Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 142-161.DOI: 10.13745/j.esf.sf.2024.12.36
Previous Articles Next Articles
ZHANG Huishan1,2,3(), ZHANG Jing1,*(
), HONG Jun1, XI Dehua4, MA Zhongping1, MENG Guanglu1, LUO Yanjun1, ZHANG Haidi1, LIU Mingyi1, LÜ Pengrui1, YANG Bo1, CAO Jifei1
Received:
2024-12-10
Revised:
2024-12-12
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
ZHANG Huishan, ZHANG Jing, HONG Jun, XI Dehua, MA Zhongping, MENG Guanglu, LUO Yanjun, ZHANG Haidi, LIU Mingyi, LÜ Pengrui, YANG Bo, CAO Jifei. Discovery of iron-copper polymetallic mineralization in the Pamir, Tajikistan and its implications for the exploration of VMS-type copper-lead-zinc deposits in the Paleo-Tethys domain[J]. Earth Science Frontiers, 2025, 32(1): 142-161.
Fig.1 Distribution of VMS-type Copper-Lead-Zinc Deposits in the Tethys Belt and Prospecting Target Area for Copper-Lead-Zinc Minerals in the Pamir-Tianshuihai area of Tajikistan and China (Base map from http://www.ngdc.noaa.gov/mgg/global/, Tethys suture zoneboundaries and deposit data sourced from references [8,11⇓⇓⇓⇓⇓-17])
分析元素或指标 | 项数 | 分析测试方法 |
---|---|---|
Cu,Co,Zn,Pb | 4项 | 电杆耦合等离子体质谱法(ICP-MS) |
Ni | 1项 | 电感耦合等离子体原子发射光谱法(ICP-OES) |
Cr,TFe2O3 | 2项 | X射线荧光光谱法, |
As,Sb,Bi,Hg | 4项 | 气体发生-原子荧光光谱法(AFS) |
Ag,Sn | 2项 | 交流电弧-发射光谱法(ES) |
Mo,W | 2项 | 催化极谱法(POL) |
Au | 1项 | 泡塑吸附-电感耦合等离子体质谱法(ICP-MS) |
Table 1 Table of analysis and testing methods for stream sediment samples
分析元素或指标 | 项数 | 分析测试方法 |
---|---|---|
Cu,Co,Zn,Pb | 4项 | 电杆耦合等离子体质谱法(ICP-MS) |
Ni | 1项 | 电感耦合等离子体原子发射光谱法(ICP-OES) |
Cr,TFe2O3 | 2项 | X射线荧光光谱法, |
As,Sb,Bi,Hg | 4项 | 气体发生-原子荧光光谱法(AFS) |
Ag,Sn | 2项 | 交流电弧-发射光谱法(ES) |
Mo,W | 2项 | 催化极谱法(POL) |
Au | 1项 | 泡塑吸附-电感耦合等离子体质谱法(ICP-MS) |
成分 | 平均值(研究区) | 最大值 | 中位数 | 标准离差 | 平均值(帕米尔) | 富集系数 | 异常下限 |
---|---|---|---|---|---|---|---|
Sb | 10.63 | 37.53 | 8.55 | 9.17 | 0.74 | 14.36 | 28.97 |
Ag | 625 | 3145 | 500 | 610 | 51.83 | 12.06 | 1.86 |
Bi | 2.72 | 7.64 | 2.49 | 2.22 | 0.26 | 10.46 | 7.16 |
As | 50 | 181.13 | 38.08 | 40.91 | 14.45 | 3.46 | 131.82 |
