Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 327-339.DOI: 10.13745/j.esf.sf.2024.1.70
Previous Articles Next Articles
YANG Yiqing(), TAO Shizhen*(), CHEN Yue
Received:
2023-01-05
Revised:
2023-03-27
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
YANG Yiqing, TAO Shizhen, CHEN Yue. Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States[J]. Earth Science Frontiers, 2024, 31(1): 327-339.
气田类型 | 气田名称 | 所属盆地 | 天然气储量/(108m3) | 层位 | 平均氦含量/% | R/Ra |
---|---|---|---|---|---|---|
CO2气田 | Big Piney-La Barge | Green River盆地 | 48 988.1 | 密西西比系 | 0.50 | 0.050~0.070 |
McElmo Dome | Paradox盆地 | 8 495.1 | 密西西比系 | 0.20 | 0.057~0.215 | |
St. Johns | Holbrook盆地 | 2 520.2 | 二叠系 | 0.63 | 0.394~0.455 | |
Doe Canyon | Paradox盆地 | 1 444.2 | 密西西比系 | 0.78 | 0.150 | |
Sheep Mountain | Raton盆地 | 877.8 | 白垩系、侏罗系 | 0.10 | 0.963 | |
McCallum | North Park盆地 | 792.9 | 下白垩统 | 0.28 | 0.402 | |
Kevin Dome | Williston盆地 | 3 964.4 | 泥盆系 | 0.29 | ||
N2气田 | Pinta Dome | Holbrook盆地 | 1.85 (总产量) | 二叠系 | 7.20 | 0.20~0.22 |
Harley Dome | Unita-Piceance盆地 | 未完全开发 | 侏罗系 | 3.90 | 0.11 |
Table 1 Typical helium-rich abiotic natural gas fields in the United States (sourced from [4,12-13])
气田类型 | 气田名称 | 所属盆地 | 天然气储量/(108m3) | 层位 | 平均氦含量/% | R/Ra |
---|---|---|---|---|---|---|
CO2气田 | Big Piney-La Barge | Green River盆地 | 48 988.1 | 密西西比系 | 0.50 | 0.050~0.070 |
McElmo Dome | Paradox盆地 | 8 495.1 | 密西西比系 | 0.20 | 0.057~0.215 | |
St. Johns | Holbrook盆地 | 2 520.2 | 二叠系 | 0.63 | 0.394~0.455 | |
Doe Canyon | Paradox盆地 | 1 444.2 | 密西西比系 | 0.78 | 0.150 | |
Sheep Mountain | Raton盆地 | 877.8 | 白垩系、侏罗系 | 0.10 | 0.963 | |
McCallum | North Park盆地 | 792.9 | 下白垩统 | 0.28 | 0.402 | |
Kevin Dome | Williston盆地 | 3 964.4 | 泥盆系 | 0.29 | ||
N2气田 | Pinta Dome | Holbrook盆地 | 1.85 (总产量) | 二叠系 | 7.20 | 0.20~0.22 |
Harley Dome | Unita-Piceance盆地 | 未完全开发 | 侏罗系 | 3.90 | 0.11 |
Fig.1 (a) Distribution of major CO2 rich natural gas fields in the United States; (b) North American Craton and geotectonic units. Modified after [6,10].
