Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 408-424.DOI: 10.13745/j.esf.sf.2025.3.35
Previous Articles Next Articles
LIU Wenqi1(), WANG Zhuhong2, LIU Yang1, MA Ning1, CHEN Yan3, ZHENG Wang1, LIU Hong4, CHEN Jiubin1,*(
)
Received:
2025-02-07
Revised:
2025-02-21
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
LIU Wenqi, WANG Zhuhong, LIU Yang, MA Ning, CHEN Yan, ZHENG Wang, LIU Hong, CHEN Jiubin. The indicative significance of copper and zinc stable isotopes in special life processes: Cancer[J]. Earth Science Frontiers, 2025, 32(3): 408-424.
Fig.5 Summary of reported isotope ratio data of copper in body fluids of different cancer patients compared to the healthy control (data from [44⇓-46,73-74,94,158] )
Fig.6 Summary of reported isotope ratio data of zinc in body fluids of different cancer patients compared to the healthy control (data from [41⇓-43,45,134] )
[1] | FRAGA C G. Relevance, essentiality and toxicity of trace elements in human health[J]. Molecular Aspects of Medicine, 2005, 26(4/5): 235-244. |
[2] | COVERDALE J P C, POLEPALLI S, ARRUDA M A Z, et al. Recent advances in metalloproteomics[J]. Biomolecules, 2024, 14(1): 104. https://doi.org/10.3390/biom14010104. |
[3] |
PAJARILLO E A B, LEE E, KANG D K. Trace metals and animal health: interplay of the gut microbiota with iron, manganese, zinc, and copper[J]. Animal Nutrition, 2021, 7(3): 750-761.
DOI PMID |
[4] |
SHAUL O. Magnesium transport and function in plants: the tip of the iceberg[J]. Biometals, 2002, 15(3): 309-323.
DOI PMID |
[5] |
PERUTZ M F. Structure and mechanism of haemoglobin[J]. British Medical Bulletin, 1976, 32(3): 195-208.
PMID |
[6] |
HARAGUCHI H. Metallomics: the history over the last decade and a future outlook[J]. Metallomics, 2017, 9(8): 1001-1013.
DOI PMID |
[7] | MARET W. The quintessence of metallomics: a harbinger of a different life science based on the periodic table of the bioelements[J]. Metallomics, 2022, 14(8): mfac051. |
[8] |
MARET W, BLOWER P. Teaching the chemical elements in biochemistry: elemental biology and metallomics[J]. Biochemistry and Molecular Biology Education, 2022, 50(3): 283-289.
DOI PMID |
[9] |
MAHAN B, CHUNG R S, POUNTNEY D L, et al. Isotope metallomics approaches for medical research[J]. Cellular and Molecular Life Sciences, 2020, 77(17): 3293-3309.
DOI PMID |
[10] | BARTNICKA J J, BLOWER P J. Insights into trace metal metabolism in health and disease from PET: “PET metallomics”[J]. Journal of Nuclear Medicine, 2018, 59(9): 1355-1359. |
[11] | FUKASAWA H, FURUYA R, KANEKO M, et al. Clinical significance of trace element zinc in patients with chronic kidney disease[J]. Journal of Clinical Medicine, 2023, 12(4): 1667. https://doi.org/10.3390/jcm12041667. |
[12] |
BOST M, HOUDART S, OBERLI M, et al. Dietary copper and human health: current evidence and unresolved issues[J]. Journal of Trace Elements in Medicine and Biology, 2016, 35: 107-115.
DOI PMID |
[13] | FIORENTINI D, CAPPADONE C, FARRUGGIA G, et al. Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency[J]. Nutrients, 2021, 13(4): 1136. https://doi.org/10.3390/nu13041136. |
[14] | JOMOVA K, VALKO M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283(2/3): 65-87. |
[15] | JOMOVA K, VONDRAKOVA D, LAWSON M, et al. Metals, oxidative stress and neurodegenerative disorders[J]. Molecular and Cellular Biochemistry, 2010, 345(1/2): 91-104. |
[16] | LELIÈVRE P, SANCEY L, COLL J L, et al. The multifaceted roles of copper in cancer: a trace metal element with dysregulated metabolism, but also a target or a bullet for therapy[J]. Cancers, 2020, 12(12): 3594. https://doi.org/10.3390/cancers12123594. |
[17] | CORADDUZZA D, CONGIARGIU A, AZARA E, et al. Heavy metals in biological samples of cancer patients: a systematic literature review[J]. Biometals, 2024, 37(4): 803-817. |
[18] | QU Z, LIU Q, KONG X Y, et al. A systematic study on zinc-related metabolism in breast cancer[J]. Nutrients, 2023, 15(7): 1703. https://doi.org/10.3390/nu15071703. |
[19] |
KOHZADI S, SHEIKHESMAILI F, RAHEHAGH R, et al. Evaluation of trace element concentration in cancerous and non-cancerous tissues of human stomach[J]. Chemosphere, 2017, 184: 747-752.
DOI PMID |
[20] | SOHRABI M, NIKKHAH M, SOHRABI M, et al. Evaluating tissue levels of the eight trace elements and heavy metals among esophagus and gastric cancer patients: a comparison between cancerous and non-cancerous tissues[J]. Journal of Trace Elements in Medicine and Biology, 2021, 68: 126761. |
[21] | YI G H, LUO H X, ZHENG Y L, et al. Exosomal proteomics: unveiling novel insights into lung cancer[J]. Aging and Disease, 2024. http://dx.doi.org/10.14336/AD.2024.0409. |
[22] | WU G, BAJESTANI N, PRACHA N, et al. Hepatocellular carcinoma surveillance strategies: major guidelines and screening advances[J]. Cancers, 2024, 16(23): 3933. |
[23] | ALBARÈDE F. Metal stable isotopes in the human body: a tribute of geochemistry to medicine[J]. Elements, 2015, 11(4): 265-269. |
[24] |
ALBARÈDE F, TÉLOUK P, BALTER V, et al. Medical applications of Cu, Zn, and S isotope effects[J]. Metallomics, 2016, 8(10): 1056-1070.