W | 3.22 | 20.44 | 2.26 | 3.45 | 1.24 | 2.60 | 10.12 |
Sn | 4.83 | 17.65 | 4.41 | 2.27 | 2.39 | 2.02 | 9.37 |
Fe2O3 | 7.87 | 35.77 | 7.05 | 6.19 | 4.11 | 1.91 | 20.25 |
Au | 1.79 | 6.97 | 1.44 | 1.33 | 1.02 | 1.75 | 4.45 |
Cu | 36.14 | 184.7 | 30.78 | 30.26 | 20.87 | 1.73 | 96.67 |
Pb | 22.89 | 65.71 | 16.21 | 13.45 | 21.38 | 1.07 | 49.78 |
Mo | 0.66 | 1.15 | 0.7 | 0.24 | 0.71 | 0.93 | 1.14 |
Co | 9.48 | 19.59 | 9.82 | 3.94 | 10.97 | 0.86 | 17.37 |
Ni | 20.85 | 36.55 | 21.15 | 8.28 | 25 | 0.83 | 37.41 |
Cr | 41.35 | 90.14 | 34.35 | 18.62 | 49.95 | 0.83 | 78.59 |
Zn | 45.94 | 129.6 | 35.65 | 25.73 | 65.5 | 0.70 | 97.39 |
Hg | 0.038 | 0.089 | 0.038 | 0.017 | 0.051 | 0.75 | 0.041 |
Table 2 Statistical geochemical parameters of stream sediments in the study area
成分 | 平均值(研究区) | 最大值 | 中位数 | 标准离差 | 平均值(帕米尔) | 富集系数 | 异常下限 |
---|---|---|---|---|---|---|---|
Sb | 10.63 | 37.53 | 8.55 | 9.17 | 0.74 | 14.36 | 28.97 |
Ag | 625 | 3145 | 500 | 610 | 51.83 | 12.06 | 1.86 |
Bi | 2.72 | 7.64 | 2.49 | 2.22 | 0.26 | 10.46 | 7.16 |
As | 50 | 181.13 | 38.08 | 40.91 | 14.45 | 3.46 | 131.82 |
W | 3.22 | 20.44 | 2.26 | 3.45 | 1.24 | 2.60 | 10.12 |
Sn | 4.83 | 17.65 | 4.41 | 2.27 | 2.39 | 2.02 | 9.37 |
Fe2O3 | 7.87 | 35.77 | 7.05 | 6.19 | 4.11 | 1.91 | 20.25 |
Au | 1.79 | 6.97 | 1.44 | 1.33 | 1.02 | 1.75 | 4.45 |
Cu | 36.14 | 184.7 | 30.78 | 30.26 | 20.87 | 1.73 | 96.67 |
Pb | 22.89 | 65.71 | 16.21 | 13.45 | 21.38 | 1.07 | 49.78 |
Mo | 0.66 | 1.15 | 0.7 | 0.24 | 0.71 | 0.93 | 1.14 |
Co | 9.48 | 19.59 | 9.82 | 3.94 | 10.97 | 0.86 | 17.37 |
Ni | 20.85 | 36.55 | 21.15 | 8.28 | 25 | 0.83 | 37.41 |
Cr | 41.35 | 90.14 | 34.35 | 18.62 | 49.95 | 0.83 | 78.59 |
Zn | 45.94 | 129.6 | 35.65 | 25.73 | 65.5 | 0.70 | 97.39 |
Hg | 0.038 | 0.089 | 0.038 | 0.017 | 0.051 | 0.75 | 0.041 |
样品编号 | 矿体编号 | w(TFe)/10-2 | w(Cu)/10-2 | w(Zn)/10-2 | w(Ag)/10-6 | w(Pb)/10-2 |
---|---|---|---|---|---|---|
YD19-B1 | 1号矿化体矿石 | 54.80 | 8.62 | 0.085 | 92.6 | — |
YD19-B2 | 34.15 | 3.29 | 0.076 | 128 | — | |
YD19-B3 | 43.78 | 3.14 | 0.088 | 80.7 | — | |
YD009-B1 | 49.30 | 2.78 | 0.41 | 1 440 | — | |
