Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 327-339.DOI: 10.13745/j.esf.sf.2024.1.70
Previous Articles Next Articles
YANG Yiqing(), TAO Shizhen*(
), CHEN Yue
Received:
2023-01-05
Revised:
2023-03-27
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
YANG Yiqing, TAO Shizhen, CHEN Yue. Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States[J]. Earth Science Frontiers, 2024, 31(1): 327-339.
气田类型 | 气田名称 | 所属盆地 | 天然气储量/(108m3) | 层位 | 平均氦含量/% | R/Ra |
---|---|---|---|---|---|---|
CO2气田 | Big Piney-La Barge | Green River盆地 | 48 988.1 | 密西西比系 | 0.50 | 0.050~0.070 |
McElmo Dome | Paradox盆地 | 8 495.1 | 密西西比系 | 0.20 | 0.057~0.215 | |
St. Johns | Holbrook盆地 | 2 520.2 | 二叠系 | 0.63 | 0.394~0.455 | |
Doe Canyon | Paradox盆地 | 1 444.2 | 密西西比系 | 0.78 | 0.150 | |
Sheep Mountain | Raton盆地 | 877.8 | 白垩系、侏罗系 | 0.10 | 0.963 | |
McCallum | North Park盆地 | 792.9 | 下白垩统 | 0.28 | 0.402 | |
Kevin Dome | Williston盆地 | 3 964.4 | 泥盆系 | 0.29 | ||
N2气田 | Pinta Dome | Holbrook盆地 | 1.85 (总产量) | 二叠系 | 7.20 | 0.20~0.22 |
Harley Dome | Unita-Piceance盆地 | 未完全开发 | 侏罗系 | 3.90 | 0.11 |
Table 1 Typical helium-rich abiotic natural gas fields in the United States (sourced from [4,12-13])
气田类型 | 气田名称 | 所属盆地 | 天然气储量/(108m3) | 层位 | 平均氦含量/% | R/Ra |
---|---|---|---|---|---|---|
CO2气田 | Big Piney-La Barge | Green River盆地 | 48 988.1 | 密西西比系 | 0.50 | 0.050~0.070 |
McElmo Dome | Paradox盆地 | 8 495.1 | 密西西比系 | 0.20 | 0.057~0.215 | |
St. Johns | Holbrook盆地 | 2 520.2 | 二叠系 | 0.63 | 0.394~0.455 | |
Doe Canyon | Paradox盆地 | 1 444.2 | 密西西比系 | 0.78 | 0.150 | |
Sheep Mountain | Raton盆地 | 877.8 | 白垩系、侏罗系 | 0.10 | 0.963 | |
McCallum | North Park盆地 | 792.9 | 下白垩统 | 0.28 | 0.402 | |
Kevin Dome | Williston盆地 | 3 964.4 | 泥盆系 | 0.29 | ||
N2气田 | Pinta Dome | Holbrook盆地 | 1.85 (总产量) | 二叠系 | 7.20 | 0.20~0.22 |
Harley Dome | Unita-Piceance盆地 | 未完全开发 | 侏罗系 | 3.90 | 0.11 |
Fig.1 (a) Distribution of major CO2 rich natural gas fields in the United States; (b) North American Craton and geotectonic units. Modified after [6,10].
