Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 62-77.DOI: 10.13745/j.esf.sf.2025.3.5
Previous Articles Next Articles
LI Siliang1(), WANG Xinchu1, QI Yulin1, ZHONG Jun1, DING Hu1, WEN Hang1, LIU Xueyan1,2, LANG Yunchao1, YI Yuanbi3, WANG Baoli1, Liu Cong-Qiang1,*(
)
Received:
2025-02-05
Revised:
2025-02-24
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system[J]. Earth Science Frontiers, 2025, 32(3): 62-77.
Fig.1 The schematic diagram of surface Earth system sphere interactions and the biogeochemical cycling connections across watersheds at different scales
Fig.2 The schematic diagram of watershed biogeochemical cycling under the influence of sphere interactions (the critical zone diagram modified after literature [15,17])
Fig.3 The conceptual diagram illustrating the seasonal flow path changes of the Jinsha River (JSR) and Yalong River (YLR) on the Tibetan Plateau watersheds, and the impact of climate warming on the concentration-discharge (C-Q) relationship. Modified after [30].
[1] |
刘丛强, 李思亮, 刘学炎, 等. 人类世生物地球化学循环及其科学[J]. 地学前缘, 2024, 31(1): 455-466.
DOI |
[2] | ROCKSTRÖM J, GUPTA J, QIN D, et al. Safe and just Earth system boundaries[J]. Nature, 2023, 619(7968): 102-111. |
[3] | BROWN A. Catchment interactions[J]. Nature Climate Change, 2012, 2(7): 486. |
[4] | MARKEWITZ D, DAVIDSON E A, FIGUEIREDO R D O, et al. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed[J]. Nature, 2001, 410(6830): 802-805. |
[5] | RICHARDS C E, TZACHOR A, AVIN S, et al. Rewards, risks and responsible deployment of artificial intelligence in water systems[J]. Nature Water, 2023, 1(5): 422-432. |
[6] | 王建, 张茂恒, 白世彪. 圈层相互作用与自然地理学[J]. 地理教育, 2008(4): 4-7. |
[7] | HUGGETT R. Earth’s spheres: Conceptual and definitional debates[J]. Progress in Physical Geography: Earth and Environment, 2024, 48(5/6): 651-670. |
[8] | MUSOLFF A, FLECKENSTEIN J H, RAO P S C, et al. Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments[J]. Geophysical Research Letters, 2017, 44(9): 4143-4151. |
[9] | LOHSE K A, BROOKS P D, MCINTOSH J C, et al. Interactions between biogeochemistry and hydrologic systems[J]. Annual Review of Environment and Resources, 2009, 34: 65-96. |
[10] | LIKENS G E. Biogeochemistry, the watershed approach: some uses and limitations[J]. Marine and Freshwater Research, 2001, 52(1): 5-12. |
[11] | STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. The emergence and evolution of Earth System Science[J]. Nature Reviews Earth & Environment, 2020, 1(1): 54-63. |
[12] | KUHN A, HECKELEI T. Anthroposphere[M]//Impacts of global change on the hydrological cycle in West and Northwest Africa. Berlin: Springer. 2010: 282-341. |
[13] | LI L, SULLIVAN P L, BENETTIN P, et al. Toward catchment hydro-biogeochemical theories[J]. WIREs Water, 2021, 8(1): e1495. |
[14] | LIU M, RAYMOND P A, LAUERWALD R, et al. Global riverine land-to-ocean carbon export constrained by observations and multi-model assessment[J]. Nature Geoscience, 2024, 17(9): 896-904. |
[15] | NAYLOR L A, DUNGAIT J A J, ZHENG Y, et al. Achieving sustainable earth futures in the anthropocene by including local communities in critical zone science[J]. Earth’s Future, 2023, 11(9): e2022EF003448. |
[16] | HUANG J, ZHANG Y, BING H, et al. Characterizing the river water quality in China: recent progress and on-going challenges[J]. Water Research, 2021, 201: 117309. |
[17] | CHOROVER J, KRETZSCHMAR R, GARCIA-PICHEL F, et al. Soil biogeochemical processes within the critical zone[J]. Elements, 2007, 3(5): 321-326. |
[18] | STEFFEN W, JÄGER J, CARSON D J, et al. Challenges of a changing Earth: proceedings of the global change open science conference, Amsterdam, Netherlands, 10-13 July 2001[C]. Berlin: Springer, 2002. |
[19] |
高扬, 于贵瑞. 流域生物地球化学循环与水文耦合过程及其调控机制[J]. 地理学报, 2018, 73(7): 1381-1393.
