Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 449-458.DOI: 10.13745/j.esf.sf.2024.7.50
Previous Articles Next Articles
YU Tao1,2(), HAN Pengfei1,2,*(
), WANG Xusheng1,2, JIANG Xiaowei2,3, ZHANG Zhiyuan1,2, WAN Li3
Received:
2024-06-11
Revised:
2024-07-02
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
YU Tao, HAN Pengfei, WANG Xusheng, JIANG Xiaowei, ZHANG Zhiyuan, WAN Li. Response to climate change of runoff at different time scales in the Baiyangdian Lake Basin based on the Budyko model[J]. Earth Science Frontiers, 2025, 32(1): 449-458.
数据 | 时间 | 分辨率 | 数据来源 |
---|---|---|---|
降水量、蒸发皿蒸发量 | 1982—2010 | 逐日 | 中国地面气候资料日值数据集(V3.0) |
实际蒸散量 | 2000—2010 | 逐年;500 m | MOD16A3数据集 |
实际蒸散量 | 1982—2010 | 逐月;1 km | Synthesized ET数据集[ |
径流量 | 1982—2010 | 逐月 | 海河流域水文年鉴 |
耕地面积 | 1986—2010 | 逐年;30 m | CACD数据集[ |
Table 1 Overview of data collection
数据 | 时间 | 分辨率 | 数据来源 |
---|---|---|---|
降水量、蒸发皿蒸发量 | 1982—2010 | 逐日 | 中国地面气候资料日值数据集(V3.0) |
实际蒸散量 | 2000—2010 | 逐年;500 m | MOD16A3数据集 |
实际蒸散量 | 1982—2010 | 逐月;1 km | Synthesized ET数据集[ |
径流量 | 1982—2010 | 逐月 | 海河流域水文年鉴 |
耕地面积 | 1986—2010 | 逐年;30 m | CACD数据集[ |
流域编号 | 水文站 | 流域面积/km2 | 年均降水量/mm | 年均潜在蒸散量/mm | 年均径流深/mm | 干旱指数 | 耕地占比 |
---|---|---|---|---|---|---|---|
#1 | 城头会 | 1 613 | 435.5 | 966.7 | 35.7 | 2.22 | 28.7% |
#2 | 倒马关 | 2 746 | 458.4 | 960.9 | 52.3 | 2.10 | 17.8% |
#3 | 阜平 | 2 190 | 526.9 | 958.2 | 53.8 | 1.82 | 0.6% |
#4 | 王快水库 | 3 758 | 528.1 | 958.7 | 94.9 | 1.82 | 1.3% |
#5 | 西大洋水库 | 4 414 | 476.2 | 955.3 | 59.6 | 2.01 | 15.6% |
#6 | 张坊 | 4 937 | 486.4 | 928.3 | 67.1 | 1.91 | 5.5% |
#7 | 紫荆关 | 1 769 | 489.9 | 937.1 | 39.4 | 1.91 | 12.7% |
#8 | 中唐梅 | 3 450 | 468.6 | 957.6 | 53.5 | 2.04 | 15.1% |
Table 2 Basic information of the eight sub-basins
流域编号 | 水文站 | 流域面积/km2 | 年均降水量/mm | 年均潜在蒸散量/mm | 年均径流深/mm | 干旱指数 | 耕地占比 |
---|---|---|---|---|---|---|---|
#1 | 城头会 | 1 613 | 435.5 | 966.7 | 35.7 | 2.22 | 28.7% |
#2 | 倒马关 | 2 746 | 458.4 | 960.9 | 52.3 | 2.10 | 17.8% |
#3 | 阜平 | 2 190 | 526.9 | 958.2 | 53.8 | 1.82 | 0.6% |
#4 | 王快水库 | 3 758 | 528.1 | 958.7 | 94.9 | 1.82 | 1.3% |
#5 | 西大洋水库 | 4 414 | 476.2 | 955.3 | 59.6 | 2.01 | 15.6% |
#6 | 张坊 | 4 937 | 486.4 | 928.3 | 67.1 | 1.91 | 5.5% |
#7 | 紫荆关 | 1 769 | 489.9 | 937.1 | 39.4 | 1.91 | 12.7% |
#8 | 中唐梅 | 3 450 | 468.6 | 957.6 | 53.5 | 2.04 | 15.1% |
流域编号 | 水文站 | εQP | |||
---|---|---|---|---|---|
#1 | 城头会 | 0.04~0.72 | 0.28~0.96 | 0.50 | 0.50 |
#2 | 倒马关 | 1.12~1.60 | -0.60~-0.12 | 1.39 | -0.39 |
#3 | 阜平 | 1.09~1.38 | -0.38~-0.09 | 1.21 | -0.21 |
#4 | 王快水库 | 1.26~4.33 | -3.33~-0.26 | 2.61 | -1.61 |
