Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (3): 14-27.DOI: 10.13745/j.esf.sf.2022.5.41
Previous Articles Next Articles
MENG Kang1(), SHAO Deyong1, ZHANG Liuliu2, LI Liwu3, ZHANG Yu1, LUO Huan2, SONG Hui1, ZHANG Tongwei4,*(
)
Received:
2022-04-02
Revised:
2022-05-10
Online:
2023-05-25
Published:
2023-04-27
Contact:
*张同伟(1965—),男,教授,博士生导师,主要从事石油、天然气地质地球化学及成藏地球化学研究工作。 E-mail: CLC Number:
MENG Kang, SHAO Deyong, ZHANG Liuliu, LI Liwu, ZHANG Yu, LUO Huan, SONG Hui, ZHANG Tongwei. Geochemical characteristics of residual gas released from crushed shale from the Shuijingtuo Formation in Yichang, western Hubei—indication for gas-bearing capacity of shale[J]. Earth Science Frontiers, 2023, 30(3): 14-27.
Fig.1 (a) Simplified geological map of the Yichang area (modified after [10]) showing the location of sampling sites, and (b) lithologic column of well Liuxi ZK003
Fig.3 Comparison of relative abundances (b) and contents (b) of gas components in residual gas from four parallel degassing experiments on crushed shales from the Niutitang Formation, Youyang section, southeastern Chongqing
Fig.5 Contents (a) and relative abundances (b) of gas components in residual gas released from crushed shale samples after corrections for atmospheric and water contamination
Fig.10 Correlation between N2 content and residual/desorbed gas contents in the Shuijingtuo shale formation of wells Liuxi ZK003 (blue dot) and Zidi 1 (orange dot), Yichang area
Fig.11 (a) Distribution of typical Lower Paleozoic marine shale gas wells in southern China (basemap modified from [51]), and (b) comparison of nitrogen contents in shale gas from different regions
[1] | 高波. 四川盆地龙马溪组页岩气地球化学特征及其地质意义[J]. 天然气地球科学, 2015, 26(6): 1173-1182. |
[2] | 戴金星, 董大忠, 倪云燕, 等. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760. |
[3] | 王鹏威, 刘忠宝, 金之钧, 等. 川西南地区下寒武统筇竹寺组页岩气纵向差异富集主控因素[J]. 地球科学, 2019, 44(11): 3628-3638. |
[4] | 郗兆栋, 唐书恒, 王静, 等. 中国南方海相页岩气选区关键参数探讨[J]. 地质学报, 2018, 92(6): 1313-1323. |
[5] | 高波, 刘忠宝, 舒志国, 等. 中上扬子地区下寒武统页岩气储层特征及勘探方向[J]. 石油与天然气地质, 2020, 41(2): 284-294. |
[6] |
姜振学, 唐相路, 李卓, 等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘, 2016, 23(2): 126-134.
DOI |
[7] |
GOU Q Y, XU S, HAO F, et al. The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation[J]. Energy, 2021, 219: 119579.
DOI URL |
[8] |
WEI S L, HE S, PAN Z J, et al. Characteristics and evolution of pyrobitumen-hosted pores of the overmature Lower Cambrian Shuijingtuo Shale in the south of Huangling anticline, Yichang area, China: evidence from FE-SEM petrography[J]. Marine and Petroleum Geology, 2020, 116: 104303.
DOI URL |
[9] | 翟刚毅, 包书景, 王玉芳, 等. 古隆起边缘成藏模式与湖北宜昌页岩气重大发现[J]. 地球学报, 2017, 38(4): 441-447. |
[10] | 陈孝红, 危凯, 张保民, 等. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式[J]. 中国地质, 2018, 45(2): 207-226. |
[11] | 罗胜元, 陈孝红, 岳勇, 等. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068. |
[12] | 焦伟伟, 汪生秀, 程礼军, 等. 渝东南地区下寒武统页岩气高氮低烃成因[J]. 天然气地球科学, 2017, 28(12): 1882-1890. |
[13] | 夏鹏, 王甘露, 曾凡桂, 等. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355. |
[14] | 伍耀文, 龚大建, 李腾飞, 等. 黔中隆起及周缘地区牛蹄塘组含氮页岩气分布特征及有利勘探方向[J]. 地球化学, 2019, 48(6): 613-623. |
[15] | 苏越, 王伟明, 李吉君, 等. 中国南方海相页岩气中氮气成因及其指示意义[J]. 石油与天然气地质, 2019, 40(6): 1185-1196. |
[16] |
LIU Y, ZHANG J C, REN J, et al. Stable isotope geochemistry of the nitrogen-rich gas from lower Cambrian shale in the Yangtze Gorges area, South China[J]. Marine and Petroleum Geology, 2016, 77: 693-702.