PMID |
[25] |
SELDEN C R, SCHILLING K, GODFREY L, et al. Metal-binding amino acid ligands commonly found in metalloproteins differentially fractionate copper isotopes[J]. Scientific Reports, 2024, 14(1): 1902.
DOI PMID |
[26] |
刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399-424.
DOI |
[27] | 韩嫣, 胡雅婷, 王倩, 等. 铜同位素及其在环境污染示踪中的应用进展[J]. 地质科技通报, 2023, 42(1): 378-387. |
[28] | 黄施棋, 龚迎莉, 田世洪, 等. 锌同位素在地球科学研究中的新进展[J]. 地质学报, 2023, 97(4): 1002-1029. |
[29] | HORNER T J, LITTLE S H, CONWAY T M, et al. Bioactive trace metals and their isotopes as paleoproductivity proxies: an assessment using GEOTRACES-Era data[J]. Global Biogeochemical Cycles, 2021, 35(11): e2020GB006814. |
[30] | WIGGENHAUSER M, MOORE R E T, WANG P, et al. Stable isotope fractionation of metals and metalloids in plants: a review[J]. Frontiers in Plant Science, 2022, 13: 840941. |
[31] |
SKULAN J, DEPAOLO D J. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13709-13713.
PMID |
[32] |
WALCZYK T, VON BLANCKENBURG F. Natural iron isotope variations in human blood[J]. Science, 2002, 295(5562): 2065-2066.
PMID |
[33] | MOREL J D, SAUZÉAT L, GOEMINNE L J E, et al. The mouse metallomic landscape of aging and metabolism[J]. Nature Communications, 2022, 13(1): 607. |
[34] | GRIGORYAN R, COSTAS-RODRÍGUEZ M, VAN LAECKE S, et al. Multi-collector ICP-mass spectrometry reveals changes in the serum Mg isotopic composition in diabetes type I patients[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1514-1521. |
[35] | EISENHAUER A, MÜLLER M, HEUSER A, et al. Calcium isotope ratios in blood and urine: a new biomarker for the diagnosis of osteoporosis[J]. Bone Reports, 2019, 10: 100200. |
[36] |
ARANAZ M, COSTAS-RODRÍGUEZ M, LOBO L, et al. Homeostatic alterations related to total antioxidant capacity, elemental concentrations and isotopic compositions in aqueous humor of glaucoma patients[J]. Analytical and Bioanalytical Chemistry, 2021, 414(1): 515-524.
DOI PMID |
[37] | HOBIN K, COSTAS-RODRÍGUEZ M, VAN WONTER-GHEM E, et al. High-precision isotopic analysis of Cu and Fe multi-collector inductively coupled plasma-mass spectrometry reveals lipopolysaccharide-induced inflammatory effects in blood plasma and brain tissues[J]. Frontiers in Chemistry, 2022, 10: 896279. |
[38] | WANG W C, LI Z W, LU Q, et al. Natural copper isotopic abnormity in maternal serum at early pregnancy associated to risk of spontaneous preterm birth[J]. Science of the Total Environment, 2022, 849: 157872. |
[39] | LING W B, ZHAO G, WANG W C, et al. Metallomic profiling and natural copper isotopic signatures of childhood autism in serum and red blood cells[J]. Chemosphere, 2023, 330: 138700. |
[40] |
TANAKA Y K, YAJIMA N, HIGUCHI Y, et al. Calcium isotope signature: new proxy for net change in bone volume for chronic kidney disease and diabetic rats[J]. Metallomics, 2017, 9(12): 1745-1755.
DOI PMID |
[41] | SULLIVAN K V, MOORE R E T, CAPPER M S, et al. Zinc stable isotope analysis reveals Zn dyshomeostasis in benign tumours, breast cancer, and adjacent histologically normal tissue[J]. Metallomics, 2021, 13(6): mfab027. |
[42] | SCHILLING K, MOORE R E T, SULLIVAN K V, et al. Zinc stable isotopes in urine as diagnostic for cancer of secretory organs[J]. Metallomics, 2021, 13(5): mfab020. |
[43] | LARNER F, WOODLEY L N, SHOUSHA S, et al. Zinc isotopic compositions of breast cancer tissue[J]. Metallomics, 2015, 7(1): 107-112. |
[44] | TÉLOUK P, PUISIEUX A, FUJII T, et al. Copper isotope effect in serum of cancer patients: a pilot study[J]. Metallomics, 2015, 7(2): 299-308. |
[45] |
HASTUTI A A M B, COSTAS-RODRÍGUEZ M, MATSUNAGA A, et al. Cu and Zn isotope ratio variations in plasma for survival prediction in hematological malignancy cases[J]. Scientific Reports, 2020, 10(1): 16389.
DOI PMID |
[46] | KAZI TANI L S, GOURLAN A T, DENNOUNI-MEDJATI N, et al. Copper isotopes and copper to zinc ratio as possible biomarkers for thyroid cancer[J]. Frontiers in Medicine, 2021, 8: 698167. |
[47] | MARÉCHAL C N, TÉLOUK P, ALBARÈDE F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J]. Chemical Geology, 1999, 156(1-4): 251-273. |
[48] |
YANG L. Accurate and precise determination of isotopic ratios by MC-ICP-MS: a review[J]. Mass Spectrometry Reviews, 2009, 28(6): 990-1011.