#5 | 西大洋水库 | 1.30~3.72 | -2.72~-0.30 | 2.16 | -1.16 |
#6 | 张坊 | 1.16~2.12 | -1.12~-0.16 | 1.67 | -0.67 |
#7 | 紫荆关 | 1.17~2.01 | -1.01~-0.17 | 1.55 | -0.55 |
#8 | 中唐梅 | 1.28~4.09 | -3.09~-0.28 | 2.41 | -1.41 |
平均值 | 1.69 | -0.69 | |||
变异系数 | 0.38 | -0.94 |
Table 3 Interannual elasticity coefficients calculated for eight sub-basins
流域编号 | 水文站 | εQP | |||
---|---|---|---|---|---|
#1 | 城头会 | 0.04~0.72 | 0.28~0.96 | 0.50 | 0.50 |
#2 | 倒马关 | 1.12~1.60 | -0.60~-0.12 | 1.39 | -0.39 |
#3 | 阜平 | 1.09~1.38 | -0.38~-0.09 | 1.21 | -0.21 |
#4 | 王快水库 | 1.26~4.33 | -3.33~-0.26 | 2.61 | -1.61 |
#5 | 西大洋水库 | 1.30~3.72 | -2.72~-0.30 | 2.16 | -1.16 |
#6 | 张坊 | 1.16~2.12 | -1.12~-0.16 | 1.67 | -0.67 |
#7 | 紫荆关 | 1.17~2.01 | -1.01~-0.17 | 1.55 | -0.55 |
#8 | 中唐梅 | 1.28~4.09 | -3.09~-0.28 | 2.41 | -1.41 |
平均值 | 1.69 | -0.69 | |||
变异系数 | 0.38 | -0.94 |
Fig.4 Distribution of multi-year average evapotranspiration ratio and aridity index for eight sub-basins in Budyko space. ω represents the underlying surface parameter in Fu Baopu’s formula[37].
流域编号 | 水文站 | 参数ω | ||
---|---|---|---|---|
#1 | 城头会 | 2.80 | 2.72 | -1.72 |
#2 | 倒马关 | 2.59 | 2.49 | -1.49 |
#3 | 阜平 | 2.92 | 2.78 | -1.78 |
#4 | 王快水库 | 2.34 | 2.20 | -1.20 |
#5 | 西大洋水库 | 2.56 | 2.45 | -1.45 |
#6 | 张坊 | 2.53 | 2.41 | -1.41 |
#7 | 紫荆关 | 3.08 | 2.96 | -1.96 |
#8 | 中唐梅 | 2.62 | 2.52 | -1.52 |
平均值 | 2.56 | -1.56 | ||
变异系数 | 0.09 | -0.14 |
Table 4 Runoff elasticity coefficients for eight sub-basins at a multi-year average scale
流域编号 | 水文站 | 参数ω | ||
---|---|---|---|---|
#1 | 城头会 | 2.80 | 2.72 | -1.72 |
#2 | 倒马关 | 2.59 | 2.49 | -1.49 |
#3 | 阜平 | 2.92 | 2.78 | -1.78 |
#4 | 王快水库 | 2.34 | 2.20 | -1.20 |
#5 | 西大洋水库 | 2.56 | 2.45 | -1.45 |
#6 | 张坊 | 2.53 | 2.41 | -1.41 |
#7 | 紫荆关 | 3.08 | 2.96 | -1.96 |
#8 | 中唐梅 | 2.62 | 2.52 | -1.52 |
平均值 | 2.56 | -1.56 | ||
变异系数 | 0.09 | -0.14 |
Fig.5 Scatter plots of annual runoff elasticity coefficient and watershed area (a, b), aridity index (E0/P) (c, d) and proportion of cultivated land (e, f)
[1] | HAN P F, WANG X S, ZHOU Y X, et al. Three-dimensional inter-basin groundwater flow toward a groundwater-fed stream: identification, partition, and quantification[J]. Journal of Hydrology, 2024, 629: 130524. |
[2] |
王鹏寿, 许民, 韩海东, 等. 天山南坡阿克苏流域冰川物质平衡及其融水径流对气候变化的响应研究[J]. 地学前缘, 2024, 31(2): 435-446.
DOI |
[3] | 韩鹏飞, 王旭升, 蒋小伟, 等. 跨流域地下水循环研究进展[J]. 地质科技通报, 2023, 42(4): 107-117, 129. |
[4] |
文冬光, 宋健, 刁玉杰, 等. 深部水文地质研究的机遇与挑战[J]. 地学前缘, 2022, 29(3): 11-24.
DOI |
[5] |
宋轩宇, 许民, 康世昌, 等. 基于机器学习的冰冻圈典型流域水文过程模拟研究[J]. 地学前缘, 2023, 30(4): 451-469.
