Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 52-61.DOI: 10.13745/j.esf.sf.2025.3.13
Previous Articles Next Articles
CHEN Xi1,2,3(), DONG Jianzhi1,2,3, WANG Lichun1,2,3, ZHANG Yonggen1,2,3, WANG Xuejing1,2,3, DI Chongli1,2,3, GAO Man1,2,3, Liu Cong-Qiang1,2,3,*(
)
Received:
2025-02-03
Revised:
2025-02-25
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
CHEN Xi, DONG Jianzhi, WANG Lichun, ZHANG Yonggen, WANG Xuejing, DI Chongli, GAO Man, Liu Cong-Qiang. Development and prospect of ecohydrology under global change[J]. Earth Science Frontiers, 2025, 32(3): 52-61.
[1] | 王根绪, 钱鞠, 程国栋. 生态水文科学研究的现状与展望[J]. 地球科学进展, 2001, 16(3): 314-323. |
[2] |
于贵瑞, 王秋凤, 于振良. 陆地生态系统水-碳耦合循环与过程管理研究[J]. 地球科学进展, 2004, 19(5): 831-839.
DOI |
[3] | 刘昌明, 刘璇, 于静洁, 等. 生态水文学兴起: 学科理论与实践问题的评述[J]. 北京师范大学学报(自然科学版), 2022, 58(3): 412-423. |
[4] | 汤秋鸿. 全球变化水文学: 陆地水循环与全球变化[J]. 中国科学: 地球科学, 2020, 50(3): 436-438. |
[5] | 刘昌明. 土壤-植物-大气系统水分运行的界面过程研究[J]. 地理学报, 1997, 52(4): 80-87. |
[6] | 李中恺, 李小雁, 周沙, 等. 土壤-植被-水文耦合过程与机制研究进展[J]. 中国科学: 地球科学, 2022, 52(11): 2105-2138. |
[7] |
SPERRY J S, LOVE D M. What plant hydraulics can tell us about responses to climate-change droughts[J]. New Phytologist, 2015, 207(1): 14-27.
DOI PMID |
[8] | CHEN S, FU Y H, GENG X, et al. Influences of shifted vegetation phenology on runoff across a hydroclimatic gradient[J]. Frontiers in Plant Science, 2022, 12: 802664. |
[9] | LEVIS S. Modeling vegetation and land use in models of the Earth System[J]. Wiley Interdisciplinary Reviews-Climate Change, 2010, 1(6): 840-856. |
[10] | 黄奕龙, 傅伯杰, 陈利顶. 生态水文过程研究进展[J]. 生态学报, 2003, 23(3): 580-587. |
[11] | LI X, LIU F, MA C, et al. Land data assimilation: harmonizing theory and data in land surface process studies[J]. Reviews of Geophysics, 2024, 62(1): 1-45. |
[12] | PHILIP J R. Plant water relations: some physical aspects[J]. Annual Review of Plant Physiology, 1966, 17(1): 245-268. |
[13] | 杨大文, 丛振涛, 尚松浩, 等. 从土壤水动力学到生态水文学的发展与展望[J]. 水利学报, 2016, 47(3): 390-397. |
[14] | 夏军, 左其亭, 王根续, 等. 生态水文学[M]//国家科学思想库:地球科学学科前沿丛书. 北京: 科学出版社, 2020. |
[15] | MINGAN S, WENZHI Y. Mathematical model of soil moisture absorption of plant roots[J]. Acta Pedologica Sinica (China), 1987, 24(4): 295-305. |
[16] | 康绍忠. 土壤-植物-大气连续体水流阻力分布规律的研究[J]. 生态学报, 1993(2): 157-163. |
[17] | 刘昌明, 窦清晨. 土壤-植物-大气连续体模型中的蒸散发计算[J]. 水科学进展, 1992, 3(4): 255-263. |
[18] | HILLERISLAMBERS R, RIETKERK M, VAN den Bosch F, et al. Vegetation pattern formation in semi-arid grazing systems[J]. Ecology, 2001, 82(1): 50-61. |
[19] | SCANLAN C A. Processes and effects of root-induced changes to soil hydraulic properties[D]. Perth: University of Western Australia, 2009. |
[20] | HUDSON B D. Soil organic matter and available water capacity[J]. Journal of Soil and Water Conservation, 1994, 49(2): 189-194. |
[21] | SCHWINNING S. The ecohydrology of roots in rocks[J]. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology, 2010, 3(2): 238-245. |
[22] | NIEMEYER R J, FREMIER A K, HEINSE R, et al. Woody vegetation increases saturated hydraulic conductivity in dry tropical nicaragua[J]. Vadose Zone Journal, 2014, 13(1): 1-11. |
[23] | SHARMA P, CHUNG W T, AKOUSH B, et al. A review of physics-informed machine learning in fluid mechanics[J]. Energies, 2023, 16(5): 2343. |
[24] | FATICHI S, OR D, WALKO R, et al. Soil structure is an important omission in Earth system models[J]. Nature Communications, 2020, 11(1): 522. |
[25] | YANG C, LI H, FANG Y, et al. Effects of groundwater pumping on ground surface temperature: a regional modeling study in the North China Plain[J]. Journal of Geophysical Research-Atmospheres, 2020, 125(9): e2019JD031764. |
[26] |
NOVICK K A, FICKLIN D L, BALDOCCHI D, et al. Confronting the water potential information gap[J]. Nature Geoscience, 2022, 15(3): 158.
