): 305-317. |
[17] | HINKLE M E. Using volatile constituents of soils and soil gases to determine the presence of copper-zinc ore bodies at Johnson Camp, Arizona[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12359-12365. |
[18] | MCCARTHY J H, REIMER G M. Advances in soil gas geochemical exploration for natural resources: some current examples and practices[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12327-12338. |
[19] | OAKES B W, HALE M. Dispersion patterns of carbonyl sulphide above mineral deposits[J]. Journal of Geochemical Exploration, 1987, 28(1-3): 235-249. |
[20] | 崔熙琳, 汪明启, 唐金荣. 金属矿气体地球化学测量技术新进展[J]. 物探与化探, 2009, 33(2): 135-139. |
[21] | NOBLE R R P, SENESHEN D M, LINTERN M J, et al. Soil-gas and weak partial soil extractions for nickel exploration through transported cover in Western Australia[J]. Geochemistry: Exploration, Environment, Analysis, 2018, 18(1): 31-45. |
[22] | PLET C, NOBLE R R P. Soil gases in mineral exploration: a review and the potential for future developments[J]. Geochemistry: Exploration, Environment, Analysis, 2023, 23(2): geochem2023-008.. |
[23] | PLET C, SIÉGEL C, NOBLE R, et al. Soil gases, pathfinders for exploration of buried sulphide deposits: insights from laboratory experiments[J]. ASEG Extended Abstracts, 2019(1): 1-4. |
[24] | PLET C, SIÉGEL C, WOLTERING M, et al. Sulfur and CO2 gases emitted during weathering of sulfides: role of microbial activity and implications to exploration through cover[J]. Ore Geology Reviews, 2021, 134: 104167. |
[25] | LETT R E, SACCO D A, ELDER B, et al. Real-time analysis of soil gas for carbon dioxide and oxygen to identify bedrock mineralization and geological faults beneath glacial deposits in central British Columbia[M]. Victoria: Geoscience BC, 2020. |
[26] | LETT R E, SACCO D A, ELDER B, et al. Real-time detection of bedrock mineralization and geological faults beneath glacial deposits in Central British Columbia using onsite soil gas carbon dioxide and oxygen analysis by electronic gas sensors (NTS 093A/58, 093G/03)[M]. Victoria: Geoscience BC, 2020. |
[27] | KRAVTSOV A I, FRIDMAN A I. Natural gases of ore deposits[J]. Academy Sciences USSR, Doklady Earth Sciences, 1965, 165: 192-193. |
[28] | KAHMA A. Trained dogs as tracer of sulphide bearing glacial boulders[J]. Sedimentology, 1965, 5: 57. |
[29] | KAHMA A, NURMI A, MATTSSON P. On the composition of the gases generated by sulphide-bearing boulders during weathering and on the ability of prospecting dogs to detect samples treated with these gases in the terrain[M]. Helsinki: Geological Survey of Finland, 1975. |
[30] | NILSSON G. The use of dogs in prospecting for sulphide ores[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1971, 93(4): 725-728. |
[31] | BROCKS J S. The use of dogs as an aid to exploration for sulphides[J]. Western Mineralogist, 1972, 45: 28-32. |
[32] | LOVELL J S. Applications of vapour geochemistry to mineral exploration[D]. London: University of London, 1979. |
[33] | HINKLE M E, DILBERT C A. Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona[J]. Journal of Geochemical Exploration, 1984, 20(3): 323-336. |
[34] | JIN J, HU Z Q, SUN X L, et al. Geochemical exploration in thick transported overburden, Eastern China[J]. Journal of Geochemical Exploration, 1989, 33(1-3): 155-169. |
[35] | TAYLOR C H, KESLER S E, CLOKE P L. Sulfur gases produced by the decomposition of sulfide minerals: application to geochemical exploration[J]. Journal of Geochemical Exploration, 1982, 17(3): 165-185. |
[36] | MONTEGROSSI G, TASSI F, VASELLI O, et al. A new, rapid and reliable method for the determination of reducedsulphur (S2-) species in natural water discharges[J]. Applied Geochemistry, 2006, 21(5): 849-857. |
[37] | SHINOHARA H. A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system[J]. Journal of Volcanology and Geothermal Research, 2005, 143(4): 319-333. |
[38] | 张洁, 程志中, 伦知颍, 等. 土壤中CO2、SO2和H2S气体测量: 一种适用于覆盖区找矿的化探方法[J]. 地质科技情报, 2016, 35(4): 12-17. |