DOI URL |
[17] |
ZHANG T W, YANG R S, MILLIKEN K L, et al. Chemical and isotopic composition of gases released by crush methods from organic rich mudrocks[J]. Organic Geochemistry, 2014, 73: 16-28.
DOI URL |
[18] | 李立武, 刘艳, 王先彬, 等. 高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J]. 岩矿测试, 2017, 36(3): 222-230. |
[19] | 翟刚毅, 王玉芳, 刘国恒, 等. 鄂西地区震旦系—寒武系页岩气成藏模式[J]. 地质力学学报, 2020, 26(5): 696-713. |
[20] | 张六六. 宜昌地区寒武系页岩层段吸水特征、孔隙结构差异性对页岩储层评价的意义[D]. 兰州: 兰州大学, 2021. |
[21] | 李立武, 张铭杰, 杜丽, 等. 岩石热脱气单体碳/氢同位素组成分析装置[J]. 岩矿测试, 2005, 24(2): 135-137. |
[22] | 李立武, 张铭杰, 王先彬, 等. 岩石真空电磁破碎及页岩脱气试验[C]// 第十四届全国有机地球化学学术会议论文集. 珠海: 中国地质学会, 2013: 715-716. |
[23] |
XIA X Y, TANG Y C. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta, 2012, 77: 489-503.
DOI URL |
[24] |
LIANG M L, WANG Z X, ZHENG G D, et al. Occurrence and influence of residual gas released by crush methods on pore structure in Longmaxi shale in Yangtze Plate, Southern China[J]. China Geology, 2020, 3(4): 545-557.
DOI URL |
[25] |
TANG Q Y, ZHANG M J, CAO C H, et al. The molecular and carbon isotopic constrains on origin and storage of Longmaxi Formation shale gas in Changning area, Sichuan Basin, China[J]. Interpretation, 2015, 3(2): SJ35-SJ47.
DOI URL |
[26] | 焦伟伟, 方光建, 汪生秀, 等. 渝东南地区下古生界页岩含气性差异关键控制因素[J]. 煤炭学报, 2019, 44(6): 1786-1794. |
[27] | 尚慧. 页岩中气体组成实验测定方法及实例分析[D]. 兰州: 兰州大学, 2014. |
[28] | 罗胜元, 陈孝红, 刘安, 等. 中扬子宜昌地区下寒武统水井沱组页岩气地球化学特征及其成因[J]. 石油与天然气地质, 2019, 40(5): 999-1010. |
[29] |
罗胜元, 陈孝红, 刘安, 等. 中扬子宜昌地区下寒武统水井沱组页岩现场解吸气特征及地质意义[J]. 石油学报, 2019, 40(8): 941-955.
DOI |
[30] |
ZHANG T W, SUN X, MILLIKEN K L, et al. Empirical relationship between gas composition and thermal maturity in Eagle Ford Shale, south Texas[J]. AAPG Bulletin, 2017, 101(8): 1277-1307.
DOI URL |
[31] |
WU C J, TUO J C, ZHANG M F, et al. Sedimentary and residual gas geochemical characteristics of the Lower Cambrian organic-rich shales in Southeastern Chongqing, China[J]. Marine and Petroleum Geology, 2016, 75: 140-150.
DOI URL |
[32] |
腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699.
DOI |
[33] |
DONG T, HE Q, HE S, et al. Quartz types, origins and organic matter-hosted pore systems in the lower Cambrian Niutitang Formation, middle Yangtze platform, China[J]. Marine and Petroleum Geology, 2021, 123: 104739.
DOI URL |
[34] |
ZHAO J H, JIN Z J, JIN Z K, et al. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2017, 86: 655-674.
DOI URL |
[35] | 赵建华, 金之钧. 泥岩成岩作用研究进展与展望[J]. 沉积学报, 2021, 39(1): 58-72. |
[36] | HEYDARI E, WADE W J. Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks: implications for organic acids as factors in diagenesis[J]. AAPG Bulletin, 2002, 86: (7): 1285-1303. |
[37] | 董春梅, 马存飞, 栾国强, 等. 泥页岩热模拟实验及成岩演化模式[J]. 沉积学报, 2015, 33(5): 1053-1061. |
[38] |
KROOSS B M, LITTKE R, MÜLLER B, et al. Generation of nitrogen and methane from sedimentary organic matter: implications on the dynamics of natural gas accumulations[J]. Chemical Geology, 1995, 126(3/4): 291-318.
