

Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 52-61.DOI: 10.13745/j.esf.sf.2025.3.13
Previous Articles Next Articles
CHEN Xi1,2,3(
), DONG Jianzhi1,2,3, WANG Lichun1,2,3, ZHANG Yonggen1,2,3, WANG Xuejing1,2,3, DI Chongli1,2,3, GAO Man1,2,3, Liu Cong-Qiang1,2,3,*(
)
Received:2025-02-03
Revised:2025-02-25
Online:2025-05-25
Published:2025-04-20
CLC Number:
CHEN Xi, DONG Jianzhi, WANG Lichun, ZHANG Yonggen, WANG Xuejing, DI Chongli, GAO Man, Liu Cong-Qiang. Development and prospect of ecohydrology under global change[J]. Earth Science Frontiers, 2025, 32(3): 52-61.
| [1] | 王根绪, 钱鞠, 程国栋. 生态水文科学研究的现状与展望[J]. 地球科学进展, 2001, 16(3): 314-323. |
| [2] |
于贵瑞, 王秋凤, 于振良. 陆地生态系统水-碳耦合循环与过程管理研究[J]. 地球科学进展, 2004, 19(5): 831-839.
DOI |
| [3] | 刘昌明, 刘璇, 于静洁, 等. 生态水文学兴起: 学科理论与实践问题的评述[J]. 北京师范大学学报(自然科学版), 2022, 58(3): 412-423. |
| [4] | 汤秋鸿. 全球变化水文学: 陆地水循环与全球变化[J]. 中国科学: 地球科学, 2020, 50(3): 436-438. |
| [5] | 刘昌明. 土壤-植物-大气系统水分运行的界面过程研究[J]. 地理学报, 1997, 52(4): 80-87. |
| [6] | 李中恺, 李小雁, 周沙, 等. 土壤-植被-水文耦合过程与机制研究进展[J]. 中国科学: 地球科学, 2022, 52(11): 2105-2138. |
| [7] |
SPERRY J S, LOVE D M. What plant hydraulics can tell us about responses to climate-change droughts[J]. New Phytologist, 2015, 207(1): 14-27.
DOI PMID |
| [8] | CHEN S, FU Y H, GENG X, et al. Influences of shifted vegetation phenology on runoff across a hydroclimatic gradient[J]. Frontiers in Plant Science, 2022, 12: 802664. |
| [9] | LEVIS S. Modeling vegetation and land use in models of the Earth System[J]. Wiley Interdisciplinary Reviews-Climate Change, 2010, 1(6): 840-856. |
| [10] | 黄奕龙, 傅伯杰, 陈利顶. 生态水文过程研究进展[J]. 生态学报, 2003, 23(3): 580-587. |
| [11] | LI X, LIU F, MA C, et al. Land data assimilation: harmonizing theory and data in land surface process studies[J]. Reviews of Geophysics, 2024, 62(1): 1-45. |
| [12] | PHILIP J R. Plant water relations: some physical aspects[J]. Annual Review of Plant Physiology, 1966, 17(1): 245-268. |
| [13] | 杨大文, 丛振涛, 尚松浩, 等. 从土壤水动力学到生态水文学的发展与展望[J]. 水利学报, 2016, 47(3): 390-397. |
| [14] | 夏军, 左其亭, 王根续, 等. 生态水文学[M]//国家科学思想库:地球科学学科前沿丛书. 北京: 科学出版社, 2020. |
| [15] | MINGAN S, WENZHI Y. Mathematical model of soil moisture absorption of plant roots[J]. Acta Pedologica Sinica (China), 1987, 24(4): 295-305. |
| [16] | 康绍忠. 土壤-植物-大气连续体水流阻力分布规律的研究[J]. 生态学报, 1993(2): 157-163. |
| [17] | 刘昌明, 窦清晨. 土壤-植物-大气连续体模型中的蒸散发计算[J]. 水科学进展, 1992, 3(4): 255-263. |
| [18] | HILLERISLAMBERS R, RIETKERK M, VAN den Bosch F, et al. Vegetation pattern formation in semi-arid grazing systems[J]. Ecology, 2001, 82(1): 50-61. |
| [19] | SCANLAN C A. Processes and effects of root-induced changes to soil hydraulic properties[D]. Perth: University of Western Australia, 2009. |
| [20] | HUDSON B D. Soil organic matter and available water capacity[J]. Journal of Soil and Water Conservation, 1994, 49(2): 189-194. |
| [21] | SCHWINNING S. The ecohydrology of roots in rocks[J]. Ecohydrology: Ecosystems, Land and Water Process Interactions, Ecohydrogeomorphology, 2010, 3(2): 238-245. |
| [22] | NIEMEYER R J, FREMIER A K, HEINSE R, et al. Woody vegetation increases saturated hydraulic conductivity in dry tropical nicaragua[J]. Vadose Zone Journal, 2014, 13(1): 1-11. |
| [23] | SHARMA P, CHUNG W T, AKOUSH B, et al. A review of physics-informed machine learning in fluid mechanics[J]. Energies, 2023, 16(5): 2343. |
| [24] | FATICHI S, OR D, WALKO R, et al. Soil structure is an important omission in Earth system models[J]. Nature Communications, 2020, 11(1): 522. |
| [25] | YANG C, LI H, FANG Y, et al. Effects of groundwater pumping on ground surface temperature: a regional modeling study in the North China Plain[J]. Journal of Geophysical Research-Atmospheres, 2020, 125(9): e2019JD031764. |
| [26] |
NOVICK K A, FICKLIN D L, BALDOCCHI D, et al. Confronting the water potential information gap[J]. Nature Geoscience, 2022, 15(3): 158.
