Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 392-407.DOI: 10.13745/j.esf.sf.2025.3.40
Previous Articles Next Articles
YANG Ruihan(), YANG Ye*(
), CAO Zhenping, XU Sheng
Received:
2025-02-07
Revised:
2025-02-26
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
YANG Ruihan, YANG Ye, CAO Zhenping, XU Sheng. Progress and perspectives of meteoric 10Be applications in Earth Science[J]. Earth Science Frontiers, 2025, 32(3): 392-407.
[1] | PHILLIPS F M, ARGENTO D C, BALCO G, et al. The CRONUS-Earth project: a synthesis[J]. Quaternary Geochronology, 2016, 31: 119-154. |
[2] | BROWN L, PAVICH M J, HICKMAN R, et al. Erosion of the eastern United States observed with 10Be[J]. Earth Surface Processes and Landforms, 1988, 13(5): 441-457. |
[3] | GOSSE J C, PHILLIPS F M. Terrestrial in situ cosmogenic nuclides: theory and application[J]. Quaternary Science Reviews, 2001, 20(14): 1475-1560. |
[4] | DUNAI T J. Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences[M]. Cambridge: Cambridge University Press, 2010. |
[5] | SCHAEFER J M, CODILEAN A T, WILLENBRING J K, et al. Cosmogenic nuclide techniques[J]. Nature Reviews Methods Primers, 2022, 2(1): 18. |
[6] | LAL D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models[J]. Earth and Planetary Science Letters, 1991, 104(2): 424-439. |
[7] | WILLENBRING J K, VON BLANCKENBURG F. Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics[J]. Earth-Science Reviews, 2010, 98(1): 105-122. |
[8] | CHMELEFF J, VON BLANCKENBURG F, KOSSERT K, et al. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting[J]. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2010, 268(2): 192-199. |
[9] | KORSCHINEK G, BERGMAIER A, FAESTERMANN T, et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(2): 187-191. |
[10] |
RAISBECK G, YIOU F, FRUNEAU M, et al. Beryllium-10 mass spectrometry with a cyclotron[J]. Science, 1978, 202(4364): 215-217.
PMID |
[11] | RAISBECK G M, YIOU F, FRUNEAU M, et al. Measurement of 10Be in 1000- and 5000-year-old Antarctic ice[J]. Nature, 1978, 275(5682): 731-733. |
[12] | MARRERO S M, PHILLIPS F M, BORCHERS B, et al. Cosmogenic nuclide systematics and the CRONUScalc program[J]. Quaternary Geochronology, 2016, 31: 160-187. |
[13] | WU Z, ZHOU W, LU X, et al. BeO preparation and AMS measurement result for loess samples[J]. Nuclear Techniques, 2008, 31(6): 427-432. |
[14] | DONG K, LANG Y, HU N, et al. The new AMS facility at Tianjin University[J]. Radiation Detection Technology and Methods, 2018, 2: 1-6. |
[15] | PAVICH M J, BROWN L, HARDEN J, et al. 10Be distribution in soils from Merced River terraces, California[J]. Geochimica et Cosmochimica Acta, 1986, 50(8): 1727-1735. |
[16] | BACON A R, RICHTER D D, BIERMAN P R, et al. Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve[J]. Geology, 2012, 40(9): 847-850. |
[17] | MCKEAN J A, DIETRICH W E, FINKEL R C, et al. Quantification of soil production and downslope creep rates from cosmogenic 10Be accumulations on a hillslope profile[J]. Geology, 1993, 21(4): 343-346. |
[18] | WITTMANN H, VON BLANCKENBURG F, DANNHAUS N, et al. A test of the cosmogenic 10Be (meteoric)/9Be proxy for simultaneously determining basin-wide erosion rates, denudation rates, and the degree of weathering in the Amazon Basin[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(12): 2498-2528. |
[19] | DANNHAUS N, WITTMANN H, KRÁM P, et al. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric 10Be/9Be ratios[J]. Geochimica et Cosmochimica Acta, 2018, 222: 618-641. |
[20] | DENG K, WITTMANN H, YANG S, et al. The upper limit of denudation rate measurement from cosmogenic 10Be (meteoric)/9Be ratios in Taiwan[J]. Journal of Geophysical Research: Earth Surface, 2021, 126(10): e2021JF006221. |