[39] | CABASSI J, TASSI F, VENTURI S, et al. A new approach for the measurement of gaseous elemental mercury (GEM) and H2S in air from anthropogenic and natural sources: examples from Mt. Amiata (Siena, central Italy) and solfatara crater (Campi Flegrei, Southern Italy)[J]. Journal of Geochemical Exploration, 2017, 175: 48-58. |
[40] | CUI Z L, ZHANG X X, CHEN D C, et al. Real-time measurement of SO2, H2S, and CS2 mixed gases using ultraviolet spectroscopy and a least squares algorithm[J]. Applied Spectroscopy, 2021, 75(3): 265-273. |
[41] | HINKLE M E, RYDER J L, SUTLEY S J, et al. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona[J]. Journal of Geochemical Exploration, 1990, 38(1/2): 43-67. |
[42] | STEDMAN D H, CREECH M Z, CLOKE P L, et al. Formation of CS2 and OCS from decomposition of metal sulfides[J]. Geophysical Research Letters, 1984, 11(9): 858-860. |
[43] | KESLER S E, GARDNER M. Factors affecting sulfur gas anomalies in overburden[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12339-12342. |
[44] | LOVELL J S, HALE M, WEBB J S. Vapour geochemistry in mineral exploration[J]. Mining Magazine, 1980, 143(3): 229-239. |
[45] | KESLER S E, GERDENICH M J, STEININGER R C, et al. Dispersion of soil gas around micron gold deposits[J]. Journal of Geochemical Exploration, 1990, 38(1-2): 117-132. |
[46] | 李生郁, 徐丰孚. 轻烃及硫化物气体测量找寻多金属隐伏矿方法试验[J]. 物探与化探, 1997, 21(2): 128-138, 127. |
[47] | MCCARTHY J H, KIILSGAARD T H. Soil gas studies along the Trans-challis fault system near Idaho City, Boise County, Idaho[R]. Denver: U.S.Geological Survey, 2001. |
[48] | VOLTATTORNI N, LOMBARDI S, BEAUBIEN S E. Gas migration from two mine districts: the Tolfa (Lazio, Central Italy) and the Neves-Corvo (Baixo Alentejo, Portugal) case studies[J]. Journal of Geochemical Exploration, 2015, 152: 37-53. |
[49] | 林成贵, 程志中, 姚晓峰, 等. 基于PMGRA气体地球化学测量在辽东浅覆盖区找矿的可行性[J]. 地球科学, 2020, 45(11): 4038-4053. |
[50] | NORDSTROM D K, SOUTHAM G. Geomicrobiology of sulfide mineral oxidation[J]. Reviews in Mineralogy and Geochemistry, 1997, 35(1): 361-390. |
[51] | RASMUSSEN R A. Emission of biogenic hydrogen sulfide[J]. Tellus, 1974, 26(1/2): 254-260. |
[52] | BANWART W L, BREMNER J M. Formation of volatile sulfur compounds by microbial decomposition of sulfur-containing amino acids in soils[J]. Soil Biology and Biochemistry, 1975, 7(6): 359-364. |
[53] | HINKLE M E, LOVELL J S. Sulphur gases (Chapter 8)[M]// HALE M. Handbook of exploration geochemistry. Amsterdam: Elsevier, 2000: 249-289. |
[54] | GRAEDEL T E. The oxidation of ammonia, hydrogen sulfide, and methane in nonurbantropospheres[J]. Journal of Geophysical Research, 1977, 82(37): 5917-5922. |
[55] | MCCARTHY J H, LAMBE R N, DIETRICH J A. A case study of soil gases as an exploration guide in glaciated terrain: Crandon massive sulfide deposit, Wisconsin[J]. Economic Geology, 1986, 81(2): 408-420. |
[56] | HINKLE M E. Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases[J]. Applied Geochemistry, 1994, 9(1): 53-63. |
[57] | BORTNIKOVA S B, YURKEVICH N V, ABROSIMOVA N A, et al. Assessment of emissions of trace elements and sulfur gases from sulfide tailings[J]. Journal of Geochemical Exploration, 2018, 186: 256-269. |
[58] | BALL T K, CROW M J, LAFFOLEY N, et al. Application of soil-gas geochemistry to mineral exploration in Africa[J]. Journal of Geochemical Exploration, 1990, 38(1-2): 103-115. |
[59] | HALE M. Mineral deposits and chalcogen gases[J]. Mineralogical Magazine, 1993, 57(389): 599-606. |
[60] | TARAN Y A, BERNARD A, GAVILANES J C, et al. Chemistry and mineralogy of high-temperature gas discharges from Colima Volcano, Mexico: Implications for magmatic gas-atmosphere interaction[J]. Journal of Volcanology and Geothermal Research, 2001, 108(1-4): 245-264. |
[61] | FU CC, YANG T F, WALIA V, et al. Reconnaissance of soil gas composition over the buried fault and fracture zone in Southern Taiwan[J]. Geochemical Journal, 2005, 39(5): 427-439. |
[62] | ZHOU X C, DU J G, CHEN Z, et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, Southwestern China[J]. Geochemical Transactions, 2010, 11: 5. |