气田参数 | 各气田参数情况 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
McElmo Dome | Doe Canyon | St. Johns | Big Piney-La Barge | |||||||
产区面积/km2 | 824.4 | 331.8 | 890.3 | 2 630.5 | ||||||
天然气储量/(108 m3) | 8 495.1 | 1 444.2 | 2 520.2 | 48 988.1 | ||||||
氦气储量/(108 m3) | 17.0 | 11.3 | 15.9 | 244.9 | ||||||
储层 | 密西西比纪Leadville 组白云岩, 三叠纪Shinarump组砾岩 | 密西西比纪Leadville 组石灰岩 | 二叠纪Supai组 Arkosic砂岩、 断裂的前寒武纪基底 | 密西西比纪Madison 组石灰岩、 白云岩、砂岩 | ||||||
平均深度/m | 2 000~2 545 | 2 730 | 462 | 4 750~5 500 | ||||||
产层厚度/m | 21~45 | 18 | 23 | 85 | ||||||
孔隙度/% | 3.5~25(平均11) | 10 | 10~15 | 6~12(平均9) | ||||||
渗透率/(10-3 μm2) | 23 | 10 | 10~50 | |||||||
圈闭类型 | 构造-岩性地层圈闭 | 构造圈闭 | 构造圈闭 | 构造圈闭 | ||||||
盖层 | Paradox组盐岩/ 硬石膏 | Paradox组盐岩/ 硬石膏 | 盐岩/硬石膏 | Sabkha砂砾岩、 喀斯特碎屑岩 | ||||||
气藏压力/psi | 2 580(497 m以深) | 3 960 | 508 | 6 585~7 625 | ||||||
所属盆地 | Paradox盆地 | Paradox盆地 | Holbrook盆地 | Green River盆地 | ||||||
采气方式 | 压力、较少水驱 | 气顶驱动 | 气顶驱动 | |||||||
He含量 | 0.20% | 0.78% | 0.63% | 0.50% | ||||||
R/Ra | 0.057~0.215 | 0.150 | 0.394~0.455 | 0.050~0.070 | ||||||
CO2含量 | 98.2% | 91.7% | 92.6% | 79.6% | ||||||
N2含量 | 1.6% | 6.1% | 6.5% | 4.8% | ||||||
CH4含量 | >0.2% | 1.2% | 0.05% | 12.7% |
Table 2 Basic information on major helium-rich CO2 natural gas fields in the United States. Compiled from [6,12].
气田参数 | 各气田参数情况 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
McElmo Dome | Doe Canyon | St. Johns | Big Piney-La Barge | |||||||
产区面积/km2 | 824.4 | 331.8 | 890.3 | 2 630.5 | ||||||
天然气储量/(108 m3) | 8 495.1 | 1 444.2 | 2 520.2 | 48 988.1 | ||||||
氦气储量/(108 m3) | 17.0 | 11.3 | 15.9 | 244.9 | ||||||
储层 | 密西西比纪Leadville 组白云岩, 三叠纪Shinarump组砾岩 | 密西西比纪Leadville 组石灰岩 | 二叠纪Supai组 Arkosic砂岩、 断裂的前寒武纪基底 | 密西西比纪Madison 组石灰岩、 白云岩、砂岩 | ||||||
平均深度/m | 2 000~2 545 | 2 730 | 462 | 4 750~5 500 | ||||||
产层厚度/m | 21~45 | 18 | 23 | 85 | ||||||
孔隙度/% | 3.5~25(平均11) | 10 | 10~15 | 6~12(平均9) | ||||||
渗透率/(10-3 μm2) | 23 | 10 | 10~50 | |||||||
圈闭类型 | 构造-岩性地层圈闭 | 构造圈闭 | 构造圈闭 | 构造圈闭 | ||||||
盖层 | Paradox组盐岩/ 硬石膏 | Paradox组盐岩/ 硬石膏 | 盐岩/硬石膏 | Sabkha砂砾岩、 喀斯特碎屑岩 | ||||||
气藏压力/psi | 2 580(497 m以深) | 3 960 | 508 | 6 585~7 625 | ||||||
所属盆地 | Paradox盆地 | Paradox盆地 | Holbrook盆地 | Green River盆地 | ||||||
采气方式 | 压力、较少水驱 | 气顶驱动 | 气顶驱动 | |||||||
He含量 | 0.20% | 0.78% | 0.63% | 0.50% | ||||||
R/Ra | 0.057~0.215 | 0.150 | 0.394~0.455 | 0.050~0.070 | ||||||
CO2含量 | 98.2% | 91.7% | 92.6% | 79.6% | ||||||
N2含量 | 1.6% | 6.1% | 6.5% | 4.8% | ||||||
CH4含量 | >0.2% | 1.2% | 0.05% | 12.7% |
Fig.3 (a) Helium-rich gas fields and helium content in the northern Colorado Plateau, United States, and (b) top surface map of the Leadville limestone at McElmo Dome gas field. Modified after [4,12].