DOI PMID |
[49] | YANG L, TONG S Y, ZHOU L, et al. A critical review on isotopic fractionation correction methods for accurate isotope amount ratio measurements by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(11): 1849-1861. |
[50] | BARBER R G, GRENIER Z A, BURKHEAD J L. Copper toxicity is not just oxidative damage: zinc systems and insight from Wilson Disease[J] Biomedicines, 2021, 9(3): 316. |
[51] | ROSS A C, CABALLERO B, COUSINS R J, et al. Modern nutrition in health and disease[M]. 11th ed. Philadelphia: Lippincott Williams & Wilkins, 2012. |
[52] | TANG J Y, FU O Y, HOU M F, et al. Oxidative stress-modulating drugs have preferential anticancer effects - involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration[J]. Seminars in Cancer Biology, 2019, 58: 109-117. |
[53] |
CHEN J, JIANG Y H, SHI H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases[J]. Pflugers Archiv: European Journal of Physiology, 2020, 472(10): 1415-1429.
DOI PMID |
[54] | KIELA P R, GHISHAN F K. Physiology of intestinal absorption and secretion[J]. Best Practice & Research Clinical Gastroenterology, 2016, 30(2): 145-159. |
[55] |
OHGAMI R S, CAMPAGNA D R, MCDONALD A, et al. The Steap proteins are metalloreductases[J]. Blood, 2006, 108(4): 1388-1394.
DOI PMID |
[56] | SHAWKI A, ANTHONY S R, NOSE Y, et al. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese[J]. American Journal of Physiology: Gastrointestinal and Liver Physiology, 2015, 309(8): G635-G647. |
[57] | TURNLUND J R. Human whole-body copper metabolism[J]. American Journal of Clinical Nutrition, 1998, 67(5): 960s-964s. |
[58] | ROBERTS E A, SARKAR B. Liver as a key organ in the supply, storage, and excretion of copper[J]. American Journal of Clinical Nutrition, 2008, 88(3): 851s-854s. |
[59] | PEÑA M M O, LEE J, THIELE D J. A delicate balance: homeostatic control of copper uptake and distribution[J]. The Journal of Nutrition, 1999, 129(7): 1251-1260. |
[60] | WANG X D, ZHOU M, LIU Y, et al. Cope with copper: from copper linked mechanisms to copper-based clinical cancer therapies[J]. Cancer Letters, 2023, 561: 216157. |
[61] | ALBARÈDE F, TÉLOUK P, BALTER V. Medical applications of isotope metallomics[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 851-885. |
[62] |
FLÓREZ M R, COSTAS-RODRÍGUEZ M, GROOTAERT C, et al. Cu isotope fractionation response to oxidative stress in a hepatic cell line studied using multi-collector ICP-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2018, 410(9): 2385-2394.
DOI PMID |
[63] |
PAREDES E, AVAZERI E, MALARD V, et al. Impact of uranium uptake on isotopic fractionation and endogenous element homeostasis in human neuron-like cells[J]. Scientific Reports, 2018, 8: 17163.
DOI PMID |
[64] | LARNER F, MCLEAN C A, HALLIDAY A N, et al. Copper isotope compositions of superoxide dismutase and metallothionein from post-mortem human frontal cortex[J]. Inorganics, 2019, 7(7): 86. |
[65] | VAN HEGHE L, DELTOMBE O, DELANGHE J, et al. The influence of menstrual blood loss and age on the isotopic composition of Cu, Fe and Zn in human whole blood[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(3): 478-482. |
[66] |
JAOUEN K, BALTER V, HERRSCHER E, et al. Fe and Cu stable isotopes in archeological human bones and their relationship to sex[J]. American Journal of Physical Anthropology, 2012, 148(3): 334-340.
DOI PMID |
[67] |
ALBARÈDE F, TÉLOUK P, LAMBOUX A, et al. Isotopic evidence of unaccounted for Fe and Cu erythropoietic pathways[J]. Metallomics, 2011, 3(9): 926-933.
DOI PMID |
[68] |
JAOUEN K, BALTER V. Menopause effect on blood Fe and Cu isotope compositions[J]. American Journal of Physical Anthropology, 2014, 153(2): 280-285.
DOI PMID |
[69] |
GAIER E D, EIPPER B A, MAINS R E. Copper signaling in the mammalian nervous system: synaptic effects[J]. Journal of Neuroscience Research, 2013, 91(1): 2-19.
DOI PMID |
[70] | MOYNIER F, CREECH J, DALLAS J, et al. Serum and brain natural copper stable isotopes in a mouse model of Alzheimer’s disease[J]. Scientific Reports, 2019, 9: 11894. |
[71] | VAN HEGHE L, ENGSTRÖM E, RODUSHKIN I, et al. Isotopic analysis of the metabolically relevant transition metals Cu, Fe and Zn in human blood from vegetarians and omnivores using multi-collector ICP-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(8): 1327-1334. |
[72] |
JAOUEN K, GIBERT M, LAMBOUX A, et al. Is aging recorded in blood Cu and Zn isotope compositions?[J]. Metallomics, 2013, 5(8): 1016-1024.
DOI PMID |
[73] | TOUBHANS B, GOURLAN A T, TÉLOUK P, et al. Cu isotope ratios are meaningful in ovarian cancer diagnosis[J]. Journal of Trace Elements in Medicine and Biology, 2020, 62: 126611. |
[74] |
WANG W C, LIU X, ZHANG C W, et al. Identification of two-dimensional copper signatures in human blood for bladder cancer with machine learning[J]. Chemical Science, 2022, 13(6): 1648-1656.
DOI PMID |
[75] |
JAOUEN K, HERRSCHER E, BALTER V. Copper and zinc isotope ratios in human bone and enamel[J]. American Journal of Physical Anthropology, 2017, 162(3): 491-500.