DOI PMID |
[27] | BRANTLEY S L, LEBEDEVA M I, BALASHOV V N, et al. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills[J]. Geomorphology, 2017, 277: 100-117. |
[28] |
REMPE D M, DIETRICH W E. Direct observations of rock moisture, a hidden component of the hydrologic cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): 2664-2669.
DOI PMID |
[29] | MCCORMICK E L, DRALLE D N, HAHM W J, et al. Widespread woody plant use of water stored in bedrock[J]. Nature, 2021, 597(7875): 225. |
[30] | 陈喜, 张志才. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶, 2022, 41(3): 356-364. |
[31] | AMUNDSON R, RICHTER D D, HUMPHREYS G S, et al. Coupling between biota and earth materials in the Critical Zone[J]. Elements, 2007, 3(5): 327-332. |
[32] | DIXEY F. Drainage basin form and process: a geomorphological approach[J]. Journal of Hydrology, 1974, 23(3/4): 357-360. |
[33] | ISMAIL M F, NAZ B S, WORTMANN M, et al. Comparison of two model calibration approaches and their influence on future projections under climate change in the Upper Indus Basin[J]. Climatic Change, 2020, 163(3): 1227-1246. |
[34] | 陈喜, 石朋, 刘金涛, 等. 气候和人类活动对水循环的影响机理[M]. 北京: 科学出版社, 2022. |
[35] | THOMPSON S E, HARMAN C J, HEINE P, et al. Vegetation-infiltration relationships across climatic and soil type gradients[J]. Journal of Geophysical Research-Biogeosciences, 2010, 115: G02023. |
[36] | QICAI L. Influence of dams on river ecosystem and its countermeasures[J]. Journal of Water Resource and Protection, 2011, 3(1): 60-66. |
[37] | ZHANG P, MAO J, TIAN M, et al. The impact of the three gorges reservoir on water exchange between the Yangtze River and Poyang Lake[J]. Frontiers in Earth Science, 2022, 10: 876286. |
[38] |
杨泽龙, 李艳忠, 梁康, 等. 植被恢复背景下黄河中游及6个典型流域蒸散发及其组分变化格局[J]. 自然资源学报, 2022, 37(3): 816-828.
DOI |
[39] | NARAYANAN A, COHEN S, GARDNER J R. Riverine sediment response to deforestation in the Amazon Basin[J]. Earth Surface Dynamics, 2024, 12(2): 581-599. |
[40] | WAGENER T, SIVAPALAN M, TROCH P A, et al. The future of hydrology: an evolving science for a changing world[J]. Water Resources Research, 2010, 46(5): W50301. |
[41] | SUN Y, XIA L. A review of research on the impact of global climate change on hydrology and water resources[J]. International Journal of Energy, 2023, 3(1): 66-70. |
[42] | LIANG W, BAI D, WANG F, et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau[J]. Water Resources Research, 2015, 51(8): 6500-6519. |
[43] | YANG W, LONG D, BAI P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China[J]. Journal of Hydrology, 2019, 570: 201-219. |
[44] | DAI Z, YU M, CHEN H, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5267-5276. |
[45] | XU Y, LIU W, FAN H, et al. Impacts of climate change and fruit tree expansion on key hydrological components at different spatial scales[J]. Frontiers in Forests and Global Change, 2023, 6: 1114423. |
[46] | 刘春蓁, 巢清尘, 王守荣, 等. 水文气象学领域的水文循环研究进展[J]. 气候变化研究进展, 2023, 19(1): 1-10. |
[47] | SAWICZ K A, KELLEHER C, WAGENER T, et al. Characterizing hydrologic change through catchment classification[J]. Hydrology and Earth System Sciences, 2014, 18(1): 273-285. |
[48] | SIVAPALAN M. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science[J]. Hydrology and Earth System Sciences, 2018, 22(3): 1665-1693. |
[49] | 李思亮, 王浩阳, 晏智锋, 等. 地球关键带过程和生态环境效应研究进展[J]. 矿物岩石地球化学通报, 2024. DOI: 10.3724/j.issn.1007-2802.20240119. |
[50] | SCANLON B R, JOLLY I, SOPHOCLEOUS M, et al. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality[J]. Water Resources Research, 2007, 43(3): W03437. |
[51] | LIU Y, CHAI Y, YUE Y, et al. Effects of global greening phenomenon on water sustainability[J]. Catena, 2022, 208: 105732. |
[52] |
夏军, 左其亭, 韩春辉. 生态水文学学科体系及学科发展战略[J]. 地球科学进展, 2018, 33(7): 665-674.