气田参数 | 各气田参数情况 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
McElmo Dome | Doe Canyon | St. Johns | Big Piney-La Barge | |||||||
产区面积/km2 | 824.4 | 331.8 | 890.3 | 2 630.5 | ||||||
天然气储量/(108 m3) | 8 495.1 | 1 444.2 | 2 520.2 | 48 988.1 | ||||||
氦气储量/(108 m3) | 17.0 | 11.3 | 15.9 | 244.9 | ||||||
储层 | 密西西比纪Leadville 组白云岩, 三叠纪Shinarump组砾岩 | 密西西比纪Leadville 组石灰岩 | 二叠纪Supai组 Arkosic砂岩、 断裂的前寒武纪基底 | 密西西比纪Madison 组石灰岩、 白云岩、砂岩 | ||||||
平均深度/m | 2 000~2 545 | 2 730 | 462 | 4 750~5 500 | ||||||
产层厚度/m | 21~45 | 18 | 23 | 85 | ||||||
孔隙度/% | 3.5~25(平均11) | 10 | 10~15 | 6~12(平均9) | ||||||
渗透率/(10-3 μm2) | 23 | 10 | 10~50 | |||||||
圈闭类型 | 构造-岩性地层圈闭 | 构造圈闭 | 构造圈闭 | 构造圈闭 | ||||||
盖层 | Paradox组盐岩/ 硬石膏 | Paradox组盐岩/ 硬石膏 | 盐岩/硬石膏 | Sabkha砂砾岩、 喀斯特碎屑岩 | ||||||
气藏压力/psi | 2 580(497 m以深) | 3 960 | 508 | 6 585~7 625 | ||||||
所属盆地 | Paradox盆地 | Paradox盆地 | Holbrook盆地 | Green River盆地 | ||||||
采气方式 | 压力、较少水驱 | 气顶驱动 | 气顶驱动 | |||||||
He含量 | 0.20% | 0.78% | 0.63% | 0.50% | ||||||
R/Ra | 0.057~0.215 | 0.150 | 0.394~0.455 | 0.050~0.070 | ||||||
CO2含量 | 98.2% | 91.7% | 92.6% | 79.6% | ||||||
N2含量 | 1.6% | 6.1% | 6.5% | 4.8% | ||||||
CH4含量 | >0.2% | 1.2% | 0.05% | 12.7% |
Table 2 Basic information on major helium-rich CO2 natural gas fields in the United States. Compiled from [6,12].
气田参数 | 各气田参数情况 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
McElmo Dome | Doe Canyon | St. Johns | Big Piney-La Barge | |||||||
产区面积/km2 | 824.4 | 331.8 | 890.3 | 2 630.5 | ||||||
天然气储量/(108 m3) | 8 495.1 | 1 444.2 | 2 520.2 | 48 988.1 | ||||||
氦气储量/(108 m3) | 17.0 | 11.3 | 15.9 | 244.9 | ||||||
储层 | 密西西比纪Leadville 组白云岩, 三叠纪Shinarump组砾岩 | 密西西比纪Leadville 组石灰岩 | 二叠纪Supai组 Arkosic砂岩、 断裂的前寒武纪基底 | 密西西比纪Madison 组石灰岩、 白云岩、砂岩 | ||||||
平均深度/m | 2 000~2 545 | 2 730 | 462 | 4 750~5 500 | ||||||
产层厚度/m | 21~45 | 18 | 23 | 85 | ||||||
孔隙度/% | 3.5~25(平均11) | 10 | 10~15 | 6~12(平均9) | ||||||
渗透率/(10-3 μm2) | 23 | 10 | 10~50 | |||||||
圈闭类型 | 构造-岩性地层圈闭 | 构造圈闭 | 构造圈闭 | 构造圈闭 | ||||||
盖层 | Paradox组盐岩/ 硬石膏 | Paradox组盐岩/ 硬石膏 | 盐岩/硬石膏 | Sabkha砂砾岩、 喀斯特碎屑岩 | ||||||
气藏压力/psi | 2 580(497 m以深) | 3 960 | 508 | 6 585~7 625 | ||||||
所属盆地 | Paradox盆地 | Paradox盆地 | Holbrook盆地 | Green River盆地 | ||||||
采气方式 | 压力、较少水驱 | 气顶驱动 | 气顶驱动 | |||||||
He含量 | 0.20% | 0.78% | 0.63% | 0.50% | ||||||
R/Ra | 0.057~0.215 | 0.150 | 0.394~0.455 | 0.050~0.070 | ||||||
CO2含量 | 98.2% | 91.7% | 92.6% | 79.6% | ||||||
N2含量 | 1.6% | 6.1% | 6.5% | 4.8% | ||||||
CH4含量 | >0.2% | 1.2% | 0.05% | 12.7% |
Fig.3 (a) Helium-rich gas fields and helium content in the northern Colorado Plateau, United States, and (b) top surface map of the Leadville limestone at McElmo Dome gas field. Modified after [4,12].