DOI |
[6] | 王旭东, 韩鹏飞, 张锁, 等. 基于HYDRUS模拟的ABCD模型变量及参数物理基础研究[J]. 水文地质工程地质, 2023, 50(5): 20-27. |
[7] | 王旭升, 胡晓农, 金晓媚, 等. 巴丹吉林沙漠地下水与湖泊的相互作用[J]. 地学前缘, 2014, 21(4): 91-99. |
[8] |
胡义明, 陈腾, 罗序义, 等. 基于机器学习模型的淮河流域中长期径流预报研究[J]. 地学前缘, 2022, 29(3): 284-291.
DOI |
[9] | 韩鹏飞, 王旭升, 蒋小伟, 等. 氢氧同位素在地下水流系统的重分布: 从高程效应到深度效应[J]. 水文地质工程地质, 2023, 50(2): 1-12. |
[10] | 韩鹏飞, 王旭升. 利用ABCD模型预测流域水文对极端气候的响应[J]. 人民黄河, 2016, 38(11): 16-22. |
[11] | 林秉南, 赵雪华, 施麟宝. 河口建坝对毗邻海湾潮波影响的计算(二维特征理论法)[J]. 水利学报, 1980, 11(3): 16-26. |
[12] | 张树磊, 杨大文, 杨汉波, 等. 1960—2010年中国主要流域径流量减小原因探讨分析[J]. 水科学进展, 2015, 26(5): 605-613. |
[13] | 尹德超, 王旭清, 王雨山, 等. 近60年来白洋淀流域河川径流演变及湿地生态响应[J]. 湖泊科学, 2022, 34(6): 2122-2133. |
[14] | 张建云, 贺瑞敏, 齐晶, 等. 关于中国北方水资源问题的再认识[J]. 水科学进展, 2013, 24(3): 303-310. |
[15] | 王国庆, 张建云, 管晓祥, 等. 中国主要江河径流变化成因定量分析[J]. 水科学进展, 2020, 31(3): 313-323. |
[16] | 王青, 严登华, 秦天玲, 等. 人类活动对白洋淀干旱的影响[J]. 湿地科学, 2013, 11(4): 475-481. |
[17] | 刘克岩, 张橹, 张光辉, 等. 人类活动对华北白洋淀流域径流影响的识别研究[J]. 水文, 2007, 27(6): 6-10. |
[18] |
胡珊珊, 郑红星, 刘昌明, 等. 气候变化和人类活动对白洋淀上游水源区径流的影响[J]. 地理学报, 2012, 67(1): 62-70.
DOI |
[19] | 周玮, 吕爱锋, 贾绍凤. 白洋淀流域1959年至2008年山区径流量变化规律及其动因分析[J]. 资源科学, 2011, 33(7): 1249-1255. |
[20] | 杨雪琪, 武玮, 郑从奇, 等. 基于Budyko假设的沂河流域径流变化归因识别[J]. 水土保持研究, 2023, 30(2): 100-106. |
[21] | 杜嘉妮, 蔡宜晴, 刘希胜, 等. 基于Budyko假设的湟水径流变化归因识别[J]. 中国农村水利水电, 2022(7): 116-121. |
[22] |
薛帆, 张晓萍, 张橹, 等. 基于Budyko假设和分形理论的水沙变化归因识别: 以北洛河流域为例[J]. 地理学报, 2022, 77(1): 79-92.
DOI |
[23] | 张丽梅, 赵广举, 穆兴民, 等. 基于Budyko假设的渭河径流变化归因识别[J]. 生态学报, 2018, 38(21): 7607-7617. |
[24] | 彭涛, 梅子祎, 董晓华, 等. 基于Budyko假设的汉江流域径流变化归因[J]. 南水北调与水利科技(中英文), 2021, 19(6): 1114-1124. |
[25] | RODERICK M L, FARQUHAR G D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties[J]. Water Resources Research, 2011, 47(12): W00G07. |
[26] | YANG H B, YANG D W. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff[J]. Water Resources Research, 2011, 47(7): W07526. |
[27] | XU X, YANG D, YANG H, et al. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin[J]. Journal of Hydrology, 2014, 510: 530-540. |
[28] | JIANG C, XIONG L H, WANG D B, et al. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters[J]. Journal of Hydrology, 2015, 522: 326-338. |
[29] | HAN P F, ISTANBULLUOGLU E, WAN L, et al. A new hydrologic sensitivity framework for unsteady-state responses to climate change and its application to catchments with croplands in Illinois[J]. Water Resources Research, 2021, 57(8): e2020wr027762. |
[30] | HAN P F, SANKARASUBRAMANIAN A, WANG X S, et al. One-parameter analytical derivation in modified budyko framework for unsteady-state streamflow elasticity in humid catchments[J]. Water Resources Research, 2023, 59(9): e2023wr034725. |
[31] | United Nations Environment Programme (UNEP). World atlas of desertification[M]. London: UNEP, 1992. |
[32] | United Nations Educational, Scientific and Cultural Organization (UNESCO). Map of the world distribution of arid regions: explanatory note[M]. Paris: Man and Biosphere (MAB) Technical Notes, 1979: 54. |
[33] | ELNASHAR A, WANG L J, WU B F, et al. Synthesis of global actual evapotranspiration from 1982 to 2019[J]. Earth System Science Data, 2021, 13(2): 447-480. |
[34] | TU Y, WU S B, CHEN B, et al. A 30 m annual cropland dataset of China from 1986 to 2021[J]. Earth System Science Data, 2024, 16(5): 2297-2316. |
[35] |
贺添, 邵全琴. 基于MOD16产品的我国2001—2010年蒸散发时空格局变化分析[J]. 地球信息科学学报, 2014, 16(6): 979-988.