DOI |
[20] | MCCARTHY F M, PATTERSON R T, HEAD M J, et al. The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate global boundary stratotype section and point for the Anthropocene Series[J]. The Anthropocene Review, 2023, 10(1): 146-176. |
[21] | GALY V, PEUCKER-EHRENBRINK B, EGLINTON T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551): 204-207. |
[22] | YANG X, PAVELSKY T M, ALLEN G H. The past and future of global river ice[J]. Nature, 2020, 577(7788): 69-73. |
[23] |
TABARI H. Climate change impact on flood and extreme precipitation increases with water availability[J]. Scientific Reports, 2020, 10(1): 13768.
DOI PMID |
[24] | KALCIC M M, MUENICH R L, BASILE S, et al. Climate change and nutrient loading in the Western Lake Erie Basin: warming can counteract a wetter future[J]. Environmental Science & Technology, 2019, 53(13): 7543-7550. |
[25] | LAUDON H, SPONSELLER R A. How landscape organization and scale shape catchment hydrology and biogeochemistry: insights from a long-term catchment study[J]. WIREs Water, 2018, 5(2): e1265. |
[26] | ZHONG J, LI S L, LIU J, et al. Climate variability controls on CO2 consumption fluxes and carbon dynamics for monsoonal rivers: evidence from Xijiang River, Southwest China[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(8): 2553-2567. |
[27] | ZHONG J, LI S L, IBARRA D E, et al. Solute production and transport processes in chinese monsoonal rivers: implications for global climate change[J]. Global Biogeochemical Cycles, 2020, 34(9): e2020GB006541. |
[28] | CHEN H, JU P, ZHU Q, et al. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3(10): 701-716. |
[29] | XU S, BUFE A, LI S L, et al. Erosional modulation of the balance between alkalinity and acid generation from rock weathering[J]. Geochimica et Cosmochimica Acta, 2024, 368: 126-146. |
[30] | XU S, LI S L, BUFE A, et al. Escalating carbon export from high-elevation rivers in a warming climate[J]. Environmental Science & Technology, 2024, 58(16): 7032-7044. |
[31] | RAYMOND P A, OH N H, TURNER R E, et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River[J]. Nature, 2008, 451(7177): 449-452. |
[32] | ROSENTRETER J A, LARUELLE G G, BANGE H W, et al. Coastal vegetation and estuaries are collectively a greenhouse gas sink[J]. Nature Climate Change, 2023, 13: 579-587. |
[33] | ROCHER-ROS G, STANLEY E H, LOKEN L C, et al. Global methane emissions from rivers and streams[J]. Nature, 2023. |
[34] | GREAVER T L, CLARK C M, COMPTON J E, et al. Key ecological responses to nitrogen are altered by climate change[J]. Nature Climate Change, 2016, 6(9): 836-843. |
[35] | EVANS C D, GOODALE C L, CAPORN S J M, et al. Does elevated nitrogen deposition or ecosystem recovery from acidification drive increased dissolved organic carbon loss from upland soil? A review of evidence from field nitrogen addition experiments[J]. Biogeochemistry, 2008, 91(1): 13-35. |
[36] | FISCHER W W, HEMP J, JOHNSON J E. Manganese and the evolution of photosynthesis[J]. Origins of Life and Evolution of Biospheres, 2015, 45(3): 351-357. |
[37] | MORENO-JIMÉNEZ E, MAESTRE F T, FLAGMEIER M, et al. Soils in warmer and less developed countries have less micronutrients globally[J]. Global Change Biology, 2023, 29(2): 522-532. |
[38] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
DOI PMID |
[39] | HEIMANN M. Charles david keeling 1928-2005[J]. Nature, 2005, 437(7057): 331. |
[40] | REGNIER P, FRIEDLINGSTEIN P, CIAIS P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607. |