Fig.5 He-rich Permian Supai formation in the St. Johns Dome gas field. (a) Top surface map. (b) Logging results from well 22-1X. Modified after [4,17].
Fig.6 Big Piney-La Barge gas field. (a) Tectonic location. (b) Top surface map of the Madison Formation overlaying with CO2 contour map. (c) Lithologic of the Green River basin strata. Modified after [12,20].
气田参数 | 气田参数情况 | ||||
---|---|---|---|---|---|
Pinta Dome | Harley Dome | ||||
产区面积/km2 | 19.9 | 1.3 | |||
储层 | 二叠纪Coconino砂岩 | 侏罗纪Entrada砂岩 | |||
深度/m | 311~334 | 236 | |||
产层厚度/m | 21 | 27 | |||
孔隙度/% | 14 | ||||
渗透率/(10-3 μm2) | 110 | 低 | |||
圈闭类型 | 地层-构造圈闭 | 构造圈闭 | |||
盖层 | Moenkopi组页岩 | Mancos组页岩 | |||
气藏压力/psi | 124 | 154 | |||
所属盆地 | Holbrook盆地 | Unita-Piceance盆地 | |||
采气方式 | 气顶驱动 | ||||
He含量/% | 地区平均7.2 生产井平均8.5 | 地区平均3.9 生产井平均7 | |||
R/Ra | 0.20~0.22 | 0.11 | |||
CO2含量/% | 0.46 | 0.50 | |||
N2含量/% | 90.0 | 62.1 | |||
CH4含量/% | 0.22 | 31.50 |
Table 3 Basic information on major helium-rich NG natural gas fields in the United States. Complied from [5,12-13,23].
气田参数 | 气田参数情况 | ||||
---|---|---|---|---|---|
Pinta Dome | Harley Dome | ||||
产区面积/km2 | 19.9 | 1.3 | |||
储层 | 二叠纪Coconino砂岩 | 侏罗纪Entrada砂岩 | |||
深度/m | 311~334 | 236 | |||
产层厚度/m | 21 | 27 | |||
孔隙度/% | 14 | ||||
渗透率/(10-3 μm2) | 110 | 低 | |||
圈闭类型 | 地层-构造圈闭 | 构造圈闭 | |||
盖层 | Moenkopi组页岩 | Mancos组页岩 | |||
气藏压力/psi | 124 | 154 | |||
所属盆地 | Holbrook盆地 | Unita-Piceance盆地 | |||
采气方式 | 气顶驱动 | ||||
He含量/% | 地区平均7.2 生产井平均8.5 | 地区平均3.9 生产井平均7 | |||
R/Ra | 0.20~0.22 | 0.11 | |||
CO2含量/% | 0.46 | 0.50 | |||
N2含量/% | 90.0 | 62.1 | |||
CH4含量/% | 0.22 | 31.50 |
δ15N/‰ | 天然气中可能的N2来源 |
---|---|
-19~19 | 成熟和低成熟的沉积有机质 |
-2~10 | 成熟的沉积有机质 |
+1~+2 | 深部壳源或幔源 |
0(N2/Ar为38~84) | 大气来源 |
+1~+4 | 变质产生的含铵盐黏土矿物 |
+4~+18 | 高成熟的沉积有机质 |
Table 4 Classification of probable N2 sources in natural gas fields based on δ15N values. Compiled from [27].
δ15N/‰ | 天然气中可能的N2来源 |
---|---|
-19~19 | 成熟和低成熟的沉积有机质 |
-2~10 | 成熟的沉积有机质 |
+1~+2 | 深部壳源或幔源 |
0(N2/Ar为38~84) | 大气来源 |
+1~+4 | 变质产生的含铵盐黏土矿物 |
+4~+18 | 高成熟的沉积有机质 |
[1] |
CADY H P, MCFARLAND D F. The occurrence of helium in natural gas and the composition of natural gas[J]. The occurrence of helium in natural gas and the composition of natural gas[J]. Journal of the American Chemical Society, 1907, 29(11): 1523-1536.