[21] | YANG Y, ZHANG S C, ZHANG J X, et al. Quantifying denudation rates and sediment recycling of low-relief, high-elevation landscapes using in-situ and meteoric cosmogenic nuclides[J]. Geochimica et Cosmochimica Acta, 2024, 370: 78-88. |
[22] | VON BLANCKENBURG F, BOUCHEZ J, WITTMANN H. Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio[J]. Earth and Planetary Science Letters, 2012, 351/352: 295-305. |
[23] | BROWN E T, EDMOND J M, RAISBECK G M, et al. Beryllium isotope geochemistry in tropical river basins[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1607-1624. |
[24] | VON BLANCKENBURG F, BOUCHEZ J. River fluxes to the sea from the ocean’s 10Be/9Be ratio[J]. Earth and Planetary Science Letters, 2014, 387: 34-43. |
[25] | DENG K, RICKLI J, SUHRHOFF T J, et al. Dominance of benthic fluxes in the oceanic beryllium budget and implications for paleo-denudation records[J]. Science Advances, 2023, 9(23): eadg3702. |
[26] | LI S, GOLDSTEIN S L, RAYMO M E. Neogene continental denudation and the beryllium conundrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(42). |
[27] | KONG W, ZHOU L, ASTERTEAM. Tracing water masses and assessing boundary scavenging intensity with beryllium isotopes in the northern South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(7): e2021JC017236. |
[28] | FRANK M, BACKMAN J, JAKOBSSON M, et al. Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years: stratigraphic and paleoclimatic implications[J]. Paleoceanography, 2008, 23(1): PA1S02. |
[29] | CUI L F, HU Y, DONG K J, et al. 10Be/9Be constrain of varying weathering rate since 5 Ma: evidence from a Co-rich ferromanganese crust in the western Pacific[J]. Science Bulletin, 2021, 66(7): 664-666. |
[30] | SEGL M, MANGINI A, BEER J, et al. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events[J]. Paleoceanography, 1989, 4(5): 511-530. |
[31] | NISHI K, USUI A, NAKASATO Y, et al. Formation age of the dual structure and environmental change recorded in hydrogenetic ferromanganese crusts from Northwest and Central Pacific seamounts[J]. Ore Geology Reviews, 2017, 87: 62-70. |
[32] | USUI A, NISHI K, SATO H, et al. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500 m[J]. Ore Geology Reviews, 2017, 87: 71-87. |
[33] | WAGNER G, BEER J, MASARIK J, et al. Presence of the solar de Vries cycle (-205 years) during the last ice age[J]. Geophysical Research Letters, 2001, 28(2): 303-306. |
[34] | SIMON Q, BOURLÈS D L, BASSINOT F, et al. Authigenic 10Be/9Be ratio signature of the Matuyama-Brunhes boundary in the Montalbano Jonico marine succession[J]. Earth and Planetary Science Letters, 2017, 460: 255-267. |
[35] | ZHOU W, KONG X, DU Y, et al. 10Be indicator for the Matuyama-Gauss magnetic polarity reversal from Chinese loess[J]. Geophysical Research Letters, 2023, 50(8): e2022GL102486. |
[36] | RAISBECK G M, YIOU F, CATTANI O, et al. 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core[J]. Nature, 2006, 444(7115): 82-84. |
[37] | WITTMANN H, BOUCHEZ J, CALMELS D, et al. Denudation and weathering rates of carbonate landscapes from meteoric 10Be/9Be ratios[J]. Journal of Geophysical Research: Earth Surface, 2024, 129(9): e2024JF007638. |
[38] | MUSCHELER R, BEER J, WAGNER G, et al. Changes in deep-water formation during the Younger Dryas event inferred from 10Be and 14C records[J]. Nature, 2000, 408(6812): 567-570. |
[39] | VONMOOS M, BEER J, MUSCHELER R. Large variations in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project ice core[J]. Journal of Geophysical Research (Space Physics), 2006, 111(A10): A10105. |
[40] | WILLENBRING J K, VON BLANCKENBURG F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling[J]. Nature, 2010, 465(7295): 211-214. |
