Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 456-468.DOI: 10.13745/j.esf.sf.2024.2.20
Previous Articles Next Articles
CHU Yanjia1,2(), HE Baonan1,2, CHEN Zhen1,2, HE Jiangtao1,2,*(
)
Received:
2023-12-27
Revised:
2024-02-27
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
CHU Yanjia, HE Baonan, CHEN Zhen, HE Jiangtao. Research on identifying the outliers of the TDS in shallow groundwater based on the random forest model[J]. Earth Science Frontiers, 2025, 32(2): 456-468.
TDS异常值识别方法 | 异常个数/ 个 | 最小值/ (mg·L-1) | 最大值/ (mg·L-1) | 平均数/ (mg·L-1) | 中位数/ (mg·L-1) | 5%分位数/ (mg·L-1) | 95%分位数/ (mg·L-1) |
---|---|---|---|---|---|---|---|
剔除前 | 217.05 | 2 746.61 | 727.87 | 624.58 | 309.07 | 1 470.30 | |
拉依达准则法剔除后 | 17 | 217.05 | 1 522.68 | 681.15 | 612.65 | 303.20 | 1 269.56 |
Piper三线图+拉依达准则法剔除后 | 125 | 217.05 | 1 522.68 | 671.35 | 609.62 | 285.51 | 1 263.27 |
机器学习法剔除后 | 61 | 217.05 | 1 642.08 | 653.94 | 598.03 | 309.07 | 1 169.69 |
Table 1 Statistical results of the TDS outlier identification
TDS异常值识别方法 | 异常个数/ 个 | 最小值/ (mg·L-1) | 最大值/ (mg·L-1) | 平均数/ (mg·L-1) | 中位数/ (mg·L-1) | 5%分位数/ (mg·L-1) | 95%分位数/ (mg·L-1) |
---|---|---|---|---|---|---|---|
剔除前 | 217.05 | 2 746.61 | 727.87 | 624.58 | 309.07 | 1 470.30 | |
拉依达准则法剔除后 | 17 | 217.05 | 1 522.68 | 681.15 | 612.65 | 303.20 | 1 269.56 |
Piper三线图+拉依达准则法剔除后 | 125 | 217.05 | 1 522.68 | 671.35 | 609.62 | 285.51 | 1 263.27 |
机器学习法剔除后 | 61 | 217.05 | 1 642.08 | 653.94 | 598.03 | 309.07 | 1 169.69 |
[1] |
何宝南, 何江涛, 孙继朝, 等. 区域地下水污染综合评价研究现状与建议[J]. 地学前缘, 2022, 29(3): 51-63.
DOI |
[2] | 郭高轩, 辛宝东, 刘文臣, 等. 我国地下水环境背景值研究综述[J]. 水文地质工程地质, 2010, 37(2): 95-98. |
[3] | 孟凡生, 张铃松, 姚志鹏, 等. 黑龙江流域水环境背景值研究进展[J]. 中国环境监测, 2021, 37(6): 14-20. |
[4] | GAO Y Y, QIAN H, HUO C C, et al. Assessing natural background levels in shallow groundwater in a large semiarid drainage basin[J]. Journal of Hydrology, 2020, 584: 124638. |
[5] | GEMITZI A. Evaluating the anthropogenic impacts ongroundwaters: a methodology based on the determination of natural background levels and threshold values[J]. Environmental Earth Sciences, 2012, 67(8): 2223-2237. |
[6] | 宇庆华, 曹玉和. 地下水化学背景值研究中的异常值判定与处理[J]. 吉林地质, 1991, 10(2): 75-79. |
[7] | 寇文杰, 谢振华, 赵立新, 等. 探讨地下水背景值确定方法及其容易忽视的几个问题[J]. 安徽农业科学, 2013, 41(8): 3603-3605. |
[8] | MOREAU M, DAUGHNEY C. Defining natural baselines for rates of change in New Zealand’s groundwater quality: dealing with incomplete or disparate datasets, accounting for impacted sites, and merging into state of the-environment reporting[J]. Science of the Total Environment, 2021, 755: 143292. |
[9] | MORGENSTERN U, DAUGHNEY C J. Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification: the National Groundwater Monitoring Programme of New Zealand[J]. Journal of Hydrology, 2012, 456/457: 79-93. |
[10] | 耿婷婷, 李颖智, 张涛, 等. 地下水环境背景值研究进展的分析与建议[J]. 环境科学与管理, 2018, 43(5): 33-35. |
[11] | 王磊, 何江涛, 张振国, 等. 基于信息筛选和拉依达准则识别地下水主要组分水化学异常的方法研究[J]. 环境科学学报, 2018, 38(3): 919-929. |
[12] | 张小文, 何江涛, 彭聪, 等. 地下水主要组分水化学异常识别方法对比: 以柳江盆地为例[J]. 环境科学, 2017, 38(8): 3225-3234. |
[13] |
彭聪, 何江涛, 廖磊, 等. 应用水化学方法识别人类活动对地下水水质影响程度: 以柳江盆地为例[J]. 地学前缘, 2017, 24(1): 321-331.