DOI URL |
[2] |
BALLENTINE C J, LOLLAR B S. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA[J]. Geochimica et Cosmochimica Acta, 2002, 66(14): 2483-2497.
DOI URL |
[3] | DANABALAN D. Helium: exploration methodology for a strategic resource[D]. Durham: Durham University, 2017. |
[4] |
GILFILLAN S M V, BALLENTINE C J, HOLLAND G, et al. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1174-1198.
DOI URL |
[5] | WISEMAN T, ECKELS M T. Proven and hypothetical helium resources in Utah[R/OL]. (2020-06-29) [2024-01-09]. https://doi.org/10.34191/mp-174. |
[6] | NICHOLS C, EPPINK J, HEIDRICK T L, et al. Subsurface sources of CO2 in the contiguous United States[R/OL]. (2014-03-05) [2024-01-09]. https://doi.org/10.2172/1503261. |
[7] |
DUMITRU T A, DUDDY I R, GREEN P F. Mesozoic-Cenozoic burial, uplift, and erosion history of the west-central Colorado Plateau[J]. Geology, 1994, 22: 499-4502.
DOI URL |
[8] |
ALLEN P A, VERLANDER J A, BURGESS P M, et al. Jurassic giant erg deposits, flexure of the US continental interior, and the timing of the onset of cordilleran shortening[J]. Geology, 2000, 28: 159-162.
DOI URL |
[9] | BLAKEY R C. Pennsylvanian-Jurassic sedimentary basins of the Colorado Plateau and southern Rocky Mountains[J]. Sedimentary Basins of the World, 2008, 5: 245-296. |
[10] | ANDREW D M. The sedimentary basins of the United States and Canada[M]//BURGESS P M. Phanerozoic evolution of the sedimentary cover of the North American Craton. 2nd ed. Amsterdam: Elsevier, 2019: 39-75. |
[11] | HOUSTONG W S, WRAY L L, MORELAND P G. The Paradox Basin Revisited-new developments in petroleum systems and basin analysis[M]//KLUTH C F, DUCHENE H R. Late Pennsylvanian and Early Permian structural geology and tectonic history of the Paradox Basin and Uncompahgre uplift, Colorado and Utah. Denver: RMAG, 2009: 178-197. |
[12] | TEDESCO S A. Geology and production of helium and associated gases[M]. Amsterdam: Elsevier, 2022. |
[13] | BRENNAN S T, EAST J A, DENNEN K O, et al. Dataset of helium concentrations in United States wells: US Geological Survey Data Release[R/OL]. (2021-05-18) [2024-01-09]. https://doi.org/10.5066/P92QL79J. |
[14] | ADAMS J G, GONZALES D, DARRAH T. Application of noble gas isotopic signatures at McElmo Dome-Doe Canyon field to investigate CO2 source and system characterization[C/OL]// AAPG annual convention and exhibition 2015, Denver: Rocky Mountain association of geologists, 2015. https://www.searchanddiscovery.com/abstracts/html/2015/90216ace/abstracts/2095645.html |
[15] | CAPPA J A, RICE D D. Carbon dioxide in Mississippian rocks of the Paradox Basin and adjacent areas, Colorado, Utah, New Mexico, and Arizona[R]. Denver: USGPO; US Geological Survey Information Services, 1995. |
[16] | STEVENS S H, TYE B S. Natural CO2 analogs for carbon sequestration[R/OL]. (2005-07-31) [2024-01-09]. https://doi.org/10.2172/902517. |
[17] | RAUZI S L. Carbon dioxide in the St. John's Springerville area, Apache county, Arizona[R]. Tucson: Arizona Geological Survey, 1999. |
[18] |
KIPFER R, AESCHBACH-HERTIG W, PEETERS F, et al. Noble gas in lakes and ground waters[J]. Review in Mineralogy and Geochemistry, 2002, 47: 615-689.