[41] | REGNIER P, RESPLANDY L, NAJJAR R G, et al. The land-to-ocean loops of the global carbon cycle[J]. Nature, 2022, 603(7901): 401-410. |
[42] | XU W, WANG G, LIU S, et al. Globally elevated greenhouse gas emissions from polluted urban rivers[J]. Nature Sustainability, 2024, 7(7): 938-948. |
[43] | ZHANG W, LI H, XIAO Q, et al. Urban rivers are hotspots of riverine greenhouse gas (N2O, CH4, CO2) emissions in the mixed-landscape chaohu lake basin[J]. Water Research, 2021, 189: 116624. |
[44] | VELTHUIS M, VERAART A J. Temperature sensitivity of freshwater denitrification and N2O emission: a meta-analysis[J]. Global Biogeochemical Cycles, 2022, 36(6): e2022GB007339. |
[45] | YVON-DUROCHER G, ALLEN A P, BASTVIKEN D, et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales[J]. Nature, 2014, 507(7493): 488-491. |
[46] | YUE F J, LI S L, WALDRON S, et al. Source availability and hydrological connectivity determined nitrate-discharge relationships during rainfall events in karst catchment as revealed by high-frequency nitrate sensing[J]. Water Research, 2023, 231: 119616. |
[47] | GALLO E L, MEIXNER T, AOUBID H, et al. Combined impact of catchment size, land cover, and precipitation on streamflow and total dissolved nitrogen: a global comparative analysis[J]. Global Biogeochemical Cycles, 2015, 29(7): 1109-1121. |
[48] | YUE F J, LI S L, WALDRON S, et al. Rainfall and conduit drainage combine to accelerate nitrate loss from a karst agroecosystem: insights from stable isotope tracing and high-frequency nitrate sensing[J]. Water Research, 2020, 186: 116388. |
[49] | WANG X C, YUE F J, LI S L, et al. Spatial variations in water chemical components in a coastal zone of northern China: insights from environmental isotopes[J]. Journal of Hydrology, 2022, 612: 128054. |
[50] | LI S L, LIU X, YUE F J, et al. Nitrogen dynamics in the Critical Zones of China[J]. Progress in Physical Geography: Earth and Environment, 2022, 46(6): 869-888. |
[51] | LI S L, XU S, WANG T J, et al. Effects of agricultural activities coupled with karst structures on riverine biogeochemical cycles and environmental quality in the karst region[J]. Agriculture, Ecosystems & Environment, 2020, 303: 107120. |
[52] | HE F, ZARFL C, TOCKNER K, et al. Hydropower impacts on riverine biodiversity[J]. Nature Reviews Earth & Environment, 2024, 5(11): 755-772. |
[53] | MAAVARA T, CHEN Q, VAN METER K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020, 1(2): 103-116. |
[54] | WANG W, LI S L, ZHONG J, et al. Carbonate mineral dissolution and photosynthesis-induced precipitation regulate inorganic carbon cycling along the karst river-reservoir continuum, SW China[J]. Journal of Hydrology, 2022, 615: 128621. |
[55] | YI Y, LI S L, ZHONG J, et al. The influence of the deep subtropical reservoir on the karstic riverine carbon cycle and its regulatory factors: insights from the seasonal and hydrological changes[J]. Water Research, 2022, 226: 119267. |
[56] | LIANG X, XING T, LI J, et al. Control of the hydraulic load on nitrous oxide emissions from cascade reservoirs[J]. Environmental Science & Technology, 2019, 53(20): 11745-11754. |
[57] | ERIYAGAMA N, SMAKHTIN V, UDAMULLA L. How much artificial surface storage is acceptable in a river basin and where should it be located: a review[J]. Earth-Science Reviews, 2020, 208: 103294. |
[58] | WWF. WWF (2024) Living Planet Report 2024: a system in Peril[R]. Zurich: WWF, 2024. |
[59] |
BLOWES S A, SUPP S R, ANTÃO L H, et al. The geography of biodiversity change in marine and terrestrial assemblages[J]. Science, 2019, 366(6463): 339-345.