DOI |
[53] | SIVAPALAN M, KONAR M, SRINIVASAN V, et al. Socio-hydrology: use-inspired water sustainability science for the Anthropocene[J]. Earths Future, 2014, 2(4): 225-230. |
[54] |
DI BALDASSARRE G, SIVAPALAN M, RUSCA M, et al. Sociohydrology: scientific challenges in addressing the sustainable development goals[J]. Water Resources Research, 2019, 55(8): 6327-6355.
DOI PMID |
[55] | 刘烨, 田富强. 基于社会水文耦合模型的干旱区节水农业水土政策比较[J]. 清华大学学报(自然科学版), 2016, 56(4): 365-372. |
[56] | 宫兴龙, 付强, 孙爱华, 等. 自然-社会水循环模型估算平原-丘陵-湿地区水稻种植潜力[J]. 农业工程学报, 2019, 35(1): 138-147. |
[57] | KONAR M, GARCIA M, SANDERSON M R, et al. Expanding the scope and foundation of sociohydrology as the science of coupled human-water systems[J]. Water Resources Research, 2019, 55(2): 874-887. |
[58] | WADA Y, BIERKENS M F P, DE ROO A, et al. Humanwater interface in hydrological modelling: current status and future directions[J]. Hydrology and Earth System Sciences, 2017, 21(8): 4169-4193. |
[59] | SIVAPALAN M. Debates—perspectives on sociohydrology: changing water systems and the “tyranny of small problems” Sociohydrology[J]. Water Resources Research, 2015, 51(6): 4795-4805. |
[60] | TRIPATHY K P, MISHRA A K. Deep learning in hydrology and water resources disciplines: concepts, methods, applications, and research directions[J]. Journal of Hydrology, 2024, 628: 130458. |
[61] | 左其亭, 赵衡, 马军霞. 水资源与经济社会和谐平衡研究[J]. 水利学报, 2014, 45(7): 785-792. |
[62] |
GE Y, LI X, CHENG G, et al. What dominates sustainability in endorheic regions?[J]. Science Bulletin, 2022, 67(16): 1636-1640.
DOI PMID |
[63] | ZHAO T, WANG S, OUYANG C, et al. Artificial intelligence for geoscience: progress, challenges, and perspectives[J]. Innovation, 2024, 5(5): 100691. |
[64] | HAN B A, VARSHNEY K R, LADEAU S, et al. A synergistic future for AI and ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(38): e2220283120. |
[65] | FRAZIER A E, SONG L. Artificial intelligence in landscape ecology: recent advances, perspectives, and opportunities[J]. Current Landscape Ecology Reports, 2025, 10(1): 113. |
[66] |
GOULDEN M L, BALES R C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(39): 14071-14075.