DOI PMID |
| [27] | BRANTLEY S L, LEBEDEVA M I, BALASHOV V N, et al. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills[J]. Geomorphology, 2017, 277: 100-117. |
| [28] |
REMPE D M, DIETRICH W E. Direct observations of rock moisture, a hidden component of the hydrologic cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): 2664-2669.
DOI PMID |
| [29] | MCCORMICK E L, DRALLE D N, HAHM W J, et al. Widespread woody plant use of water stored in bedrock[J]. Nature, 2021, 597(7875): 225. |
| [30] | 陈喜, 张志才. 喀斯特地区地球关键带科学与生态水文学发展综述[J]. 中国岩溶, 2022, 41(3): 356-364. |
| [31] | AMUNDSON R, RICHTER D D, HUMPHREYS G S, et al. Coupling between biota and earth materials in the Critical Zone[J]. Elements, 2007, 3(5): 327-332. |
| [32] | DIXEY F. Drainage basin form and process: a geomorphological approach[J]. Journal of Hydrology, 1974, 23(3/4): 357-360. |
| [33] | ISMAIL M F, NAZ B S, WORTMANN M, et al. Comparison of two model calibration approaches and their influence on future projections under climate change in the Upper Indus Basin[J]. Climatic Change, 2020, 163(3): 1227-1246. |
| [34] | 陈喜, 石朋, 刘金涛, 等. 气候和人类活动对水循环的影响机理[M]. 北京: 科学出版社, 2022. |
| [35] | THOMPSON S E, HARMAN C J, HEINE P, et al. Vegetation-infiltration relationships across climatic and soil type gradients[J]. Journal of Geophysical Research-Biogeosciences, 2010, 115: G02023. |
| [36] | QICAI L. Influence of dams on river ecosystem and its countermeasures[J]. Journal of Water Resource and Protection, 2011, 3(1): 60-66. |
| [37] | ZHANG P, MAO J, TIAN M, et al. The impact of the three gorges reservoir on water exchange between the Yangtze River and Poyang Lake[J]. Frontiers in Earth Science, 2022, 10: 876286. |
| [38] |
杨泽龙, 李艳忠, 梁康, 等. 植被恢复背景下黄河中游及6个典型流域蒸散发及其组分变化格局[J]. 自然资源学报, 2022, 37(3): 816-828.
DOI |
| [39] | NARAYANAN A, COHEN S, GARDNER J R. Riverine sediment response to deforestation in the Amazon Basin[J]. Earth Surface Dynamics, 2024, 12(2): 581-599. |
| [40] | WAGENER T, SIVAPALAN M, TROCH P A, et al. The future of hydrology: an evolving science for a changing world[J]. Water Resources Research, 2010, 46(5): W50301. |
| [41] | SUN Y, XIA L. A review of research on the impact of global climate change on hydrology and water resources[J]. International Journal of Energy, 2023, 3(1): 66-70. |
| [42] | LIANG W, BAI D, WANG F, et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau[J]. Water Resources Research, 2015, 51(8): 6500-6519. |
| [43] | YANG W, LONG D, BAI P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China[J]. Journal of Hydrology, 2019, 570: 201-219. |
| [44] | DAI Z, YU M, CHEN H, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5267-5276. |
| [45] | XU Y, LIU W, FAN H, et al. Impacts of climate change and fruit tree expansion on key hydrological components at different spatial scales[J]. Frontiers in Forests and Global Change, 2023, 6: 1114423. |
| [46] | 刘春蓁, 巢清尘, 王守荣, 等. 水文气象学领域的水文循环研究进展[J]. 气候变化研究进展, 2023, 19(1): 1-10. |
| [47] | SAWICZ K A, KELLEHER C, WAGENER T, et al. Characterizing hydrologic change through catchment classification[J]. Hydrology and Earth System Sciences, 2014, 18(1): 273-285. |
| [48] | SIVAPALAN M. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science[J]. Hydrology and Earth System Sciences, 2018, 22(3): 1665-1693. |
| [49] | 李思亮, 王浩阳, 晏智锋, 等. 地球关键带过程和生态环境效应研究进展[J]. 矿物岩石地球化学通报, 2024. DOI: 10.3724/j.issn.1007-2802.20240119. |
| [50] | SCANLON B R, JOLLY I, SOPHOCLEOUS M, et al. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality[J]. Water Resources Research, 2007, 43(3): W03437. |
| [51] | LIU Y, CHAI Y, YUE Y, et al. Effects of global greening phenomenon on water sustainability[J]. Catena, 2022, 208: 105732. |
| [52] |
夏军, 左其亭, 韩春辉. 生态水文学学科体系及学科发展战略[J]. 地球科学进展, 2018, 33(7): 665-674.