DOI PMID |
[76] | MILLER K, DAY P L, BEHL S, et al. Isotopic composition of serum zinc and copper in healthy children and children with autism spectrum disorder in North America[J]. Frontiers in Molecular Neuroscience, 2023, 16: 1133218. |
[77] | RODIOUCHKINA K, RODUSHKIN I, GODERIS S, et al. Longitudinal isotope ratio variations in human hair and nails[J]. Science of the Total Environment, 2022, 808: 152059. |
[78] |
LAUWENS S, COSTAS-RODRÍGUEZ M, DELANGHE J, et al. Quantification and isotopic analysis of bulk and of exchangeable and ultrafiltrable serum copper in healthy and alcoholic cirrhosis subjects[J]. Talanta, 2018, 189: 332-338.
DOI PMID |
[79] |
SAUZÉAT L, BERNARD E, PERRET-LIAUDET A, et al. Isotopic evidence for disrupted copper metabolism in amyotrophic lateral sclerosis[J]. iScience, 2018, 6: 264-271.
DOI PMID |
[80] | MOYNIER F, LE BORGNE M, LAOUD E, et al. Copper and zinc isotopic excursions in the human brain affected by Alzheimer’s disease[J]. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 2020, 12(1): e12112. |
[81] | LAUWENS S, COSTAS-RODRÍGUEZ M, VAN VLIERBERGHE H, et al. High-precision isotopic analysis of Cu in blood serum multi-collector ICP-mass spectrometry for clinical investigation: steps towards improved robustness and higher sample throughput[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(3): 597-608. |
[82] | ARAMENDÍA M, RELLO L, RESANO M, et al. Isotopic analysis of Cu in serum samples for diagnosis of Wilson’s disease: a pilot study[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(5): 675-681. |
[83] |
LAMBOUX A, COUCHONNAL-BEDOYA E, GUILLAUD O, et al. The blood copper isotopic composition is a prognostic indicator of the hepatic injury in Wilson disease[J]. Metallomics, 2020, 12(11): 1781-1790.
DOI PMID |
[84] | KEMPSON I M, SKINNER W M, KIRKBRIDE K P. The occurrence and incorporation of copper and zinc in hair and their potential role as bioindicators: a review[J]. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 2007, 10(8): 611-622. |
[85] | THOMPSON A H, WILSON A, EHLERINGER J R. Hair as a geochemical recorder: ancient to modern[J]. Treatise on Geochemistry, 2014, 14: 371-393. |
[86] | OLASINSKA-WISNIEWSKA A, URBANOWICZ T, HANC A, et al. The diagnostic value of trace metal concentrations in hair in carotid artery disease[J]. Journal of Clinical Medicine, 2023, 12(21): 6794. |
[87] |
TANAKA Y K, HIRATA T. Stable isotope composition of metal elements in biological samples as tracers for element metabolism[J]. Analytical Sciences, 2018, 34(6): 645-655.
DOI PMID |
[88] | ISHIKAWA A, MATSUSHITA H, SHIMIZU S, et al. Impact of menopause and the menstrual cycle on oxidative stress in Japanese women[J]. Journal of Clinical Medicine, 2023, 12(3): 829. |
[89] |
KUMAKLI H, DUNCAN A V, MCDANIEL K, et al. Environmental biomonitoring of essential and toxic elements in human scalp hair using accelerated microwave-assisted sample digestion and inductively coupled plasma optical emission spectroscopy[J]. Chemosphere, 2017, 174: 708-715.
DOI PMID |
[90] | GONZÁLEZ-REIMERS E, MARTÍN-GONZÁLEZ C, GALINDO-MARTÍN L, et al. Hair copper in normal individuals: relationship with body mass and dietary habits[J]. Trace Elements and Electrolytes, 2014, 31(2): 67-72. |
[91] | LAHOUD E, MOYNIER F, LUU T H, et al. Impact of aging on copper isotopic composition in the murine brain[J]. Metallomics, 2024, 16(5): mfae008. |
[92] | HOBIN K, COSTAS-RODRÍGUEZ M, VAN WONTERGHEM E, et al. Alzheimer’s disease and age-related changes in the Cu isotopic composition of blood plasma and brain tissues of the APP Murine Model Revealed by multi-collector ICP-mass spectrometry[J]. Biology, 2023, 12(6): 857. |
[93] |
JOMOVA K, RAPTOVA R, ALOMAR S Y, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging[J]. Archives of Toxicology, 2023, 97(10): 2499-2574.
DOI PMID |
[94] |
BALTER V, DA COSTA A N, BONDANESE V P, et al. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 982-985.
DOI PMID |
[95] |
ENGE T G, ECROYD H, JOLLEY D F, et al. Longitudinal assessment of metal concentrations and copper isotope ratios in the G93A SOD1 mouse model of amyotrophic lateral sclerosis[J]. Metallomics, 2017, 9(2): 161-174.
DOI PMID |
[96] | SAUZÉAT L, EYCHENNE J, GURIOLI L, et al. Metallome deregulation and health-related impacts due to long-term exposure to recent volcanic ash deposits: new chemical and isotopic insights[J]. Science of the Total Environment, 2022, 829: 154383. |
[97] | ZHENG X D, HAN G L, SONG Z L, et al. Biogeochemical cycle and isotope fractionation of copper in plant-soil systems: a review[J]. Reviews in Environmental Science and Bio-Technology, 2024, 23(1): 21-41. |
[98] | WANG R R, YU H M, CHENG W H, et al. Copper migration and isotope fractionation in a typical paddy soil profile of the Yangtze Delta[J]. Science of the Total Environment, 2022, 821: 153201. |
[99] | MILLER K A, VICENTINI F A, HIROTA S A, et al. Antibiotic treatment affects the expression levels of copper transporters and the isotopic composition of copper in the colon of mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(13): 5955-5960. |
[100] |
HASTUTI A A M B, COSTAS-RODRÍGUEZ M, ANOSHKINA Y, et al. High-precision isotopic analysis of serum and whole blood Cu, Fe and Zn to assess possible homeostasis alterations due to bariatric surgery[J]. Analytical and Bioanalytical Chemistry, 2020, 412(3): 727-738.