DOI URL |
[39] | LITTKE R, KROOSS B M, IDIZ E, et al. Molecular nitrogen in natural gas accumulations: generation from sedimentary organic matter at high temperatures[J]. AAPG Bulletin, 1995, 79: (3): 410-430. |
[40] |
KROOSS B M, FRIBERG L, GENSTERBLUM Y, et al. Investigation of the pyrolytic liberation of molecular nitrogen from Palaeozoic sedimentary rocks[J]. International Journal of Earth Sciences, 2005, 94(5/6): 1023-1038.
DOI URL |
[41] |
GAI H F, TIAN H, CHENG P, et al. Characteristics of molecular nitrogen generation from overmature black shales in South China:preliminary implications from pyrolysis experiments[J]. Marine and Petroleum Geology, 2020, 120: 104527.
DOI URL |
[42] |
朱元强, 靳赛赛, 孙青青. N2在页岩干酪根上的吸附特征[J]. 计算物理, 2021, 38(6): 707-712.
DOI |
[43] | 石基弘, 陈诚, 巩亮, 等. 甲烷在干酪根中的吸附及扩散特性[J]. 工程热物理学报, 2019, 40(6): 1338-1343. |
[44] |
LI J J, YAN X T, WANG W M, et al. Key factors controlling the gas adsorption capacity of shale:a study based on parallel experiments[J]. Applied Geochemistry, 2015, 58: 88-96.
DOI URL |
[45] | 翟刚毅, 王玉芳, 夏响华, 等. 鄂西震旦系-寒武系页岩气富集规律及勘查关键技术[M]. 北京: 地质出版社, 2020. |
[46] |
FENG Z Q, DONG D Z, TIAN J Q, et al. Geochemical characteristics of Longmaxi Formation shale gas in the Weiyuan area, Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2018, 167: 538-548.
DOI URL |
[47] |
YANG R, HE S, HU Q H, et al. Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field, Sichuan Basin (China)[J]. International Journal of Coal Geology, 2017, 171: 1-11.
DOI URL |
[48] |
DAI J X, ZOU C N, DONG D Z, et al. Geochemical characteristics of marine and terrestrial shale gas in China[J]. Marine and Petroleum Geology, 2016, 76: 444-463.
DOI URL |
[49] |
DAI J X, NI Y Y, HUANG S P, et al. Secondary origin of negative carbon isotopic series in natural gas[J]. Journal of Natural Gas Geoscience, 2016, 1(1): 1-7.
DOI URL |
[50] |
CHEN Z P, CHEN L, WANG G C, et al. Applying isotopic geochemical proxy for gas content prediction of Longmaxi shale in the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 116: 104329.
DOI URL |
[51] | 何陈诚, 陈红汉, 肖雪薇, 等. 中-上扬子地区下寒武统筇竹寺阶泥页岩差异成气过程分析[J]. 地学前缘, 2023, 30(3): 44-65. |
[52] | 张金川, 薛会, 张德明, 等. 页岩气及其成藏机理[J]. 现代地质, 2003, 17(4): 466. |
[53] | 朱岳年. 天然气中N2的成因与富集[J]. 天然气工业, 1999, 19(3): 23-27. |
[54] |
何治亮, 陆建林, 林娟华, 等. 中国海相盆地原型-改造分析与油气有序聚集模式[J]. 地学前缘, 2022, 29(6): 60-72.
DOI |
[55] |
何登发. 中国多旋回叠合沉积盆地的形成演化、地质结构与油气分布规律[J]. 地学前缘, 2022, 29(6): 24-59.
DOI |
[56] | 罗胜元, 陈孝红, 李培军, 等. 鄂西宜昌地区寒武系常规、非常规天然气显示及勘探意义[J]. 地质通报, 2020, 39(4): 538-551. |
[57] |
BAO S J, ZHAI G Y, ZHOU Z, et al. The evolution of the Huangling uplift and its control on the accumulation and preservation of shale gas[J]. China Geology, 2018, 1(3): 346-353.
DOI URL |
[58] | 朱岳年. 天然气中分子氮成因及判识[J]. 石油大学学报(自然科学版), 1999(2): 23-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||