DOI |
[14] | 曹文庚, 付宇, 南天, 等. 机器学习在地下水环境背景值与污染风险评价的应用和展望[J]. 地质学报, 2023, 97 (7): 2408-2424. |
[15] |
SAKO A, OUANGARÉ C A C. Hydrogeochemical characterization and natural background level determination of selected inorganic substances in groundwater from a semi-confined aquifer in Midwestern Burkina Faso, West Africa[J]. Environmental Monitoring and Assessment, 2023, 195(4): 519.
DOI PMID |
[16] | 李晓媛, 张翼龙, 王丽娟, 等. 河套盆地地下水环境背景值研究[J]. 干旱区资源与环境, 2020, 34(3): 180-187. |
[17] | 刘慧文, 姜纪沂, 刘春平, 等. 新疆伊犁河谷平原区地下水环境背景值研究[J]. 南水北调与水利科技, 2016, 14(4): 107-111. |
[18] | 廖磊, 何江涛, 曾颖, 等. 柳江盆地浅层地下水硝酸盐背景值研究[J]. 中国地质, 2016, 43(2): 671-682. |
[19] | 刘左, 潘欢迎. 湖北省平原岗区地下水环境背景值初步研究[J]. 安全与环境工程, 2023, 30(3): 208-221. |
[20] |
廖磊, 何江涛, 彭聪, 等. 地下水次要组分视背景值研究: 以柳江盆地为例[J]. 地学前缘, 2018, 25(1): 267-275.
DOI |
[21] | 何建国, 王莉, 章梅, 等. 徐州沛县地下水应急水源地溶解性总固体(TDS)本底值调查研究[J]. 地下水, 2021, 43(3): 27-29, 65. |
[22] | 刘文波, 冯翠娥, 高存荣. 河套平原地下水环境背景值[J]. 地学前缘, 2014, 21(4): 147-157. |
[23] | 曾颖. 秦皇岛柳江盆地浅层地下水常规组分背景值研究[D]. 北京: 中国地质大学(北京), 2015. |
[24] | 张小文, 何江涛, 刘丹丹, 等. 滹沱河冲洪积扇浅层地下水水质外界胁迫作用分析[J]. 水文地质工程地质, 2018, 45(5): 48-56. |
[25] | HE B N, HE J T, ZENG Y, et al. Coupling of multi-hydrochemical and statistical methods for identifying apparent background levels of major components and anthropogenic anomalous activities in shallow groundwater of the Liujiang Basin, China[J]. Science of the Total Environment, 2022, 838: 155905. |
[26] | PENG C, HE J T, WANG M L, et al. Identifying and assessing human activity impacts on groundwater quality throughhydrogeochemical anomalies and NO3-, NH4+, and COD contamination: a case study of the Liujiang River Basin, Hebei Province, P.R. China[J]. Environmental Science and Pollution Research International, 2018, 25(4): 3539-3556. |
[27] | 单晓杰, 何江涛, 张小文, 等. 基于人为活动影响识别的区域地下水水质演化预测: 以石家庄地区为例[J]. 现代地质, 2020, 34(1): 189-198. |
[28] | HUANG G X, SUN J C, ZHANG Y, et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science ofthe Total Environment, 2013, 463/464: 209-221. |
[29] | 王小平, 张飞, 于海洋, 等. 基于多元线性模型、支持向量机(SVM)模型和地统计方法的地表水溶解性总固体(TDS)估算及其精度对比: 以艾比湖流域为例[J]. 环境化学, 2017, 36(3): 666-676. |
[30] | ALDREES A, JAVED M F, BAKHEIT TAHA A T, et al. Evolutionary and ensemble machine learning predictive models for evaluation of water quality[J]. Journal of Hydrology: Regional Studies, 2023, 46: 101331. |
[31] | JAMEI M, AHMADIANFAR I, CHU X F, et al. Prediction of surface water total dissolved solids using hybridized wavelet-multigene genetic programming: new approach[J]. Journal of Hydrology, 2020, 589: 125335. |
[32] | SHVARTSEV S L. Geochemistry of fresh groundwater in the main landscape zones of the Earth[J]. Geochemistry International, 2008, 46(13): 1285-1398. |
[33] | XUN Z, HUA Z, LIANG Z, et al. Some factors affecting TDS and pH values in groundwater of the Beihai coastal area in Southern Guangxi, China[J]. Environmental Geology, 2007, 53(2): 317-323. |
[34] |
张小文, 何江涛, 黄冠星. 石家庄地区浅层地下水铁锰分布特征及影响因素分析[J]. 地学前缘, 2021, 28(4): 206-218.
DOI |
[35] | SARKAR S, MUKHERJEE A, GUPTA S D, et al. Predicting regional-scale elevated groundwater nitrate contamination risk using machine learning on natural and human-induced factors[J]. ACS ES&T Engineering, 2022, 2(4): 689-702. |
[36] |
张焕宝, 贺海洋, 杨仕教, 等. 基于机器学习的埃达克质岩构造背景判别研究[J]. 地学前缘, 2024, 31(4): 417-428.