DOI PMID |
[60] | YU Q, HE C, ANTHONY M A, et al. Decoupled responses of plants and soil biota to global change across the world’s land ecosystems[J]. Nature Communications, 2024, 15(1): 10369. |
[61] | 王艳芬, 陈怡平, 王厚杰, 等. 黄河流域生态系统变化及其生态水文效应[J]. 中国科学基金, 2021, 35(4): 520-528. |
[62] | BATTIN T J, LAUERWALD R, BERNHARDT E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world[J]. Nature, 2023, 613(7944): 449-459. |
[63] | XU S Q, LIU X Y, SUN Z C, et al. Isotopic elucidation of microbial nitrogen transformations in forest soils[J]. Global Biogeochemical Cycles, 2021, 35(12): e2021GB007070. |
[64] | HU C C, LEI Y B, TAN Y H, et al. Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China[J]. Journal of Ecology, 2019, 107(1): 372-386. |
[65] | HU C C, LIU X Y, DRISCOLL A W, et al. Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants[J]. Nature Communications, 2024, 15(1): 6407. |
[66] | SARDANS J, JANSSENS I A, CIAIS P, et al. Recent advances and future research in ecological stoichiometry[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 50: 125611. |
[67] | HESSEN D O, ELSER J J, STERNER R W, et al. Ecological stoichiometry: an elementary approach using basic principles[J]. Limnology and Oceanography, 2013, 58(6): 2219-2236. |
[68] |
MANZONI S, JACKSON R B, TROFYMOW J A, et al. The global stoichiometry of litter nitrogen mineralization[J]. Science, 2008, 321(5889): 684-686.
DOI PMID |
[69] | VAN DE WAAL D B, VERSCHOOR A M, VERSPAGEN J M, et al. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems[J]. Frontiers in Ecology and the Environment, 2010, 8(3): 145-152. |
[70] | TAUCHER J, BACH L T, PROWE A E F, et al. Enhanced silica export in a future ocean triggers global diatom decline[J]. Nature, 2022, 605(7911): 696-700. |
[71] | GARNIER J, BEUSEN A, THIEU V, et al. N:P: Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach[J]. Global Biogeochemical Cycles, 2010, 24(4): e2009GB003583. |
[72] | WAN L, LIU G, CHENG H, et al. Global warming changes biomass and C:N:P stoichiometry of different components in terrestrial ecosystems[J]. Glob Chang Biol, 2023, 29(24): 7102-7116. |
[73] | ZHANG Z, SUN X, DAI M, et al. Impact of human disturbance on the biogeochemical silicon cycle in a coastal sea revealed by silicon isotopes[J]. Limnology and Oceanography, 2020, 65(3): 515-528. |
[74] | SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798. |
[75] | ROCKSTRÖM J, DONGES J F, FETZER I, et al. Planetary boundaries guide humanity’s future on Earth[J]. Nature Reviews Earth & Environment, 2024, 5(11): 773-788. |
[76] | ROCKSTRÖM J, STEFFEN W, NOONE K, et al. Planetary boundaries: exploring the safe operating space for humanity[J]. Ecology and Society, 2009, 14(2): 32. |
[77] | ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263): 472-475. |
[78] |
LIU L, BAI Z, YANG J, et al. An optimized crop-livestock system can achieve a safe and just planetary boundary for phosphorus at the sub-basin level in China[J]. Nature Food, 2024, 5(6): 499-512.