Fig.5 He-rich Permian Supai formation in the St. Johns Dome gas field. (a) Top surface map. (b) Logging results from well 22-1X. Modified after [4,17].
Fig.6 Big Piney-La Barge gas field. (a) Tectonic location. (b) Top surface map of the Madison Formation overlaying with CO2 contour map. (c) Lithologic of the Green River basin strata. Modified after [12,20].
气田参数 | 气田参数情况 | ||||
---|---|---|---|---|---|
Pinta Dome | Harley Dome | ||||
产区面积/km2 | 19.9 | 1.3 | |||
储层 | 二叠纪Coconino砂岩 | 侏罗纪Entrada砂岩 | |||
深度/m | 311~334 | 236 | |||
产层厚度/m | 21 | 27 | |||
孔隙度/% | 14 | ||||
渗透率/(10-3 μm2) | 110 | 低 | |||
圈闭类型 | 地层-构造圈闭 | 构造圈闭 | |||
盖层 | Moenkopi组页岩 | Mancos组页岩 | |||
气藏压力/psi | 124 | 154 | |||
所属盆地 | Holbrook盆地 | Unita-Piceance盆地 | |||
采气方式 | 气顶驱动 | ||||
He含量/% | 地区平均7.2 生产井平均8.5 | 地区平均3.9 生产井平均7 | |||
R/Ra | 0.20~0.22 | 0.11 | |||
CO2含量/% | 0.46 | 0.50 | |||
N2含量/% | 90.0 | 62.1 | |||
CH4含量/% | 0.22 | 31.50 |
Table 3 Basic information on major helium-rich NG natural gas fields in the United States. Complied from [5,12-13,23].
气田参数 | 气田参数情况 | ||||
---|---|---|---|---|---|
Pinta Dome | Harley Dome | ||||
产区面积/km2 | 19.9 | 1.3 | |||
储层 | 二叠纪Coconino砂岩 | 侏罗纪Entrada砂岩 | |||
深度/m | 311~334 | 236 | |||
产层厚度/m | 21 | 27 | |||
孔隙度/% | 14 | ||||
渗透率/(10-3 μm2) | 110 | 低 | |||
圈闭类型 | 地层-构造圈闭 | 构造圈闭 | |||
盖层 | Moenkopi组页岩 | Mancos组页岩 | |||
气藏压力/psi | 124 | 154 | |||
所属盆地 | Holbrook盆地 | Unita-Piceance盆地 | |||
采气方式 | 气顶驱动 | ||||
He含量/% | 地区平均7.2 生产井平均8.5 | 地区平均3.9 生产井平均7 | |||
R/Ra | 0.20~0.22 | 0.11 | |||
CO2含量/% | 0.46 | 0.50 | |||
N2含量/% | 90.0 | 62.1 | |||
CH4含量/% | 0.22 | 31.50 |
δ15N/‰ | 天然气中可能的N2来源 |
---|---|
-19~19 | 成熟和低成熟的沉积有机质 |
-2~10 | 成熟的沉积有机质 |
+1~+2 | 深部壳源或幔源 |
0(N2/Ar为38~84) | 大气来源 |
+1~+4 | 变质产生的含铵盐黏土矿物 |
+4~+18 | 高成熟的沉积有机质 |
Table 4 Classification of probable N2 sources in natural gas fields based on δ15N values. Compiled from [27].
δ15N/‰ | 天然气中可能的N2来源 |
---|---|
-19~19 | 成熟和低成熟的沉积有机质 |
-2~10 | 成熟的沉积有机质 |
+1~+2 | 深部壳源或幔源 |
0(N2/Ar为38~84) | 大气来源 |
+1~+4 | 变质产生的含铵盐黏土矿物 |
+4~+18 | 高成熟的沉积有机质 |
[1] |
CADY H P, MCFARLAND D F. The occurrence of helium in natural gas and the composition of natural gas[J]. The occurrence of helium in natural gas and the composition of natural gas[J]. Journal of the American Chemical Society, 1907, 29(11): 1523-1536.
DOI URL |
[2] |
BALLENTINE C J, LOLLAR B S. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA[J]. Geochimica et Cosmochimica Acta, 2002, 66(14): 2483-2497.