DOI PMID |
[101] |
CHASAPIS C T, NTOUPA P S A, SPILIOPOULOU C A, et al. Recent aspects of the effects of zinc on human health[J]. Archives of Toxicology, 2020, 94(5): 1443-1460.
DOI PMID |
[102] |
CHASAPIS C T, LOUTSIDOU A C, SPILIOPOULOU C A, et al. Zinc and human health: an update[J]. Archives of Toxicology, 2012, 86(4): 521-534.
DOI PMID |
[103] |
BERGER M M, SHENKIN A, SCHWEINLIN A, et al. ESPEN micronutrient guideline[J]. Clinical Nutrition, 2022, 41(6): 1357-1424.
DOI PMID |
[104] | WESSELS I, MAYWALD M, RINK L. Zinc as a gatekeeper of immune function[J]. Nutrients, 2017, 9(12): 1286. |
[105] | EIDE D J. Zinc transporters and the cellular trafficking of zinc[J]. Biochimica Et Biophysica Acta-Molecular Cell Research, 2006, 1763(7): 711-722. |
[106] | PAN Z, CHOI S Y, OUADID-AHIDOUCH H, et al. Zinc transporters and dysregulated channels in cancers[J]. Frontiers in Bioscience-Landmark, 2017, 22: 623-643. |
[107] |
BONAVENTURA P, BENEDETTI G, ALBARÈDE F, et al. Zinc and its role in immunity and inflammation[J]. Autoimmunity Reviews, 2015, 14(4): 277-285.
DOI PMID |
[108] | WANG J, ZHAO H H, XU Z L, et al. Zinc dysregulation in cancers and its potential as a therapeutic target[J]. Cancer Biology & Medicine, 2020, 17(3): 612-625. |
[109] | JEONG J, EIDE D J. The SLC39 family of zinc transporters[J]. Molecular aspects of medicine, 2013, 34(2/3): 612-619. |
[110] |
VON BÜLOW V, DUBBEN S, ENGELHARDT G, et al. Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B[J]. Journal of Immunology, 2007, 179(6): 4180-4186.
PMID |
[111] |
LIYANAGE P Y, HETTIARACHCHI S D, ZHOU Y Q, et al. Nanoparticle-mediated targeted drug delivery for breast cancer treatment[J]. Biochimica Et Biophysica Acta-Reviews on Cancer, 2019, 1871(2): 419-433.
DOI PMID |
[112] |
STEFANIDOU M, MARAVELIAS C, DONA A, et al. Zinc: a multipurpose trace element[J]. Archives of Toxicology, 2006, 80(1): 1-9.
PMID |
[113] |
MARET W, VALLEE B L. Thiolate ligands in metallothionein confer redox activity on zinc clusters[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(7): 3478-3482.
DOI PMID |
[114] |
COLVIN R A, HOLMES W R, FONTAINE C P, et al. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis[J]. Metallomics, 2010, 2(5): 306-317.
DOI PMID |
[115] |
MARET W. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules[J]. Metallomics, 2015, 7(2): 202-211.
DOI PMID |
[116] |
CHOI S Y, LIU X, PAN Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases[J]. Acta Pharmacologica Sinica, 2018, 39(7): 1120-1132.
DOI PMID |
[117] | MARET W. Zinc in cellular regulation: the nature and significance of “zinc signals”[J]. International Journal of Molecular Sciences, 2017, 18(11): 2285. |
[118] |
WEISS A, MURDOCH C C, EDMONDS K A, et al. Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis[J]. Cell, 2022, 185(12): 2148-2163.
DOI PMID |
[119] | MARET W. Escort proteins for cellular zinc ions[J]. Nature, 2022, 608(7921): 38-39. |
[120] |
STILES L I, FERRAO K, MEHTA K J. Role of zinc in health and disease[J]. Clinical and Experimental Medicine, 2024, 24(1): 38.
DOI PMID |
[121] | MAMMADOVA-BACH E, BRAUN A. Zinc homeostasis in platelet-related diseases[J]. International Journal of Molecular Sciences, 2019, 20(21): 5258. |
[122] |
ROOHANI N, HURRELL R, KELISHADI R, et al. Zinc and its importance for human health: an integrative review[J]. Journal of Research in Medical Sciences, 2013, 18(2): 144-157.
PMID |
[123] | MAARES M, HAASE H. A guide to human zinc absorption: general overview and recent advances of in vitro intestinal models[J]. Nutrients, 2020, 12(3): 762. |
[124] | KOCHANCZYK T, DROZD A, KREZEL A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins: insights into zinc regulation[J]. Metallomics, 2015, 7(2): 244-257. |
[125] |
MOYNIER F, FUJII T, SHAW A S, et al. Heterogeneous distribution of natural zinc isotopes in mice[J]. Metallomics, 2013, 5(6): 693-699.
DOI PMID |
[126] |
MARET W. New perspectives of zinc coordination environments in proteins[J]. Journal of Inorganic Biochemistry, 2012, 111: 110-116.
DOI PMID |
[127] | FUJII T, MOYNIER F, BLICHERT-TOFT J, et al. Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments[J]. Geochimica Et Cosmochimica Acta, 2014, 140: 553-576. |
[128] |
TANG Y, CHAPPELL H F, DOVE M T, et al. Zinc incorporation into hydroxylapatite[J]. Biomaterials, 2009, 30(15): 2864-2872.