DOI URL |
[19] |
BECKER T P, LYNDS R. A geologic deconstruction of one of the world's largest natural accumulations of CO2, Moxa arch, southwestern Wyoming[J]. AAPG Bulletin, 2012, 96(9): 1643-1664.
DOI URL |
[20] | STILWELL D P. CO2 resources of the Moxa arch and the Madison reservoir[C]// Gas resources of Wyoming; 40th annual field conference guidebook, Casper: Wyoming Geological Association, 1989: 105-115. |
[21] | MERRILL M D, HUNT A. Updated regional and field scale He accumulation geochemistry, La Barge Platform, WY[C/OL]// AAPG Rocky Mountain section annual meeting 2017, Billings: Montana Geological Society, 2017. https://www.searchanddiscovery.com/pdfz/abstracts/pdf/2017/90301rms/abstracts/ndx_merrill.pdf.html. |
[22] | RAUZI S L. Review of helium production and potential in Arizona[R]. Tucson: Arizona Geological Survey, 2003. |
[23] | MCDOWELL B, MIL KOV A V, ANDERSON D S. The helium system: a modification of the petroleum system for inert gases[C/OL]// AAPG annual convention and exhibition 2017. Houston: American Association of Petroleum Geologists, 2017. https://www.searchanddiscovery.com/abstracts/html/2017/90291ace/abstracts/2612903.html. |
[24] | USGS Uinta-Piceance Assessment Team. Petroleum systems and geologic assessment of oil and gas in the Uinta-Piceance province, Utah and Colorado[M/OL]//JOHNSON R C, ROBERTS S B. The Mesaverde total petroleum system, Uinta-Piceance province, Utah and Colorado. Denver: USGS Digital Data Series DDS-69-B, 2003. https://pubs.usgs.gov/dds/dds-069/dds-069-b/REPORTS/Chapter_7.pdf. |
[25] | CASE J E. Geologic map of the Northwestern part of the Uncompahgre uplift, Grand county, Utah, and Mesa county, Colorado, with Emphasis on Proterozoic rocks[R/OL]. (1991) [2024-01-09]. https://doi.org/10.3133/i2088. |
[26] | HALFORD D T. Isotopic analyses of helium from wells located in the Four Corners area, Southwestern, US[D]. Golden: Colorado School of Mines, 2018. |
[27] |
ZHU Y, SHI B, FANG C. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations[J]. Chemical Geology, 2000, 164(3/4): 321-330.
DOI URL |
[28] | HOLLOWAY J M, DAHLGREN R A. Nitrogen in rock: occurrences and biochemical implications[J]. Global Biogeochemical Cycles, 2002, 16 (4): 65-1-65-17. |
[29] | BROWN A A. PS Formation of high helium gases: A guide for explorationists[C]// AAPG annual convention and exhibition 2010, New Orleans: American association of petroleum geologists, 2010. https://www.searchanddiscovery.com/pdfz/documents/2010/80115brown/ndx_brown.pdf.html. |
[30] | BROWN A A. Possible origins for low thermal maturity, high-nitrogen natural gases[J]. Geochemistry, 2017, 47: 481-538. |
[31] |
BOUDOU J, ESPITALIE J. Molecular nitrogen from coal pyrolysis: kinetic modelling[J]. Chemical Geology, 1995, 126(3/4): 319-333.
DOI URL |
[32] |
ADER M, BOUDOU J P, JAVOY M, et al. Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (USA) and from the Bramsche Massif (Germany)[J]. Organic Geochemistry, 1998, 29(1/2/3): 315-323.
DOI URL |
[33] |
BROWN A A. Origin of helium and nitrogen in the Panhandle-Hugoton field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin, 2019, 103(2): 369-403.