DOI URL |
[3] | DANABALAN D. Helium: exploration methodology for a strategic resource[D]. Durham: Durham University, 2017. |
[4] |
GILFILLAN S M V, BALLENTINE C J, HOLLAND G, et al. The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1174-1198.
DOI URL |
[5] | WISEMAN T, ECKELS M T. Proven and hypothetical helium resources in Utah[R/OL]. (2020-06-29) [2024-01-09]. https://doi.org/10.34191/mp-174. |
[6] | NICHOLS C, EPPINK J, HEIDRICK T L, et al. Subsurface sources of CO2 in the contiguous United States[R/OL]. (2014-03-05) [2024-01-09]. https://doi.org/10.2172/1503261. |
[7] |
DUMITRU T A, DUDDY I R, GREEN P F. Mesozoic-Cenozoic burial, uplift, and erosion history of the west-central Colorado Plateau[J]. Geology, 1994, 22: 499-4502.
DOI URL |
[8] |
ALLEN P A, VERLANDER J A, BURGESS P M, et al. Jurassic giant erg deposits, flexure of the US continental interior, and the timing of the onset of cordilleran shortening[J]. Geology, 2000, 28: 159-162.
DOI URL |
[9] | BLAKEY R C. Pennsylvanian-Jurassic sedimentary basins of the Colorado Plateau and southern Rocky Mountains[J]. Sedimentary Basins of the World, 2008, 5: 245-296. |
[10] | ANDREW D M. The sedimentary basins of the United States and Canada[M]//BURGESS P M. Phanerozoic evolution of the sedimentary cover of the North American Craton. 2nd ed. Amsterdam: Elsevier, 2019: 39-75. |
[11] | HOUSTONG W S, WRAY L L, MORELAND P G. The Paradox Basin Revisited-new developments in petroleum systems and basin analysis[M]//KLUTH C F, DUCHENE H R. Late Pennsylvanian and Early Permian structural geology and tectonic history of the Paradox Basin and Uncompahgre uplift, Colorado and Utah. Denver: RMAG, 2009: 178-197. |
[12] | TEDESCO S A. Geology and production of helium and associated gases[M]. Amsterdam: Elsevier, 2022. |
[13] | BRENNAN S T, EAST J A, DENNEN K O, et al. Dataset of helium concentrations in United States wells: US Geological Survey Data Release[R/OL]. (2021-05-18) [2024-01-09]. https://doi.org/10.5066/P92QL79J. |
[14] | ADAMS J G, GONZALES D, DARRAH T. Application of noble gas isotopic signatures at McElmo Dome-Doe Canyon field to investigate CO2 source and system characterization[C/OL]// AAPG annual convention and exhibition 2015, Denver: Rocky Mountain association of geologists, 2015. https://www.searchanddiscovery.com/abstracts/html/2015/90216ace/abstracts/2095645.html |
[15] | CAPPA J A, RICE D D. Carbon dioxide in Mississippian rocks of the Paradox Basin and adjacent areas, Colorado, Utah, New Mexico, and Arizona[R]. Denver: USGPO; US Geological Survey Information Services, 1995. |
[16] | STEVENS S H, TYE B S. Natural CO2 analogs for carbon sequestration[R/OL]. (2005-07-31) [2024-01-09]. https://doi.org/10.2172/902517. |
[17] | RAUZI S L. Carbon dioxide in the St. John's Springerville area, Apache county, Arizona[R]. Tucson: Arizona Geological Survey, 1999. |
[18] |
KIPFER R, AESCHBACH-HERTIG W, PEETERS F, et al. Noble gas in lakes and ground waters[J]. Review in Mineralogy and Geochemistry, 2002, 47: 615-689.
DOI URL |
[19] |
BECKER T P, LYNDS R. A geologic deconstruction of one of the world's largest natural accumulations of CO2, Moxa arch, southwestern Wyoming[J]. AAPG Bulletin, 2012, 96(9): 1643-1664.