DOI |
| [53] | SIVAPALAN M, KONAR M, SRINIVASAN V, et al. Socio-hydrology: use-inspired water sustainability science for the Anthropocene[J]. Earths Future, 2014, 2(4): 225-230. |
| [54] |
DI BALDASSARRE G, SIVAPALAN M, RUSCA M, et al. Sociohydrology: scientific challenges in addressing the sustainable development goals[J]. Water Resources Research, 2019, 55(8): 6327-6355.
DOI PMID |
| [55] | 刘烨, 田富强. 基于社会水文耦合模型的干旱区节水农业水土政策比较[J]. 清华大学学报(自然科学版), 2016, 56(4): 365-372. |
| [56] | 宫兴龙, 付强, 孙爱华, 等. 自然-社会水循环模型估算平原-丘陵-湿地区水稻种植潜力[J]. 农业工程学报, 2019, 35(1): 138-147. |
| [57] | KONAR M, GARCIA M, SANDERSON M R, et al. Expanding the scope and foundation of sociohydrology as the science of coupled human-water systems[J]. Water Resources Research, 2019, 55(2): 874-887. |
| [58] | WADA Y, BIERKENS M F P, DE ROO A, et al. Humanwater interface in hydrological modelling: current status and future directions[J]. Hydrology and Earth System Sciences, 2017, 21(8): 4169-4193. |
| [59] | SIVAPALAN M. Debates—perspectives on sociohydrology: changing water systems and the “tyranny of small problems” Sociohydrology[J]. Water Resources Research, 2015, 51(6): 4795-4805. |
| [60] | TRIPATHY K P, MISHRA A K. Deep learning in hydrology and water resources disciplines: concepts, methods, applications, and research directions[J]. Journal of Hydrology, 2024, 628: 130458. |
| [61] | 左其亭, 赵衡, 马军霞. 水资源与经济社会和谐平衡研究[J]. 水利学报, 2014, 45(7): 785-792. |
| [62] |
GE Y, LI X, CHENG G, et al. What dominates sustainability in endorheic regions?[J]. Science Bulletin, 2022, 67(16): 1636-1640.
DOI PMID |
| [63] | ZHAO T, WANG S, OUYANG C, et al. Artificial intelligence for geoscience: progress, challenges, and perspectives[J]. Innovation, 2024, 5(5): 100691. |
| [64] | HAN B A, VARSHNEY K R, LADEAU S, et al. A synergistic future for AI and ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(38): e2220283120. |
| [65] | FRAZIER A E, SONG L. Artificial intelligence in landscape ecology: recent advances, perspectives, and opportunities[J]. Current Landscape Ecology Reports, 2025, 10(1): 113. |
| [66] |
GOULDEN M L, BALES R C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(39): 14071-14075.