[41] | BECK J W, ZHOU W, LI C, et al. A 550000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391): 877-881. |
[42] | ZHOU W, KONG X, PATERSON G A, et al. Eccentricity-paced geomagnetic field and monsoon rainfall variations over the last 870 kyr[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(17): e2211495120. |
[43] | CAO Z P, YANG Y, XU S, et al. Authigenic beryllium isotopes reveal fluctuations in the East Asian monsoon over the past two millennia[J]. Quaternary Science Reviews, 2023, 306: 108043. |
[44] | MASARIK J, REEDY R C. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations[J]. Earth and Planetary Science Letters, 1995, 136(3/4): 381-395. |
[45] | MASARIK J, BEER J. An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D11): D11103. |
[46] | LAL D, PETERS B. Cosmic ray produced radioactivity on the Earth[M]. New York: Springer, 1967: 551-612. |
[47] | MASARIK J, BEER J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D10): 12099-12111. |
[48] | RAISBECK G, YIOU F, FRUNEAU M, et al. Cosmogenic 10Be/7Be as a probe of atmospheric transport processes[J]. Geophysical Research Letters, 1981, 8(9): 1015-1018. |
[49] | YOU C F, LEE T, LI Y H. The partition of Be between soil and water[J]. Chemical Geology, 1989, 77(2): 105-118. |
[50] | CAILLET S, ARPAGAUS P, MONNA F, et al. Factors controlling 7Be and 210Pb atmospheric deposition as revealed by sampling individual rain events in the region of Geneva, Switzerland[J]. Journal of Environmental Radioactivity, 2001, 53(2): 241-256. |
[51] | PRILLER A, BERGER M, GÄGGELER H W, et al. Accelerator mass spectrometry of particle-bound 10Be[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223: 601-607. |
[52] | HEIKKILÄ S, SEIKKALA S. On non-absolute functional volterra integral equations and impulsive differential equations in ordered banach spaces[J]. Electronic Journal of Differential Equations, 2008, 2008: 1-11. |
[53] | BLAKE W H, WALLING D E, HE Q. Using cosmogenic beryllium-7 as a tracer in sediment budget investigations[J]. Geografiska Annaler: Series A, Physical Geography, 2002, 84(2): 89-102. |
[54] | ZHANG J X, YANG Y, DONG K J, et al. In-situ and meteoric cosmogenic 10Be constraints on coupling chemical weathering and denudation in monolithologic catchments[J]. Global and Planetary Change, 2025(accepted). |
[55] | SIMON Q, BOURLÈS D L, THOUVENY N, et al. Cosmogenic signature of geomagnetic reversals and excursions from the Réunion event to the Matuyama-Brunhes transition (0.7-2.14 Ma interval)[J]. Earth and Planetary Science Letters, 2018, 482: 510-524. |
[56] | SIMON Q, THOUVENY N, BOURLÈS D L, et al. Authigenic 10Be/9Be ratio signatures of the cosmogenic nuclide production linked to geomagnetic dipole moment variation since the Brunhes/Matuyama boundary[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(11): 7716-7741. |
[57] | WITTMANN H, VON BLANCKENBURG F, MOHTADI M, et al. The competition between coastal trace metal fluxes and oceanic mixing from the 10Be/9Be ratio: implications for sedimentary records[J]. Geophysical Research Letters, 2017, 44(16): 8443-8452. |
[58] | BERNHARDT A, OELZE M, BOUCHEZ J, et al. 10Be/9Be ratios reveal marine authigenic clay formation[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086061. |
[59] | SPROSON A D, YOKOYAMA Y, MIYAIRI Y, et al. Near-synchronous Northern Hemisphere and Patagonian Ice Sheet variation over the last glacial cycle[J]. Nature Geoscience, 2024, 17(5): 450-457. |
[60] | DIBB J E, MEEKER L D, FINKEL R C, et al. Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D6): 12855-12864. |
[61] | JORDAN C E, DIBB J E, FINKEL R C. 10Be/7Be tracer of atmospheric transport and stratosphere-troposphere exchange[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D8): 4234. |