[63] | ZELENSKI M E, FISCHER T P, DE MOOR J M, et al. Trace elements in the gas emissions from the Erta Ale volcano, Afar, Ethiopia[J]. Chemical Geology, 2013, 357: 95-116. |
[64] | ZELENSKI M, MALIK N, YU T R. Emissions of trace elements during the 2012-2013 effusive eruption of tolbachik volcano, Kamchatka: enrichment factors, partition coefficients and aerosol contribution[J]. Journal of Volcanology and Geothermal Research, 2014, 285: 136-149. |
[65] | JÁCOME-PAZ M P, GONZÁLEZ-ROMO I A, PROL-LEDESMA R M, et al. Multivariate analysis of CO2, H2S and CH4 diffuse degassing and correlation with fault systems in Agua Caliente - Tzitzio, Michoacán, México[J]. Journal of Volcanology and Geothermal Research, 2020, 394: 106808. |
[66] | ANAND RR, ASPANDIAR M F, NOBLE R R P. A review of metal transfer mechanisms through transported cover with emphasis on the vadose zone within the Australian regolith[J]. Ore Geology Reviews, 2016, 73: 394-416. |
[67] | 王强, 王学求, 刘汉粮, 等. 半干旱—干旱地区以钙积层为采样介质的隐伏金矿地球化学勘查[J]. 地质学报, 2022, 96(3): 1104-1120. |
[68] | 龚庆杰, 夏学齐, 刘宁强. 2011—2020中国应用地球化学研究进展与展望[J]. 矿物岩石地球化学通报, 2020, 39(5): 927-944. |
[69] | KLUSMAN R W. Soil gas and related methods for natural resource exploration[M]. Chichester: John Wiley, 1993. |
[70] | 张民堂. 二氧化硫气体测量找矿法[J]. 化工地质, 1983, 5(1): 72-73. |
[71] | TODA K, OHIRA S I, TANAKA T, et al. Field instrument for simultaneous large dynamic range measurement of atmospheric hydrogen sulfide, methanethiol, and sulfur dioxide[J]. Environmental Science & Technology, 2004, 38(5): 1529-1536. |
[72] | LIN C G, CHENG ZZ, CHEN X, et al. Application of multi-component gas geochemical survey for deep mineral exploration in covered areas[J]. Journal of Geochemical Exploration, 2021, 220: 106656. |
[73] | AIUPPA A, FEDERICO C, GIUDICE G, et al. Chemical mapping of a fumarolic field: La Fossa crater, Vulcano Island (Aeolian Islands, Italy)[J]. Geophysical Research Letters, 2005, 32(13): L13309. |
[74] | ROUSE G E, STEVENS D N. The use of sulfur dioxide gas geochemistry in the detection of sulfide deposits[C]. American Institute of Mining and Metallurgical Engineers: Annual Meeting of American Institute of Mining and Metallurgical Engineers (March 3, 1971). New York: American Institute of Mining and Metallurgical Engineers, 1971. |
[75] | MCCARTHY J H, BIGELOW R C. Multiple gas analyses using a mobile mass spectrometer[J]. Journal of Geochemical Exploration, 1990, 38(1-2): 233-245. |
[76] | FREDERICKSON A F, LEHNERTZ C A, KELLOGG H E. Mobility, flexibility highlight a mass spectrometer-computer technique for regional exploration[J]. Engineering & Mining Journal, 1971, 172(6): 116-118. |
[77] | POLITO P A, CLARKE J D A, BONE Y, et al. A CO2-O2-light hydrocarbon-soil-gas anomaly above the junction orogenic gold deposit: a potential, alternative exploration technique[J]. Geochemistry: Exploration, Environment, Analysis, 2002, 2(4): 333-344. |
[78] | HALE M. Gas geochemistry and deeply buried mineral deposits: the contribution of the Applied Geochemistry Research Group, Imperial College of Science and Technology, London[J]. Geochemistry: Exploration, Environment, Analysis, 2010, 10(3): 261-267. |
[79] | 万卫, 陈振亚, 程志中, 等. CO2气体测量方法在低山丘陵区隐伏矿勘查的试验研究[J]. 物探与化探, 2019, 43(1): 70-76. |
[80] | CHENG Z Z, WANG Q, LIN C G, et al. Application of portable multi-component gas analyzer to mineral exploration in semi-arid steppes of Northern China: a case study from the Qinjiaying Ag-Pb-Zn prospect[J]. Applied Geochemistry, 2024, 166: 105996. |
[81] | 刘汉彬, 韩娟, 石晓, 等. 气体地球化学测量方法在皂火壕砂岩型铀矿勘查中的应用试验研究[J]. 铀矿地质, 2023, 39(2): 287-301. |
[82] | 郭志娟, 孔牧, 张华, 等. 适合地球化学勘查的景观划分研究[J]. 物探与化探, 2015, 39(1): 12-15. |
[1] | ZHOU Yining, GAO Yanfang, CHANG Chan, LIU Qingqing, WANG Xueqiu. Framework and implementation of field informatization technology for geochemical exploration [J]. Earth Science Frontiers, 2025, 32(1): 257-265. |
[2] | SUN Xiaolong,WANG Guangcai,SHAO Zhigang,SI Xueyun. Geochemical characteristics of emergent gas and groundwater in Haiyuan fault zone [J]. Earth Science Frontiers, 2016, 23(3): 140-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||