DOI PMID |
| [67] | IBRAHIM A, WAYAYOK A, SHAFRI H Z M, et al. Remote sensing technologies for unlocking new groundwater insights: a comprehensive review[J]. Journal of Hydrology, 2024, 23: 100175. |
| [68] | DU J, WATTS J D, JIANG L, et al. Remote sensing of environmental changes in cold regions: methods, achievements and challenges[J]. Remote Sensing, 2019, 11(16): 1952. |
| [69] | XU Y, KOHTZ S, BOAKYE J, et al. Physics-informed machine learning for reliability and systems safety applications: state of the art and challenges[J]. Reliability Engineering & System Safety, 2023, 230: 108900. |
| [70] | CUOMO S, DI COLA V S, GIAMPAOLO F, et al. Scientific machine learning through physics-informed neural networks: where we are and what’s next[J]. Journal of Scientific Computing, 2022, 92(3): 88. |
| [71] | KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. |
| [72] | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
| [73] | SHEN C, APPLING A P P, GENTINE P, et al. Differentiable modelling to unify machine learning and physical models for geosciences[J]. Nature Reviews Earth & Environment, 2023, 4(8): 552-567. |
| [74] | EMAMJOMEHZADEH O, KERACHIAN R, EMAMISKARDI M J, et al. Combining urban metabolism and reinforcement learning concepts for sustainable water resources management: a nexus approach[J]. Journal of Environmental Management, 2023, 329: 117046. |
| [75] | ANONYMOUS. Advancing geoscience with AI[J]. Nature Geoscience, 2024, 17(10): 947. |
| [1] | CHEN Guoxiong, ZHANG Yuepeng, LUO Lei, XIA Qinglin, CHENG Qiuming. Data-driven spatio-temporal prediction model of porphyry deposits [J]. Earth Science Frontiers, 2025, 32(4): 46-59. |
| [2] | XIAO Yunting, CAI Chenkang, HUANG Yixin, ZHU Jialei. Study on the impact of daily sea surface temperature variation characteristics on the simulation of sea land breeze [J]. Earth Science Frontiers, 2025, 32(3): 218-230. |
| [3] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
| [4] | Liu Cong-Qiang. Global change, inter-sphere interaction and Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 1-6. |
| [5] | XU Sheng, YANG Ye, ZHANG Maoliang, SHAO Yanxiu, LI Yunshuai, XU Hai, LIU Jing, Liu Cong-Qiang. Advances in tectonics-geomorphology-climate-ecosystem dynamics [J]. Earth Science Frontiers, 2025, 32(3): 23-34. |
| [6] | TENG Hui, YU Guanghui, CHEN Chunmei, HAO Liping, ZHANG Jianchao, ZHU Xiangyu, SUN Fusheng, WANG Yuebo, Liu Cong-Qiang. Investigation into the interface processes of the surface-earth system and the evolution of the pedosphere [J]. Earth Science Frontiers, 2025, 32(3): 35-51. |
| [7] | CHEN Xi, GAO Man, DONG Jianzhi, WANG Zhe. Challenges and research pathways for the evolution of water resources supply and demand in the Beijing-Tianjin-Hebei Region [J]. Earth Science Frontiers, 2025, 32(3): 436-444. |
| [8] | SANG Liyuan, GUO Wei, ZHANG Jingwen, LIU Yixuan, ZHANG Tongkun, ZHANG Zhuqing, YUE Zhanpeng, LI Danyang, ZHANG Run, ZHANG Xu, TANG Weiping, LIU Zhanhang, DING Hu, LANG Yunchao, Liu Cong-Qiang. Current status, challenges, and future directions of research on hydrological processes, water environment, and water resources in the urban Earth’s critical zone [J]. Earth Science Frontiers, 2025, 32(3): 445-461. |
| [9] | LI Siliang, WANG Xinchu, QI Yulin, ZHONG Jun, DING Hu, WEN Hang, LIU Xueyan, LANG Yunchao, YI Yuanbi, WANG Baoli, Liu Cong-Qiang. Watershed biogeochemical cycles and multi-sphere interactions in Earth’s surface system [J]. Earth Science Frontiers, 2025, 32(3): 62-77. |
| [10] | WANG Tiejun, AN Zhifeng, SONG Zhaoliang, ZHOU Haoran, SUN Xinchao, CHEN Wei, LI Pan, LIU Cong-Qiang. Ecosystem science research from the perspective of surface Earth system science [J]. Earth Science Frontiers, 2025, 32(3): 78-91. |
| [11] | FU Pingqing, HU Wei, ZHAO Xi, XU Zhanjie, DING Shiyuan, WU Libin, DENG Junjun, JIANG Zhe, LI Xiaodong, ZHU Jialei, Liu Cong-Qiang. Land/ocean-atmosphere interface science and global change [J]. Earth Science Frontiers, 2025, 32(3): 92-104. |
| [12] | LIU Congqiang, LI Siliang, LIU Xueyan, WANG Baoli, LANG Yunchao, DING Hu, HAO Liping, ZHANG Qiongyu. Biogeochemical cycles in the Anthropocene and its significance [J]. Earth Science Frontiers, 2024, 31(1): 455-466. |
| [13] | XIE Shucheng, ZHU Zongmin, ZHANG Hongbin, YANG Yi, WANG Canfa, RUAN Xiaoyan. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review [J]. Earth Science Frontiers, 2024, 31(1): 446-454. |
| [14] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
| [15] | ZHU Liang, LIU Jingtao, ZHANG Yuxi, LIU Dandan, JIAO Shizhe. Evaluation of water resource multiple effect based on the analysis of water circulation: An example of the Beichuan River Basin upstream of the Yellow River [J]. Earth Science Frontiers, 2022, 29(3): 263-270. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||