[62] | HEIKKILÄ U, BEER J, ALFIMOV V. Beryllium-10 and beryllium-7 in precipitation in Dübendorf (440 m) and at Jungfraujoch (3580 m), Switzerland (1998-2005)[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D11): D11104. |
[63] | GRALY J A, REUSSER L J, BIERMAN P R. Short and long-term delivery rates of meteoric 10Be to terrestrial soils[J]. Earth and Planetary Science Letters, 2011, 302(3): 329-336. |
[64] | MANN M, BEER J, STEINHILBER F, et al. Variations in the depositional fluxes of cosmogenic beryllium on short time scales[J]. Atmospheric Environment, 2011, 45(17): 2836-2841. |
[65] | DENG K, WITTMANN H, VON BLANCKENBURG F. The depositional flux of meteoric cosmogenic 10Be from modeling and observation[J]. Earth and Planetary Science Letters, 2020, 550: 116530. |
[66] | OUIMET W, DETHIER D, BIERMAN P, et al. Spatial and temporal variations in meteoric 10Be inventories and long-term deposition rates, Colorado Front Range[J]. Quaternary Science Reviews, 2015, 109: 1-12. |
[67] | REUSSER L, GRALY J, BIERMAN P, et al. Calibrating a long-term meteoric 10Be accumulation rate in soil[J]. Geophysical Research Letters, 2010, 37(19): L19403. |
[68] | MAHER K, VON BLANCKENBURG F. Surface ages and weathering rates from 10Be (meteoric) and 10Be/9Be: insights from differential mass balance and reactive transport modeling[J]. Chemical Geology, 2016, 446: 70-86. |
[69] | DIXON J L, CHADWICK O A, PAVICH M J. Climatically controlled delivery and retention of meteoric 10Be in soils[J]. Geology, 2018, 46(10): 899-902. |
[70] | MONAGHAN M, KRISHNASWAMI S, THOMAS J. 10Be concentrations and the long-term fate of particle-reactive nuclides in five soil profiles from California[J]. Earth and Planetary Science Letters, 1983, 65(1): 51-60. |
[71] | MAEJIMA Y, MATSUZAKI H, HIGASHI T. Application of cosmogenic 10Be to dating soils on the raised coral reef terraces of Kikai Island, Southwest Japan[J]. Geoderma, 2005, 126(3): 389-399. |
[72] | EGLI M, BRANDOVÁ D, BÖHLERT R, et al. 10Be inventories in Alpine soils and their potential for dating land surfaces[J]. Geomorphology, 2010, 119(1): 62-73. |
[73] | SINGLETON A A, SCHMIDT A H, BIERMAN P R, et al. Effects of grain size, mineralogy, and acid-extractable grain coatings on the distribution of the fallout radionuclides 7Be, 10Be, 137Cs, and 210Pb in river sediment[J]. Geochimica et Cosmochimica Acta, 2017, 197: 71-86. |
[74] | WITTMANN H, VON BLANCKENBURG F, BOUCHEZ J, et al. The dependence of meteoric 10Be concentrations on particle size in Amazon River bed sediment and the extraction of reactive 10Be/9Be ratios[J]. Chemical Geology, 2012, 318/319: 126-138. |
[75] | STIER P, FEICHTER J, KINNE S, et al. The aerosol-climate model ECHAM5-HAM[J]. Atmospheric Chemistry and Physics, 2005, 5(4): 1125-1156. |
[76] | FIELD C V, SCHMIDT G A, KOCH D, et al. Modeling production and climate-related impacts on 10Be concentration in ice cores[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D15): D15107. |
[77] | HEIKKILÄ U, BEER J, ABREU J, et al. On the atmospheric transport and deposition of the cosmogenic radionuclides (10Be): a review[J]. Space Science Reviews, 2013, 176: 321-332. |
[78] | HEIKKILÄ U, BEER J, FEICHTER J. Meridional transport and deposition of atmospheric 10Be[J]. Atmospheric Chemistry and Physics, 2009, 9(2): 515-527. |
[79] | HEIKKILÄ U, VON BLANCKENBURG F. The global distribution of Holocene meteoric 10Be fluxes from atmospheric models: distribution maps for terrestrial Earth’s surface applications[J]. GFZ Data Services, 2015, 10. |
[80] |
DE VRIES H. Atomic bomb effect: variation of radiocarbon in plants, shells, and snails in the past 4 years[J]. Science, 1958, 128(3318): 250-251.