DOI |
[37] | KNOLL L, BREUER L, BACH M. Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning[J]. Environmental Research Letters, 2020, 15(6): 064004. |
[38] | 张林泉. 线性回归模型的置信区间与预测区间应用分析[J]. 吉首大学学报(自然科学版), 2013, 34(6): 15-18. |
[39] | PACHECO F, VAN DER WEIJDEN C H. Contributions of water-rock interactions to the composition of groundwater in areas with a sizeable anthropogenic input: a case study of the waters of the Fundão area, central Portugal[J]. Water Resources Research, 1996, 32(12): 3553-3570. |
[40] | RAHMAN A, MONDAL N C, FAUZIA F. Arsenic enrichment and its natural background in groundwater at the proximity of active floodplains of Ganga River, Northern India[J]. Chemosphere, 2021, 265: 129096. |
[41] | 陈荦. 沙颍河流域地下水流与硝酸盐运移模拟及其对地表水污染的贡献研究[D]. 南京: 南京大学, 2013. |
[42] | HE B N, HE J T, WANG L, et al. Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: based on least squares surface fitting model[J]. Water Research, 2019, 163: 114880. |
[43] | XIA Q W, HE J T, HE B N, et al. Effect and genesis of soil nitrogen loading and hydrogeological conditions on the distribution of shallow groundwater nitrogen pollution in the North China Plain[J]. Water Research, 2023, 243: 120346. |
[44] | CUI R Y, ZHANG D, HU W L, et al. Nitrogen in soil, manure and sewage has become a major challenge in controlling nitrate pollution in groundwater around plateau lakes, Southwest China[J]. Journal of Hydrology, 2023, 620: 129541. |
[1] | ZHANG Yifan, LIU Haiyan, DONG Shu, GUO Huaming, WANG Zhen, SUN Zhanxue, ZHOU Zhongkui. Geochemical characteristics of rare earth elements in acid mine drainage and sediments from the Xiangshan uranium mine tailings area [J]. Earth Science Frontiers, 2025, 32(2): 412-429. |
[2] | CHEN Hongwei, ZHU Zhichao, LI Zhengzui, YU Weihou, ZHOU Hui, YU Shasha, PENG Xiangxun. Interaction between the river and groundwater in the Dongting Lake during extreme climate: Taking the Zijiang River segment in the Dongting Lake as an example [J]. Earth Science Frontiers, 2025, 32(2): 445-455. |
[3] | WANG Wei, CHENG Xing, GAO Xubo, TIAN Zhenhuan, LIU Chunhua, WU Zhanhui, LI Chengcheng, KONG Shuqiong. The genesis of groundwater chemistry in Yellow River Delta: A case study of Gudao Town, Dongying City, Shandong Province [J]. Earth Science Frontiers, 2025, 32(2): 469-483. |
[4] | OUYANG Kaigao, JIANG Xiaowei, DU Yanan, ZHANG Zhiyuan, HAN Pengfei, WU Yenan, WANG Xusheng. Mechanism of groundwater recharge at different depths during the “23·7” heavy rainfall event in North China: A case study of Xiong’an New Area [J]. Earth Science Frontiers, 2025, 32(1): 432-439. |
[5] | LI Chao, CHENG Donghui, MA Chenglong, QIAO Xiaoying, HUANG Mengnan, WANG Yishi, YANG Yinke. Characteristics of water density variation in capillaries of different diameters and its implications for soil water density changes [J]. Earth Science Frontiers, 2025, 32(1): 440-448. |
[6] | YU Tao, HAN Pengfei, WANG Xusheng, JIANG Xiaowei, ZHANG Zhiyuan, WAN Li. Response to climate change of runoff at different time scales in the Baiyangdian Lake Basin based on the Budyko model [J]. Earth Science Frontiers, 2025, 32(1): 449-458. |
[7] | WANG Guiling, LIN Wenjing. The thermal status of China’s land areas and heat-control factors [J]. Earth Science Frontiers, 2024, 31(6): 1-18. |
[8] | LI Jiexiang, XU Yadong, LIN Wenjing. The applicability of traditional chemical geothermometers [J]. Earth Science Frontiers, 2024, 31(6): 145-157. |
[9] | WANG Wanli, DUAN Yajuan, ZHANG Wei, ZHU Xi, MA Feng, WANG Guiling. Control factors and guidelines for urban-scale shallow geothermal energy development based on control units: An example from Xiong’an [J]. Earth Science Frontiers, 2024, 31(6): 158-172. |
[10] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[11] | ZHAO Kan, SHEN Jian, CAI Yun, ZHAO Sumin. Insights into the root causes of difficulties in reinjection in sandstone geothermal reservoir and countermeasures [J]. Earth Science Frontiers, 2024, 31(6): 196-203. |
[12] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
[13] | WU Qing, HUANG Fen, GUO Yongli, XIAO Qiong, SUN Ping’an, YANG Hui, BAI Bing. Geochemical characteristics of trace elements and their implications in the small karst basin, Southwest China [J]. Earth Science Frontiers, 2024, 31(5): 397-408. |
[14] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[15] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||