DOI PMID |
[129] | JAOUEN K, TROST M, BOURGON N, et al. Zinc isotope variations in archeological human teeth (Lapa do Santo, Brazil) reveal dietary transitions in childhood and no contamination from gloves[J]. Plos One, 2020, 15(5): e0232379. |
[130] | JAOUEN K, PONS M L. Potential of non-traditional isotope studies for bioarchaeology[J]. Archaeological and Anthropological Sciences, 2017, 9(7): 1389-1404. |
[131] |
JAOUEN K, POUILLOUX L, BALTER V, et al. Dynamic homeostasis modeling of Zn isotope ratios in the human body[J]. Metallomics, 2019, 11(6): 1049-1059.
DOI PMID |
[132] | OHNO T, SHINOHARA A, CHIBA M, et al. Precise Zn isotopic ratio measurements of human red blood cell and hair samples by multiple collector ICP mass spectrometry[J]. Analytical Sciences, 2005, 21(4): 425-428. |
[133] |
STENBERG A, MALINOVSKY D, ÖHLANDER B, et al. Measurement of iron and zinc isotopes in human whole blood: preliminary application to the study of HFE genotypes[J]. Journal of Trace Elements in Medicine and Biology, 2005, 19(1): 55-60.
PMID |
[134] |
SCHILLING K, LARNER F, SAAD A, et al. Urine metallomics signature as an indicator of pancreatic cancer[J]. Metallomics, 2020, 12(5): 752-757.
DOI PMID |
[135] |
SULLIVAN K, MOORE R E T, REHKÄMPER M, et al. Postprandial zinc stable isotope response in human blood serum[J]. Metallomics, 2020, 12(9): 1380-1388.
DOI PMID |
[136] |
MOORE R E T, REHKÄMPER M, MARET W, et al. Assessment of coupled Zn concentration and natural stable isotope analyses of urine as a novel probe of Zn status[J]. Metallomics, 2019, 11(9): 1506-1517.
DOI PMID |
[137] | BOURGON N, JAOUEN K, BACON A M, et al. Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes[J]. Journal of Human Evolution, 2021, 161: 103075. |
[138] | MOUBTAHIJ Z, MCCORMACK J, BOURGON N, et al. Isotopic evidence of high reliance on plant food among Later Stone Age hunter-gatherers at Taforalt, Morocco[J]. Nature Ecology & Evolution, 2024, 8(5): 1035-1045. |
[139] |
KAMBE T, TSUJI T, HASHIMOTO A, et al. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism[J]. Physiological Reviews, 2015, 95(3): 749-784.
DOI PMID |
[140] | MAHAN B, MOYNIER F, JORGENSEN A L, et al. Examining the homeostatic distribution of metals and Zn isotopes in Gottingen minipigs[J]. Metallomics, 2018, 10(9): 1264-1281. |
[141] | COSTAS-RODRÍGUEZ M, VAN HEGHE L, VANHAECKE F. Evidence for a possible dietary effect on the isotopic composition of Zn in blood isotopic analysis of food products by multi-collector ICP-mass spectrometry[J]. Metallomics, 2014, 6(1): 139-146. |
[142] |
JAOUEN K, COLLETER R, PIETRZAK A, et al. Tracing intensive fish and meat consumption using Zn isotope ratios: evidence from a historical Breton population (Rennes, France)[J]. Scientific Reports, 2018, 8: 5077.
DOI PMID |
[143] | JAOUEN K, PONS M L, BALTER V. Iron, copper and zinc isotopic fractionation up mammal trophic chains[J]. Earth and Planetary Science Letters, 2013, 374: 164-172. |
[144] | JAOUEN K, SZPAK P, RICHARDS M P. Zinc isotope ratios as indicators of diet and trophic level in Arctic marine mammals[J]. Plos One, 2016, 11(3): e0152299. |
[145] |
JAOUEN K, BEASLEY M, SCHOENINGER M, et al. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya)[J]. Scientific Reports, 2016, 6: 26281.
DOI PMID |
[146] | TURNLUND J R, KING J C, KEYES W R, et al. A stable isotope study of zinc absorption in young men: effects of phytate and a-cellulose[J]. The American Journal of Clinical Nutrition, 1984, 40(5): 1071-1077. |
[147] | BOURGON N, TACAIL T, JAOUEN K, et al. Dietary and homeostatic controls of Zn isotopes in rats: a controlled feeding experiment and modeling approach[J]. Metallomics, 2024, 16(6): mfae026. |
[148] | SULLIVAN K V, MOORE R E T, VANHAECKE F. The influence of physiological and lifestyle factors on essential mineral element isotopic compositions in the human body: implications for the design of isotope metallomics research[J]. Metallomics, 2023, 15(3): mfad012. |
[149] | SOUTO-OLIVEIRA C E, BABINSKI M, ARAÚJO D F, et al. Multi-isotope approach of Pb, Cu and Zn in urban aerosols and anthropogenic sources improves tracing of the atmospheric pollutant sources in megacities[J]. Atmospheric Environment, 2019, 198: 427-437. |
[150] |
CIKOMOLA J C, FLÓREZ M R, COSTAS-RODRÍGUEZ M, et al. Whole blood Fe isotopic signature in a sub-Saharan African population[J]. Metallomics, 2017, 9(8): 1142-1149.