DOI URL |
[20] | STILWELL D P. CO2 resources of the Moxa arch and the Madison reservoir[C]// Gas resources of Wyoming; 40th annual field conference guidebook, Casper: Wyoming Geological Association, 1989: 105-115. |
[21] | MERRILL M D, HUNT A. Updated regional and field scale He accumulation geochemistry, La Barge Platform, WY[C/OL]// AAPG Rocky Mountain section annual meeting 2017, Billings: Montana Geological Society, 2017. https://www.searchanddiscovery.com/pdfz/abstracts/pdf/2017/90301rms/abstracts/ndx_merrill.pdf.html. |
[22] | RAUZI S L. Review of helium production and potential in Arizona[R]. Tucson: Arizona Geological Survey, 2003. |
[23] | MCDOWELL B, MIL KOV A V, ANDERSON D S. The helium system: a modification of the petroleum system for inert gases[C/OL]// AAPG annual convention and exhibition 2017. Houston: American Association of Petroleum Geologists, 2017. https://www.searchanddiscovery.com/abstracts/html/2017/90291ace/abstracts/2612903.html. |
[24] | USGS Uinta-Piceance Assessment Team. Petroleum systems and geologic assessment of oil and gas in the Uinta-Piceance province, Utah and Colorado[M/OL]//JOHNSON R C, ROBERTS S B. The Mesaverde total petroleum system, Uinta-Piceance province, Utah and Colorado. Denver: USGS Digital Data Series DDS-69-B, 2003. https://pubs.usgs.gov/dds/dds-069/dds-069-b/REPORTS/Chapter_7.pdf. |
[25] | CASE J E. Geologic map of the Northwestern part of the Uncompahgre uplift, Grand county, Utah, and Mesa county, Colorado, with Emphasis on Proterozoic rocks[R/OL]. (1991) [2024-01-09]. https://doi.org/10.3133/i2088. |
[26] | HALFORD D T. Isotopic analyses of helium from wells located in the Four Corners area, Southwestern, US[D]. Golden: Colorado School of Mines, 2018. |
[27] |
ZHU Y, SHI B, FANG C. The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations[J]. Chemical Geology, 2000, 164(3/4): 321-330.
DOI URL |
[28] | HOLLOWAY J M, DAHLGREN R A. Nitrogen in rock: occurrences and biochemical implications[J]. Global Biogeochemical Cycles, 2002, 16 (4): 65-1-65-17. |
[29] | BROWN A A. PS Formation of high helium gases: A guide for explorationists[C]// AAPG annual convention and exhibition 2010, New Orleans: American association of petroleum geologists, 2010. https://www.searchanddiscovery.com/pdfz/documents/2010/80115brown/ndx_brown.pdf.html. |
[30] | BROWN A A. Possible origins for low thermal maturity, high-nitrogen natural gases[J]. Geochemistry, 2017, 47: 481-538. |
[31] |
BOUDOU J, ESPITALIE J. Molecular nitrogen from coal pyrolysis: kinetic modelling[J]. Chemical Geology, 1995, 126(3/4): 319-333.
DOI URL |
[32] |
ADER M, BOUDOU J P, JAVOY M, et al. Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (USA) and from the Bramsche Massif (Germany)[J]. Organic Geochemistry, 1998, 29(1/2/3): 315-323.
DOI URL |
[33] |
BROWN A A. Origin of helium and nitrogen in the Panhandle-Hugoton field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin, 2019, 103(2): 369-403.