YD23-B8 | 52.25 | 0.22 | 0.025 | 63.7 | — | |
YD25-B1 | 54.55 | 4.43 | 0.12 | 198 | — | |
YD26-B1 | 53.65 | 0.10 | 0.012 | 11.8 | — | |
D712-B1 | 51.75 | 0.46 | 0.12 | 28.5 | 0.02 | |
D712-B2 | 52.85 | 0.16 | — | 23 | — | |
D712-B3 | 53.7 | 0.02 | 0.05 | 9.54 | 0.01 | |
D712-B4 | 51 | 0.04 | — | 3.37 | — | |
D712-B5 | 50.95 | 0.02 | — | 5.16 | — | |
D712-B6 | 41.9 | — | — | 32 | — | |
D7081-1B | 2号矿化体矿石 | 53.35 | 8.83 | 0.046 | 149 | — |
D7081-2B | 51.80 | 8.20 | 0.023 | 4.28 | — | |
D708-B1 | 51.3 | 14.62 | — | — | — | |
D708-B2 | 54 | 9.68 | 0.02 | 0.05 | ||
D708-B3 | 2号矿化体围岩 | — | 1.19 | — | — | — |
D708-B4 | — | 0.17 | — | — | — |
Table 3 Results of chemical analysis
样品编号 | 矿体编号 | w(TFe)/10-2 | w(Cu)/10-2 | w(Zn)/10-2 | w(Ag)/10-6 | w(Pb)/10-2 |
---|---|---|---|---|---|---|
YD19-B1 | 1号矿化体矿石 | 54.80 | 8.62 | 0.085 | 92.6 | — |
YD19-B2 | 34.15 | 3.29 | 0.076 | 128 | — | |
YD19-B3 | 43.78 | 3.14 | 0.088 | 80.7 | — | |
YD009-B1 | 49.30 | 2.78 | 0.41 | 1 440 | — | |
YD23-B8 | 52.25 | 0.22 | 0.025 | 63.7 | — | |
YD25-B1 | 54.55 | 4.43 | 0.12 | 198 | — | |
YD26-B1 | 53.65 | 0.10 | 0.012 | 11.8 | — | |
D712-B1 | 51.75 | 0.46 | 0.12 | 28.5 | 0.02 | |
D712-B2 | 52.85 | 0.16 | — | 23 | — | |
D712-B3 | 53.7 | 0.02 | 0.05 | 9.54 | 0.01 | |
D712-B4 | 51 | 0.04 | — | 3.37 | — | |
D712-B5 | 50.95 | 0.02 | — | 5.16 | — | |
D712-B6 | 41.9 | — | — | 32 | — | |
D7081-1B | 2号矿化体矿石 | 53.35 | 8.83 | 0.046 | 149 | — |
D7081-2B | 51.80 | 8.20 | 0.023 | 4.28 | — | |
D708-B1 | 51.3 | 14.62 | — | — | — | |
D708-B2 | 54 | 9.68 | 0.02 | 0.05 | ||
D708-B3 | 2号矿化体围岩 | — | 1.19 | — | — | — |
D708-B4 | — | 0.17 | — | — | — |
样品编号 | 矿体编号 | 矿物含量/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
赤铁矿 | 针铁矿 | 石英 | 斜长石 | 孔雀石 | 方解石 | 白云石 | 伊利石 | 铁白云石 | ||
YD19-B1 | 1号矿化体矿石 | 16 | 62 | 3 | 3 | 12 | 4 | — | — | — |
YD19-B2 | 17 | 39 | 28 | 2 | 8 | — | — | 4 | — | |
YD19-B3 | 21 | 45 | 22 | 2 | 3 | 3 | — | 4 | — | |
YD009-B1 | 23 | 63 | 10 | 2 | 2 | — | — | — | — | |
YD23-B8 | 32 | 57 | 4 | 2 | — | — | 2 | 3 | — | |
YD25-B1 | 54 | 36 | 6 | 1 | 3 | — | — | — | — | |