DOI PMID |
[151] | VAN HEGHE L. The development and evaluation of analytical methods based on multi-collector - inductively coupled plasma - mass spectrometry (MC-ICP-MS) for high-precision isotopic analysis of Cu, Fe and Zn in human blood, applicable in medical diagnosis[D]. Ghent: Ghent University, 2013. |
[152] | HAN R Y, LIU W J, XU Z F. The constraint of soil Zn isotope compositions by diverse land utilizations: evidence from geochemical fingerprint in a typical karst area[J]. Catena, 2024, 240: 108005. |
[153] | LIANG B, HAN G L, ZHAO Y. Zinc isotopic signature in tropical soils: a review[J]. Science of the Total Environment, 2022, 820: 153303. |
[154] | MICHALCZYK K, CYMBALUK-PLOSKA A. The role of zinc and copper in gynecological malignancies[J]. Nutrients, 2020, 12(12): 3732. |
[155] | SHANBHAG V C, GUDEKAR N, JASMER K, et al. Copper metabolism as a unique vulnerability in cancer[J]. Biochimica et Biophysica Acta - Molecular Cell Research, 2021, 1868(2): 118893. |
[156] | DENOYER D, MASALDAN S, LA FONTAINE S, et al. Targeting copper in cancer therapy:[J]. Metallomics, 2015, 7(11): 1459-1476. |
[157] |
MAJUMDER S, CHATTERJEE S, PAL S, et al. The role of copper in drug-resistant murine and human tumors[J]. Biometals, 2009, 22(2): 377-384.
DOI PMID |
[158] | TÉLOUK P, PLISSONNIER M L, MERLE P, et al. Copper isotope evidence of oxidative stress-induced hepatic breakdown and the transition to hepatocellular carcinoma[J]. Gastro Hep Advances, 2022, 1(3): 480-486. |
[159] |
LOBO L, COSTAS-RODRÍGUEZ M, DE VICENTE J C, et al. Elemental and isotopic analysis of oral squamous cell carcinoma tissues using sector-field and multi-collector ICP-mass spectrometry[J]. Talanta, 2017, 165: 92-97.
DOI PMID |
[160] |
LIBERTI M V, LOCASALE J W. The Warburg effect: how does it benefit cancer cells?[J]. Trends in Biochemical Sciences, 2016, 41(3): 211-218.
DOI PMID |
[161] |
BONDANESE V P, LAMBOUX A, SIMON M, et al. Hypoxia induces copper stable isotope fractionation in hepatocellular carcinoma, in a HIF-independent manner[J]. Metallomics, 2016, 8(11): 1177-1184.
PMID |
[162] | CHAMEL G, GOURLAN A T, TÉLOUK P, et al. Retrospective evaluation of blood copper stable isotopes ratio 65Cu/63Cu as a biomarker of cancer in dogs[J]. Veterinary and Comparative Oncology, 2016, 15(4): 1323-1332. |
[163] |
GOURLAN A T, DOUAY G, TÉLOUK P. Copper isotopes as possible neoplasia biomarkers in captive wild felids[J]. Zoo Biology, 2019, 38(4): 371-383.
DOI PMID |
[164] | SI M F, LANG J H. The roles of metallothioneins in carcinogenesis[J]. Journal of Hematology & Oncology, 2018, 11: 107. |
[165] | MIAOU E, TISSOT F L H. Copper isotope ratios in serum do not track cancerous tumor evolution, but organ failure[J]. Metallomics, 2023, 15(11): mfad060. |
[166] | HEDERA P. Clinical management of Wilson disease[J]. Annals of Translational Medicine, 2019, 7: S66. |
[167] | GARCÍA-POYO M C, BÉRAIL S, RONZANI A L, et al. Laser ablation of microdroplets for copper isotopic analysis via MC-ICP-MS. Analysis of serum microsamples for the diagnosis and follow-up treatment of Wilson’s disease[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(5): 968-980. |
[168] |
VAN CAMPENHOUT S, HASTUTI A A M B, LEFERE S, et al. Lighter serum copper isotopic composition in patients with early non-alcoholic fatty liver disease[J]. BMC Research Notes, 2020, 13(1): 225.
DOI PMID |
[169] | COSTAS-RODRÍGUEZ M, ANOSHKINA Y, LAUWENS S, et al. Isotopic analysis of Cu in blood serum by multi-collector ICP-mass spectrometry: a new approach for the diagnosis and prognosis of liver cirrhosis?[J]. Metallomics, 2015, 7(3): 491-498. |
[170] | ZHANG Y T, TIAN Y Y, ZHANG H W, et al. Potential pathways of zinc deficiency-promoted tumorigenesis[J]. Biomedicine & Pharmacotherapy, 2021, 133: 110983. |
[171] |
KAGARA N, TANAKA N, NOGUCHI S, et al. Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells[J]. Cancer Science, 2007, 98(5): 692-697.
DOI PMID |
[172] | BAFARO E, LIU Y T, XU Y, et al. The emerging role of zinc transporters in cellular homeostasis and cancer[J]. Signal Transduction and Targeted Therapy, 2017, 2: e17029. |
[173] |
ALAM S, KELLEHER S L. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer[J]. Nutrients, 2012, 4(8): 875-903.
PMID |
[174] |
GIFFORD V, ITOH Y. MT1-MMP-dependent cell migration: proteolytic and non-proteolytic mechanisms[J]. Biochemical Society Transactions, 2019, 47: 811-826.
DOI PMID |
[175] |
FERRARI R, MARTIN G, TAGIT O, et al. MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion[J]. Nature Communications, 2019, 10: 4886.
DOI PMID |
[176] |
NUGENT W H, MISHRA N, STRAUSS J F, et al. Matrix metalloproteinase 1 causes vasoconstriction and enhances vessel reactivity to angiotensin ii via protease-activated receptor 1[J]. Reproductive Sciences, 2016, 23(4): 542-548.