DOI PMID |
[79] | STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al. Planetary boundaries: guiding human development on a changing planet[J]. Science, 2015, 347(6223): 1259855. |
[80] | RICHARDSON K, STEFFEN W, LUCHT W, et al. Earth beyond six of nine planetary boundaries[J]. Science Advances, 2023, 9(37): eadh2458. |
[81] | SCIENCES N A O, STUDIES D O E L, SCIENCES B O E, et al. A vision for NSF Earth sciences 2020-2030: Earth in time[M]. Alexandria: National Academies Press, 2020. |
[82] | GOU L F, HUANG F, YANG S, et al. Cation isotopes trace chemical weathering[J/OL]. Fundamental Research, 2024. https://doi.org/10.1016/j.fmre.2023.12.005. |
[83] | BROOKFIELD A E, AJAMI H, CARROLL R W H, et al. Recent advances in integrated hydrologic models: integration of new domains[J]. Journal of Hydrology, 2023, 620: 129515. |
[84] | WEN H, PERDRIAL J, ABBOTT B W, et al. Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale[J]. Hydrology and Earth System Sciences, 2020, 24(2): 945-966. |
[85] | ZHI W, SHI Y, WEN H, et al. BioRT-Flux-PIHM v1.0: a biogeochemical reactive transport model at the watershed scale[J]. Geoscientific Model Development, 2022, 15(1): 315-333. |
[86] | WEN H, LI S L, CHEN X, et al. Amplified production and export of dissolved inorganic carbon during hot and wet subtropical monsoon[J]. Water Resources Research, 2024, 60(1): e2023WR035292. |
[1] | FU Pingqing, HU Wei, ZHAO Xi, XU Zhanjie, DING Shiyuan, WU Libin, DENG Junjun, JIANG Zhe, LI Xiaodong, ZHU Jialei, Liu Cong-Qiang. Land/ocean-atmosphere interface science and global change [J]. Earth Science Frontiers, 2025, 32(3): 92-104. |
[2] | WANG Tiejun, AN Zhifeng, SONG Zhaoliang, ZHOU Haoran, SUN Xinchao, CHEN Wei, LI Pan, LIU Cong-Qiang. Ecosystem science research from the perspective of surface Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 78-91. |
[3] | LIU Jing, SUN Zhaotong, WANG Wenxin, LI Yunshuai, YAO Wenqian, CUI Fengzhen, LIU Cong-Qiang. Surface-Earth response to deep-Earth processes and consequential natural disasters [J]. Earth Science Frontiers, 2025, 32(3): 7-22. |
[4] | CHEN Xi, DONG Jianzhi, WANG Lichun, ZHANG Yonggen, WANG Xuejing, DI Chongli, GAO Man, Liu Cong-Qiang. Development and prospect of ecohydrology under global change [J]. Earth Science Frontiers, 2025, 32(3): 52-61. |
[5] | XIAO Yunting, CAI Chenkang, HUANG Yixin, ZHU Jialei. Study on the impact of daily sea surface temperature variation characteristics on the simulation of sea land breeze [J]. Earth Science Frontiers, 2025, 32(3): 218-230. |
[6] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
[7] | Liu Cong-Qiang. Global change, inter-sphere interaction and Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 1-6. |
[8] | LIU Congqiang, LI Siliang, LIU Xueyan, WANG Baoli, LANG Yunchao, DING Hu, HAO Liping, ZHANG Qiongyu. Biogeochemical cycles in the Anthropocene and its significance [J]. Earth Science Frontiers, 2024, 31(1): 455-466. |
[9] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
[10] | WU Lixin, JING Zhao, CHEN Xianyao, LI Caiwen, ZHANG Guoliang, WANG Shi, DONG Bo, ZHUANG Guangchao. Marine science in China: Current status and future outlooks [J]. Earth Science Frontiers, 2022, 29(5): 1-12. |
[11] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
[12] | XIANG Wu, Jiasong Fang, MO Xiang, HE Ling, SUN Xin-Ting, BI Xiang-Yang. Driving mechanisms for the DOC increases in surface waters released from Northern Peatlands under global change. [J]. Earth Science Frontiers, 2011, 18(6): 72-78. |
[13] | YANG Zhong-Fang, JIA Hua-Ji, TU Chao, HOU Jing-Xie, FENG Hai-Yan. Soil carbon pool in the northeast Inner Mongolia and its influencing factors. [J]. Earth Science Frontiers, 2011, 18(6): 1-10. |
[14] | LIU Cong-Jiang, LANG Bin-Chao, LI Sai-Liang, PIAO He-Chun, CHU Cheng-Long, LIU Chao-Ze, ZHANG Wei. Researches on biogeochemical processes and nutrient cycling in karstic ecological systems, southwest China: A review. [J]. Earth Science Frontiers, 2009, 16(6): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||