DOI URL |
[34] | JENDEN P D, KAPLAN I R. Origin of natural gas in Sacramento basin, California[J]. AAPG Bulletin, 1989, 73(4): 431-453. |
[35] | CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. New York: CRC Press, 2013. |
[1] | DOU Lirong, HUANG Wensong, KONG Xiangwen, WANG Ping, ZHAO Zibin. Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin [J]. Earth Science Frontiers, 2024, 31(4): 191-205. |
[2] | ZHANG Qidao, LI Dezong, LI Zhiwei, WANG Donghui, YU Yifan, ZHU Xingqiang, CAI Quanyu, LI Ming. Geochemical characteristics and genesis of lithium rich clay rocks in the Pudi area of northwestern Guizhou [J]. Earth Science Frontiers, 2024, 31(4): 258-280. |
[3] | WU Yiping, WANG Qing, TAO Shizhen, WANG Jianjun, LI Qian, ZHANG Ningning, WU Xiaozhi, LI Haowu, WANG Xiaobo. Crustal helium: Accumulation controlling factors and resource evaluation methods [J]. Earth Science Frontiers, 2024, 31(1): 340-350. |
[4] | TAO Shizhen, WU Yiping, TAO Xiaowan, WANG Xiaobo, WANG Qing, CHEN Sheng, GAO Jianrong, WU Xiaozhi, LIU-SHEN Aoyi, SONG Lianteng, CHEN Rong, LI Qian, YANG Yiqing, CHEN Yue, CHEN Xiuyan, CHEN Yanyan, QI Wen. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain [J]. Earth Science Frontiers, 2024, 31(1): 351-367. |
[5] | HOU Fanghui, ZHU Xiaoqing, ZHANG Xunhua, WU Zhiqiang, GUO Xingwei, QI Jianghao, WEN Zhenhe, WANG Baojun, MENG Xiangjun. Basic geological characteristics of the East China Sea region and geological-geophysical characterization of some important tectonic boundaries in the region [J]. Earth Science Frontiers, 2022, 29(2): 281-293. |
[6] | XIA Xiangbiao, LI Guangming, ZHANG Linkui, ZHANG Zhi, CAO Huawen, LIANG Wei. Geological characteristics of and prospecting strategy for the Xianglin Be-Sn polymetallic ore deposit in the Cuonadong gneiss dome in southern Tibet [J]. Earth Science Frontiers, 2022, 29(1): 93-106. |
[7] | ZHOU Zhenhua, MAO Jingwen. Metallogenic patterns and ore deposit model of the tin polymetallic deposits in the southern segment of Great Xing’an Range [J]. Earth Science Frontiers, 2022, 29(1): 176-199. |
[8] | XIAO Xiaoniu, XIAO E, CHEN Zhenning, GONG Bin, JU Weiwei. Geochronology, geochemistry and geological characteristics of granites from the Meixian zinc-lead polymetallic deposit in central Fujian Province [J]. Earth Science Frontiers, 2020, 27(4): 158-171. |
[9] | REN Zhi, ZHOU Taofa, YUAN Feng, ZHANG Huaidong. Characteristics of the metallogenic system of the Shapinggou super-large porphyry molybdenum deposit in the Dabie orogenic belt, Anhui Province [J]. Earth Science Frontiers, 2020, 27(2): 353-372. |
[10] | HOU Zengqian, YANG Zhiming, WANG Rui, ZHENG Yuanchuan. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland [J]. Earth Science Frontiers, 2020, 27(2): 20-44. |
[11] | CHEN Lei,SHAO Pei,XIONG Wuhou,QI Wenqiang,ZHANG Shijia,ZHANG Zhanxian. Discussion on distribution and occurrence mechanism of gallium in the Middle Jurassic coalbearing strata of the eastern Junggar coalfield, Xinjiang. [J]. Earth Science Frontiers, 2018, 25(4): 76-85. |
[12] | CAO Ye,TANG Yao,YAO Meijuan,SHANG Pengqiang,ZOU Zhendong,QIU Guoyu,XIONG Xianxiao. Geological characteristics and resource potential analysis of sulfur deposits in China. [J]. Earth Science Frontiers, 2018, 25(3): 179-195. |
[13] | WANG Jiping,ZHU Jingbin,LI Jing,SHANG Pengqiang,XIONG Xianxiao,GAO Yongzhang,ZHANG Hao,ZHANG Yang,QI Caiji,ZHU Yannong. Prediction model and resources potential analysis of fluorite deposits in China. [J]. Earth Science Frontiers, 2018, 25(3): 172-178. |
[14] | SUN Penghui,LI Jingchao,XIAO Keyan,LIU Changchun. Metallogenic and geological characteristics and resource potential of magnesite resources in China. [J]. Earth Science Frontiers, 2018, 25(3): 159-171. |
[15] | LI Tongfei,XIA Qinglin,WANG Xinqing,LIU Yue,CHANG Liheng,LENG Shuai. Metallogenic geological characteristics and mineral resource potential analysis of rare earth element resources in China. [J]. Earth Science Frontiers, 2018, 25(3): 95-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||