DOI PMID |
[177] | CONLON G A, MURRAY G I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis[J]. Journal of Pathology, 2019, 247(5): 629-640. |
[178] | NISSINEN L, KÄHÄRI V M. Matrix metalloproteinases in inflammation[J]. Biochimica Et Biophysica Acta-General Subjects, 2014, 1840(8): 2571-2580. |
[179] | SCHILLING K, HARRIS A L, HALLIDAY A N, et al. Investigations on zinc isotope fractionation in breast cancer tissue using cell culture uptake: efflux experiments[J]. Frontiers in Medicine, 2022, 8: 746532. |
[1] | ZHANG Huishan, SONG Yucai, LI Wenchang, MA Zhongping, ZHANG Jing, HONG Jun, LIU Lei, LÜ Pengrui, WANG Zhihua, ZHANG Haidi, YANG Bo, Naghmah HAIDER, Yasir Shaheen KHALIL, Asad Ali NAREJO. Geochemical distribution and metallogenic potential of Pb-Zn in Pakistan and its implications for mineral prospecting in sediment-hosted Pb-Zn deposits in the Tethys belt [J]. Earth Science Frontiers, 2025, 32(1): 105-126. |
[2] | ZHANG Huishan, ZHANG Jing, HONG Jun, XI Dehua, MA Zhongping, MENG Guanglu, LUO Yanjun, ZHANG Haidi, LIU Mingyi, LÜ Pengrui, YANG Bo, CAO Jifei. Discovery of iron-copper polymetallic mineralization in the Pamir, Tajikistan and its implications for the exploration of VMS-type copper-lead-zinc deposits in the Paleo-Tethys domain [J]. Earth Science Frontiers, 2025, 32(1): 142-161. |
[3] | HU Qinghai, WANG Xueqiu, ZHANG Bimin, CHI Qinghua, WANG Qiang, SUN Binbin, ZHOU Jian, WANG Wei, Igor ESPINOZA VERDE, Alex AGURTO CORNEJO, Joel OTERO AGUILAR, PAN Wei, LIU Hanliang, TIAN Mi, WU Hui. Geochemical spatial distribution of copper and mineral prospectivity prediction in Peru [J]. Earth Science Frontiers, 2025, 32(1): 205-218. |
[4] | YAO Chunyan, JIANG Hantao, ZHU Yiping, ZHENG Lu, LI Hanwu, WANG Tiangang, LIU Jun’an, Uribe Luna JESUS. Geochemical background and anomaly characteristics of copper in soils of Mexico on a global scale [J]. Earth Science Frontiers, 2025, 32(1): 236-243. |
[5] | ZHANG Bimin, WANG Xueqiu, ZHOU Jian, WANG Wei, LIU Hanliang, LIU Dongsheng, Sounthone LAOLO, Phomsylalai SOUKSAN, XIE Miao, DONG Chunfang, LIU Qingqing, LU Yuexin, WANG Haonan, HE Bin. Copper mineralization pattern and machine learning-based copper prospectivity prediction in Laos [J]. Earth Science Frontiers, 2025, 32(1): 61-77. |
[6] | ZHANG Jing, LI Tianhu, WANG Zhihua, Naghmah HAIDER, HONG Jun, ZHANG Huishan, LIANG Nan. Geochemical characteristics and metallogenic potential analysis of porphyry copper deposits in Pakistan [J]. Earth Science Frontiers, 2025, 32(1): 91-104. |
[7] | LI Liang, JIANG Zhiwei, WU Bingjin, WEI Dongwen, WANG Wenhai. Influence of lead and zinc on geological carbon sink under oxygen-rich conditions [J]. Earth Science Frontiers, 2024, 31(5): 421-429. |
[8] | ZHANG Qianlong, ZHOU Yongzhang, GUO Lanxuan, YUAN Guiqiang, YU Pengpeng, WANG Hanyu, ZHU Biaobiao, HAN Feng, LONG Shiyao. Intelligent application of knowledge graphs in mineral prospecting: A case study of porphyry copper deposits in the Qin-Hang metallogenic belt [J]. Earth Science Frontiers, 2024, 31(4): 7-15. |
[9] | LI Fanglan, LIU Xuelong, ZHOU Yunman, ZHAO Chengfeng, LI Shoukui, WANG Jiyuan, LU Bode, LI Qingrui, ZHANG Weiwen, WANG Hai, CAO Zhenliang, ZHOU Jiehu. Geochronology and geochemical characteristics of the Douya iron-copper polymetallic deposit in the Baoshan block, western Yunnan [J]. Earth Science Frontiers, 2024, 31(3): 113-132. |
[10] | ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet [J]. Earth Science Frontiers, 2024, 31(3): 150-169. |
[11] | BAI Chenglin, XIE Guiqing, ZHAO Junkang, LI Wei, ZHU Qiaoqiao. Metallogenic characteristics and ore deposit model of porphyry copper-epithermal gold system in the Duobaoshan ore field, eastern margin of the Central Asian Orogenic Belt [J]. Earth Science Frontiers, 2024, 31(3): 170-198. |
[12] | HAN Runsheng, ZHAO Dong. Research methods for the deep extension pattern of rock/ore-controlling structures of magmatic-hydrothermal ore deposits—a preliminary study [J]. Earth Science Frontiers, 2022, 29(5): 420-437. |
[13] | ZHOU Yongzhang, ZHANG Qianlong, HUANG Yongjian, YANG Wei, XIAO Fan, JI Junjie, HAN Feng, TANG Lei, OUYANG Chong, SHEN Wenjie. Constructing knowledge graph for the porphyry copper deposit in the Qingzhou-Hangzhou Bay area: Insight into knowledge graph based mineral resource prediction and evaluation [J]. Earth Science Frontiers, 2021, 28(3): 67-75. |
[14] | XIAO Fan, WANG Kaiqi. Fault and intrusion control on copper mineralization in the Dexing porphyry copper deposit in Jiangxi, China: A perspective from stress deformation-heat transfer-fluid flow coupled numerical modeling [J]. Earth Science Frontiers, 2021, 28(3): 190-207. |
[15] | CHEN Hui, LIN Lujun, PANG Zhenshan, CHENG Zhizhong, XUE Jianling, TAO Wen, MA Yixing, GONG Lingming, SHEN Hongtao. Construction and demonstration of an ore prospecting model for the Lala copper deposit in Huili, Sichuan [J]. Earth Science Frontiers, 2021, 28(3): 309-327. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||