DOI |
[36] | BUDYKO M I. Climate and life[M]. New York: Academic Press, 1974. |
[37] | 傅抱璞. 论陆面蒸发的计算[J]. 大气科学, 1981, 5(1): 23-31. |
[1] | LIANG Wenxiang, LUO Zhen, CHEN Fulong, WANG Tongxia, AN Jie, LONG Aihua, HE Chaofei. Simulation and prediction of inland river runoff based on CMIP6 multi-model ensemble [J]. Earth Science Frontiers, 2024, 31(6): 450-461. |
[2] | WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan [J]. Earth Science Frontiers, 2024, 31(2): 435-446. |
[3] | SONG Xuanyu, XU Min, KANG Shichang, SUN Liping. Modeling of hydrological processes in cryospheric watersheds based on machine learning [J]. Earth Science Frontiers, 2023, 30(4): 451-469. |
[4] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[5] | HE Chaofei, LUO Chengyan, CHEN Fulong, LONG Aihua, TANG Hao. CMIP6 multi-model prediction of future climate change in the Hotan River Basin [J]. Earth Science Frontiers, 2023, 30(3): 515-528. |
[6] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[7] | HU Zhaobin, WEI Jiangong, XIE Zhiyuan, ZHANG Huodai, ZHONG Guangfa. Research progress in global sea level change: A critical review on international ocean drilling [J]. Earth Science Frontiers, 2022, 29(4): 10-24. |
[8] | LIU Zhifei, CHEN Jianfang, SHI Xuefa. Deep-sea sediments and global change: Research frontiers and challenges [J]. Earth Science Frontiers, 2022, 29(4): 1-9. |
[9] | NI Yanhua, LI Minghui, FANG Xiaomin, MENG Fanwei, YAN Maodu, LIU Yingxin. Paleotemperature during the Mid-Pleistocene Transition in western Qaidam Basin: Evidence from fluid inclusions in halite from drill hole SG-1 [J]. Earth Science Frontiers, 2021, 28(6): 115-124. |
[10] | S.K.KRIVONOGOV, T.I.KENSHINBAY, R.Kh.KURMANBAEV, B.S.KARIMOVA. The key question of the Aral Sea evolution important for understanding its economic, social and ecological values [J]. Earth Science Frontiers, 2021, 28(6): 196-204. |
[11] | WANG Jun, ZHANG Xiao, GAO Yan. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: A review of research progress and prospect [J]. Earth Science Frontiers, 2021, 28(4): 70-82. |
[12] | GUAN Kaiping,TIAN Li,AN Zhihui,YE Qin,,HU Jun,TONG Jinnan. Stratigraphic succession of the Nanhuan Period in the Shennongjia area in western Hubei and its regional correlation. [J]. Earth Science Frontiers, 2016, 23(6): 236-245. |
[13] | YAN Li-Juan, ZHENG Mian-Beng, WEI Le-Jun. Change of the lakes in Tibetan Plateau and its response to climate in the past forty years. [J]. Earth Science Frontiers, 2016, 23(4): 310-323. |
[14] | TU Chao, YANG Zhong-Fang, HOU Jing-Xie, JIA Hua-Ji, ZONG Sai-Feng, LI Biao. Distribution and influencing factors of paddy soil organic carbon content in Chinas major farming areas. [J]. Earth Science Frontiers, 2011, 18(6): 11-19. |
[15] | DAI Shuang, HUANG Yong-Bei, DIAO Jie, SHU Jiang, LIU Dun-Wei, KONG Li, ZHANG Meng-Shen, HU Hong-Fei. The climate change during 1281111905 Ma recorded by the susceptibility of the sediments of Liupanshan Group. [J]. Earth Science Frontiers, 2010, 17(3): 242-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||