PMID |
[81] | REIMER P J, BARD E, BAYLISS A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. |
[82] | SIMON Q, THOUVENY N, BOURLÈS D L, et al. Increased production of cosmogenic 10Be recorded in oceanic sediment sequences: information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama-Brunhes transition[J]. Earth and Planetary Science Letters, 2018, 489: 191-202. |
[83] | FRANK M, SCHWARZ B, BAUMANN S, et al. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments[J]. Earth and Planetary Science Letters, 1997, 149(1/2/3/4): 121-129. |
[84] | CARCAILLET J, BOURLÈS D L, THOUVENY N, et al. A high resolution authigenic 10Be/9Be record of geomagnetic moment variations over the last 300 ka from sedimentary cores of the Portuguese margin[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 397-412. |
[85] | CARCAILLET J T, THOUVENY N, BOURLES D L. Geomagnetic moment instability between 0.6 and 1.3 Ma from cosmonuclide evidence[J]. Geophysical Research Letters, 2003, 30(15): 1792. |
[86] | LEDUC G, THOUVENY N, BOURLÈS D L, et al. Authigenic 10Be/9Be signature of the Laschamp excursion: a tool for global synchronisation of paleoclimatic archives[J]. Earth and Planetary Science Letters, 2006, 245(1): 19-28. |
[87] | MÉNABRÉAZ L, BOURLÈS D L, THOUVENY N. Amplitude and timing of the Laschamp geomagnetic dipole low from the global atmospheric 10Be overproduction: contribution of authigenic 10Be/9Be ratios in west equatorial Pacific sediments[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B11): B1101. |
[88] | MÉNABRÉAZ L, THOUVENY N, BOURLÈS D L, et al. The geomagnetic dipole moment variation between 250 and 800 ka BP reconstructed from the authigenic 10Be/9Be signature in west equatorial Pacific sediments[J]. Earth and Planetary Science Letters, 2014, 385: 190-205. |
[89] | MÉNABRÉAZ L, THOUVENY N, BOURLÈS D, et al. The Laschamp geomagnetic dipole low expressed as a cosmogenic 10Be atmospheric overproduction at-41 ka[J]. Earth and Planetary Science Letters, 2011, 312(3/4): 305-317. |
[90] | VALET J P, BASSINOT F, SIMON Q, et al. Constraining the age of the last geomagnetic reversal from geochemical and magnetic analyses of Atlantic, Indian, and Pacific Ocean sediments[J]. Earth and Planetary Science Letters, 2019, 506: 323-331. |
[91] | KIM K J, NAM S I. Climatic signals from the 10Be records of the Korean marine sediments[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(7/8): 1248-1252. |
[92] |
刘志飞, 陈建芳, 石学法. 深海沉积与全球变化研究的前缘与挑战[J]. 地学前缘, 2022, 29(4): 1-9.
DOI |
[93] | 孔祥辉, 周卫健, 武振坤, 等. 大气生成宇宙成因核素10Be在中国黄土中的应用研究进展[J]. 地球环境学报, 2016, 7: 227-237. |
[94] | 鲜锋, 周卫健, 武振坤, 等. 中国黄土中 Blake 地磁极性漂移事件记录的空间对比[J]. 地球环境学报, 2012, 3: 770-780. |
[95] | 周卫健, 孔祥辉, 鲜锋, 等. 中国黄土10Be重建古地磁场变化史的初步研究[J]. 地球环境学报, 2010, 1: 20-27. |
[96] | ZHOU W, DU Y, ZHOU X, et al. Chinese loess 10Be records for the Jaramillo polarity subchron[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2025, 659: 112673. |
[97] | GU Z Y, LAL D, LIU T S, et al. Five million year 10Be record in Chinese loess and red-clay: climate and weathering relationships[J]. Earth and Planetary Science Letters, 1996, 144(1): 273-287. |
[98] | ZHOU W, PRILLER A, BECK J W, et al. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of 10Be[J]. Radiocarbon, 2007, 49(1): 137-158. |
[99] | 李翠林, 侯书贵. 雪冰中宇宙成因核素10Be 在第四纪研究中的潜在应用[J]. 极地研究, 2002, 14(3): 234. |
[100] |
MCCORKELL R, FIREMAN E, LANGWAY JR C. Aluminum-26 and beryllium-10 in Greenland ice[J]. Science, 1967, 158(3809): 1690-1692.