DOI URL |
[34] | JENDEN P D, KAPLAN I R. Origin of natural gas in Sacramento basin, California[J]. AAPG Bulletin, 1989, 73(4): 431-453. |
[35] | CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. New York: CRC Press, 2013. |
[1] | WU Yiping, WANG Qing, TAO Shizhen, WANG Jianjun, LI Qian, ZHANG Ningning, WU Xiaozhi, LI Haowu, WANG Xiaobo. Crustal helium: Accumulation controlling factors and resource evaluation methods [J]. Earth Science Frontiers, 2024, 31(1): 340-350. |
[2] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[3] | HOU Fanghui, ZHU Xiaoqing, ZHANG Xunhua, WU Zhiqiang, GUO Xingwei, QI Jianghao, WEN Zhenhe, WANG Baojun, MENG Xiangjun. Basic geological characteristics of the East China Sea region and geological-geophysical characterization of some important tectonic boundaries in the region [J]. Earth Science Frontiers, 2022, 29(2): 281-293. |
[4] | XIA Xiangbiao, LI Guangming, ZHANG Linkui, ZHANG Zhi, CAO Huawen, LIANG Wei. Geological characteristics of and prospecting strategy for the Xianglin Be-Sn polymetallic ore deposit in the Cuonadong gneiss dome in southern Tibet [J]. Earth Science Frontiers, 2022, 29(1): 93-106. |
[5] | ZHOU Zhenhua, MAO Jingwen. Metallogenic patterns and ore deposit model of the tin polymetallic deposits in the southern segment of Great Xing’an Range [J]. Earth Science Frontiers, 2022, 29(1): 176-199. |
[6] | XIAO Xiaoniu, XIAO E, CHEN Zhenning, GONG Bin, JU Weiwei. Geochronology, geochemistry and geological characteristics of granites from the Meixian zinc-lead polymetallic deposit in central Fujian Province [J]. Earth Science Frontiers, 2020, 27(4): 158-171. |
[7] | REN Zhi, ZHOU Taofa, YUAN Feng, ZHANG Huaidong. Characteristics of the metallogenic system of the Shapinggou super-large porphyry molybdenum deposit in the Dabie orogenic belt, Anhui Province [J]. Earth Science Frontiers, 2020, 27(2): 353-372. |
[8] | HOU Zengqian, YANG Zhiming, WANG Rui, ZHENG Yuanchuan. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland [J]. Earth Science Frontiers, 2020, 27(2): 20-44. |
[9] | CHEN Lei,SHAO Pei,XIONG Wuhou,QI Wenqiang,ZHANG Shijia,ZHANG Zhanxian. Discussion on distribution and occurrence mechanism of gallium in the Middle Jurassic coalbearing strata of the eastern Junggar coalfield, Xinjiang. [J]. Earth Science Frontiers, 2018, 25(4): 76-85. |
[10] | CAO Ye,TANG Yao,YAO Meijuan,SHANG Pengqiang,ZOU Zhendong,QIU Guoyu,XIONG Xianxiao. Geological characteristics and resource potential analysis of sulfur deposits in China. [J]. Earth Science Frontiers, 2018, 25(3): 179-195. |
[11] | WANG Jiping,ZHU Jingbin,LI Jing,SHANG Pengqiang,XIONG Xianxiao,GAO Yongzhang,ZHANG Hao,ZHANG Yang,QI Caiji,ZHU Yannong. Prediction model and resources potential analysis of fluorite deposits in China. [J]. Earth Science Frontiers, 2018, 25(3): 172-178. |
[12] | SUN Penghui,LI Jingchao,XIAO Keyan,LIU Changchun. Metallogenic and geological characteristics and resource potential of magnesite resources in China. [J]. Earth Science Frontiers, 2018, 25(3): 159-171. |
[13] | LI Tongfei,XIA Qinglin,WANG Xinqing,LIU Yue,CHANG Liheng,LENG Shuai. Metallogenic geological characteristics and mineral resource potential analysis of rare earth element resources in China. [J]. Earth Science Frontiers, 2018, 25(3): 95-106. |
[14] | NIU Cuiyi,LIU Yang,ZHANG Dai. Metallogenic geological features, prediction models and resources potential of gold deposits in China. [J]. Earth Science Frontiers, 2018, 25(3): 1-12. |
[15] | . Geological characteristics of the “sweet spot” of Permian coal bed methane exploitation in the eastern margin of the Ordos Basin. [J]. Earth Science Frontiers, 2011, 18(4): 219-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||