DOI PMID |
[67] | IBRAHIM A, WAYAYOK A, SHAFRI H Z M, et al. Remote sensing technologies for unlocking new groundwater insights: a comprehensive review[J]. Journal of Hydrology, 2024, 23: 100175. |
[68] | DU J, WATTS J D, JIANG L, et al. Remote sensing of environmental changes in cold regions: methods, achievements and challenges[J]. Remote Sensing, 2019, 11(16): 1952. |
[69] | XU Y, KOHTZ S, BOAKYE J, et al. Physics-informed machine learning for reliability and systems safety applications: state of the art and challenges[J]. Reliability Engineering & System Safety, 2023, 230: 108900. |
[70] | CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics-informed neural networks: where we are and what’s next[J]. Journal of Scientific Computing, 2022, 92(3): 88. |
[71] | KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. |
[72] | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
[73] | SHEN C, APPLING A P P, GENTINE P, et al. Differentiable modelling to unify machine learning and physical models for geosciences[J]. Nature Reviews Earth & Environment, 2023, 4(8): 552-567. |
[74] | EMAMJOMEHZADEH O, KERACHIAN R, EMAMISKARDI M J, et al. Combining urban metabolism and reinforcement learning concepts for sustainable water resources management: a nexus approach[J]. Journal of Environmental Management, 2023, 329: 117046. |
[75] | ANONYMOUS. Advancing geoscience with AI[J]. Nature Geoscience, 2024, 17(10): 947. |
[1] | XIAO Yunting, CAI Chenkang, HUANG Yixin, ZHU Jialei. Study on the impact of daily sea surface temperature variation characteristics on the simulation of sea land breeze [J]. Earth Science Frontiers, 2025, 32(3): 218-230. |
[2] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
[3] | Liu Cong-Qiang. Global change, inter-sphere interaction and Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 1-6. |
[4] | XU Sheng, YANG Ye, ZHANG Maoliang, SHAO Yanxiu, LI Yunshuai, XU Hai, LIU Jing, Liu Cong-Qiang. Advances in tectonics-geomorphology-climate-ecosystem dynamics [J]. Earth Science Frontiers, 2025, 32(3): 23-34. |
[5] | TENG Hui, YU Guanghui, CHEN Chunmei, HAO Liping, ZHANG Jianchao, ZHU Xiangyu, SUN Fusheng, WANG Yuebo, Liu Cong-Qiang. Investigation into the interface processes of the surface-earth system and the evolution of the pedosphere [J]. Earth Science Frontiers, 2025, 32(3): 35-51. |
[6] | CHEN Xi, GAO Man, DONG Jianzhi, WANG Zhe. Challenges and research pathways for the evolution of water resources supply and demand in the Beijing-Tianjin-Hebei Region [J]. Earth Science Frontiers, 2025, 32(3): 436-444. |
[7] | SANG Liyuan, GUO Wei, ZHANG Jingwen, LIU Yixuan, ZHANG Tongkun, ZHANG Zhuqing, YUE Zhanpeng, LI Danyang, ZHANG Run, ZHANG Xu, TANG Weiping, LIU Zhanhang, DING Hu, LANG Yunchao, Liu Cong-Qiang. Current status, challenges, and future directions of research on hydrological processes, water environment, and water resources in the urban Earth’s critical zone [J]. Earth Science Frontiers, 2025, 32(3): 445-461. |
[8] | LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system [J]. Earth Science Frontiers, 2025, 32(3): 62-77. |
[9] | WANG Tiejun, AN Zhifeng, SONG Zhaoliang, ZHOU Haoran, SUN Xinchao, CHEN Wei, LI Pan, LIU Cong-Qiang. Ecosystem science research from the perspective of surface Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 78-91. |
[10] | FU Pingqing, HU Wei, ZHAO Xi, XU Zhanjie, DING Shiyuan, WU Libin, DENG Junjun, JIANG Zhe, LI Xiaodong, ZHU Jialei, Liu Cong-Qiang. Land/ocean-atmosphere interface science and global change [J]. Earth Science Frontiers, 2025, 32(3): 92-104. |
[11] | LIU Congqiang, LI Siliang, LIU Xueyan, WANG Baoli, LANG Yunchao, DING Hu, HAO Liping, ZHANG Qiongyu. Biogeochemical cycles in the Anthropocene and its significance [J]. Earth Science Frontiers, 2024, 31(1): 455-466. |
[12] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
[13] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
[14] | ZHU Liang, LIU Jingtao, ZHANG Yuxi, LIU Dandan, JIAO Shizhe. Evaluation of water resource multiple effect based on the analysis of water circulation: An example of the Beichuan River Basin upstream of the Yellow River [J]. Earth Science Frontiers, 2022, 29(3): 263-270. |
[15] | ZENG Zuoxun, CHEN Zhigeng, LU Chengdong, YANG Yu, CHEN Kangli, XIANG Shimin, DAI Qingqin, ZHANG Jun, DENG Yanting, FU Yan, DU Qiujiao, LIU Lilin, YANG Weiran. Earth system science research on earthquake mechanisms: Theory and validation of a new model [J]. Earth Science Frontiers, 2021, 28(6): 263-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||