PMID |
[101] | WAGNER G, MASARIK J, BEER J, et al. Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 172(1/2/3/4): 597-604. |
[102] | MCCRACKEN K G. Geomagnetic and atmospheric effects upon the cosmogenic 10Be observed in polar ice[J]. Journal of Geophysical Research (Space Physics), 2004, 109(A4): A04101. |
[103] | BERGGREN A M, BEER J, POSSNERT G, et al. A 600-year annual 10Be record from the NGRIP ice core, Greenland[J]. Geophysical Research Letters, 2009, 36: L11801. |
[104] | STEINHILBER F, ABREU J A, BEER J, et al. 9400 years of cosmic radiation and solar activity from ice cores and tree rings[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 5967-5971. |
[105] |
PALEARI C I, MEKHALDI F, ADOLPHI F, et al. Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP[J]. Nature Communications, 2022, 13(1): 214.
DOI PMID |
[106] | NILSSON A, NGUYEN L, PANOVSKA S, et al. Holocene solar activity inferred from global and hemispherical cosmic-ray proxy records[J]. Nature Geoscience, 2024, 17(7): 654-659. |
[107] | RAHAMAN W, WITTMANN H, VON BLANCKENBURG F. Denudation rates and the degree of chemical weathering in the Ganga River basin from ratios of meteoric cosmogenic 10Be to stable 9Be[J]. Earth and Planetary Science Letters, 2017, 469: 156-169. |
[108] | WITTMANN H, OELZE M, ROIG H, et al. Are seasonal variations in river-floodplain sediment exchange in the lower Amazon River basin resolvable through meteoric cosmogenic 10Be to stable 9Be ratios?[J]. Geomorphology, 2018, 322: 148-158. |
[109] | CHENGDE S, BEER J, TUNGSHENG L, et al. 10Be in Chinese loess[J]. Earth and Planetary Science Letters, 1992, 109(1/2): 169-177. |
[110] | SHEN C, LIU T. 10Be record in the Late Pleistocene loess deposits[J]. Quaternary Sciences, 1989, 9(2): 169-176. |
[111] | BARG E, LAL D, PAVICH M J, et al. Beryllium geochemistry in soils: evaluation of 10Be/9Be ratios in authigenic minerals as a basis for age models[J]. Chemical Geology, 1997, 140(3): 237-258. |
[112] | JAGERCIKOVA M, CORNU S, BOURLÈS D, et al. Understanding long-term soil processes using meteoric 10Be: a first attempt on loessic deposits[J]. Quaternary Geochronology, 2015, 27: 11-21. |
[113] | KOWALSKA J B, EGLI M, VÖGTLI M, et al. Meteoric 10Be as a tracer of soil redistribution rates and reconstruction tool of loess-mantled soils (SW, Poland)[J]. Geoderma, 2023, 433: 116451. |
[114] | GRALY J A, BIERMAN P R, REUSSER L J, et al. Meteoric 10Be in soil profiles-a global meta-analysis[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6814-6829. |
[115] | LOBA A, WAROSZEWSKI J, SYKUŁA M, et al. Meteoric 10Be, 137Cs and 239+240Pu as tracers of long- and medium-term soil erosion: a review[J]. Minerals, 2022, 12(3): 359. |
[116] | MUSSO A, TIKHOMIROV D, PLÖTZE M L, et al. Soil formation and mass redistribution during the Holocene using meteoric 10Be, soil chemistry and mineralogy[J]. Geosciences, 2022, 12(2): 99. |
[117] | BINNIE S A, NISHIIZUMI K, WELTEN K C, et al. Lunar surface processes inferred from cosmogenic radionuclides in Apollo 16 double drive core 68002/68001[J]. Geochimica et Cosmochimica Acta, 2019, 244: 336-351. |
[118] | PORTENGA E W, BIERMAN P R, TRODICK C D, JR., et al. Erosion rates and sediment flux within the Potomac River basin quantified over millennial timescales using beryllium isotopes[J]. GSA Bulletin, 2019, 131(7/8): 1295-1311. |
[1] |
LI Yang, LI Xiaoguang, CHEN Chang, CUI Xiangdong, LAI Peng, GUO Pengchao, REN Ni, LIU Yang, QI Xuechen, GUO Meiling.
Reservoir characteristics and evaluation of fine-grained sedimentary rocks in E2 |
[2] | PAN Shaojun, ZHANG Jianfang, CHEN Xiaoyou, MA Junxiang, CAI Xiaoliang, HUANG Guocheng. The formation age and origin of syenite granite in Shengsi, Zhejiang Province: Constraints from zircon U-Pb ages, rock geochemistry and Hf isotopes [J]. Earth Science Frontiers, 2025, 32(2): 430-444. |
[3] | CHEN Hongwei, ZHU Zhichao, LI Zhengzui, YU Weihou, ZHOU Hui, YU Shasha, PENG Xiangxun. Interaction between the river and groundwater in the Dongting Lake during extreme climate: Taking the Zijiang River segment in the Dongting Lake as an example [J]. Earth Science Frontiers, 2025, 32(2): 445-455. |
[4] | CHEN Jiubin, ZHENG Wang, LIU Yi, SUN Ruoyu, YUAN Wei, MENG Mei, CAI Hongming, Liu Cong-Qiang. Isotope geochemistry and its application in Earth system sphere interactions and global change [J]. Earth Science Frontiers, 2025, 32(3): 137-155. |
[5] | CAO Chenxi, ZHANG Maoliang, WANG Lisheng, WANG Xuefeng, DUAN Wuhui, XU Sheng. Preliminary study on hydrothermal CO2 flux from active fault zones in southern Tibet: Constraints from travertine geochronology and geochemistry [J]. Earth Science Frontiers, 2025, 32(3): 334-349. |
[6] | HE Sheng, CAI Hongming, YUAN Wei, CHEN Jiubin. Recent progress in mercury isotopes of the river system [J]. Earth Science Frontiers, 2025, 32(3): 375-391. |
[7] | LIU Wenqi, WANG Zhuhong, LIU Yang, MA Ning, CHEN Yan, ZHENG Wang, LIU Hong, CHEN Jiubin. The indicative significance of copper and zinc stable isotopes in special life processes: Cancer [J]. Earth Science Frontiers, 2025, 32(3): 408-424. |
[8] | LIU Xiaohui, LIU Yimin, DING Lin, GUO Xiaoyu, HUANG Xingfu, LI Huilin, GAO Rui. Crustal thickness evolution of the Central Lhasa Terrane inferred from trace elements in zircon of Tangra Yumco [J]. Earth Science Frontiers, 2025, 32(1): 343-366. |
[9] | HUANG Yu, ZHONG Shihua, LI Sanzhong, ZHAO Hong, XUE Zimeng, GUO Guanghui, LIU Jiaqing, NIU Jinghui. Effects of accessory mineral inclusions and signal acquisition time on zircon U-Pb dating and trace element analysis results [J]. Earth Science Frontiers, 2025, 32(1): 388-400. |
[10] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[11] | WU Hao, YANG Chen, WU Yanwang, LI Cai, LIU Fei, LIN Zhaoxu. Petrogenesis of Late Cretaceous magmatic rocks in the Zhongcang area of northern Tibet and their implications for early uplift of the plateau [J]. Earth Science Frontiers, 2024, 31(6): 261-281. |
[12] | HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones [J]. Earth Science Frontiers, 2024, 31(6): 282-303. |
[13] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
[14] | YUAN Yaqiong, SUN Ping’an, YU Shi, HE Shiyi. Fractionation of stable isotopes and the carbon-water cycle in Yangtze River [J]. Earth Science Frontiers, 2024, 31(5): 409-420. |
[15] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||