YD26-B1 | 37 | 53 | 4 | 4 | — | — | 2 | — | — | |
D712-B1 | 14 | 81 | — | — | — | — | — | 6 | — | |
D712-B2 | 4 | 90 | — | — | — | — | — | 6 | — | |
D712-B3 | — | 95 | 3 | 1 | — | — | — | — | — | |
D712-B4 | 14 | 74 | — | — | — | 3 | — | 9 | — | |
D712-B5 | 19 | 69 | 5 | — | — | — | — | 7 | — | |
D712-B6 | — | 76 | 11 | 1 | — | 3 | — | 9 | — | |
D708-B1 | 2号矿化体矿石 | 15 | 69 | 4 | — | 12 | — | — | — | — |
D708-B2 | 18 | 69 | 5 | — | 9 | — | — | — | — | |
D708-B3 | 2号矿化体围岩 | 5 | — | 72 | 2 | — | — | — | 10 | 11 |
D708-B4 | — | — | 8 | — | — | 87 | — | 3 | 3 |
Table 4 Results of X-ray diffraction analysis
样品编号 | 矿体编号 | 矿物含量/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
赤铁矿 | 针铁矿 | 石英 | 斜长石 | 孔雀石 | 方解石 | 白云石 | 伊利石 | 铁白云石 | ||
YD19-B1 | 1号矿化体矿石 | 16 | 62 | 3 | 3 | 12 | 4 | — | — | — |
YD19-B2 | 17 | 39 | 28 | 2 | 8 | — | — | 4 | — | |
YD19-B3 | 21 | 45 | 22 | 2 | 3 | 3 | — | 4 | — | |
YD009-B1 | 23 | 63 | 10 | 2 | 2 | — | — | — | — | |
YD23-B8 | 32 | 57 | 4 | 2 | — | — | 2 | 3 | — | |
YD25-B1 | 54 | 36 | 6 | 1 | 3 | — | — | — | — | |
YD26-B1 | 37 | 53 | 4 | 4 | — | — | 2 | — | — | |
D712-B1 | 14 | 81 | — | — | — | — | — | 6 | — | |
D712-B2 | 4 | 90 | — | — | — | — | — | 6 | — | |
D712-B3 | — | 95 | 3 | 1 | — | — | — | — | — | |
D712-B4 | 14 | 74 | — | — | — | 3 | — | 9 | — | |
D712-B5 | 19 | 69 | 5 | — | — | — | — | 7 | — | |
D712-B6 | — | 76 | 11 | 1 | — | 3 | — | 9 | — | |
D708-B1 | 2号矿化体矿石 | 15 | 69 | 4 | — | 12 | — | — | — | — |
D708-B2 | 18 | 69 | 5 | — | 9 | — | — | — | — | |
D708-B3 | 2号矿化体围岩 | 5 | — | 72 | 2 | — | — | — | 10 | 11 |
D708-B4 | — | — | 8 | — | — | 87 | — | 3 | 3 |
矿床 | 构造环境 | 容矿岩石 | 矿体特征 | 矿石组合 | 矿石组构 | 围岩蚀变 |
---|---|---|---|---|---|---|
Nikolaevskoye | 大陆边缘裂谷 | 双峰式火山岩和沉积岩,(由条带状粉砂岩和细碧岩,以及粉砂岩、砂岩、灰岩和流纹质凝灰岩、熔岩互层组成) | 层状、脉状(矿体上部有铁帽) | 黄铁矿、黄铜矿、闪锌矿、方铅矿,其次为铜蓝、辉铜矿、自然金、自然银、脆硫锑铅矿、辉银矿、毒砂 | 浸染状、细脉-网脉状、脉状、致密块状和角砾状 | 绢云母化、绿泥石化、硅化、钠长石化和碳酸盐化 |
Ridder- Sokolnoye | 大陆边缘裂谷 | 双峰式火山岩和沉积岩,(酸性熔岩、火山碎屑岩,石英岩、粉砂泥岩) | 层状、脉状 | 黄铁矿、闪锌矿、方铅矿、黄铜矿、黝铜矿自然金 | 层状、韵律层状、条带状、致密块状、细脉-网脉状、细脉浸染状、脉状、角砾状、斑点状 | 硅化、绢云母化、白云岩化、绿泥石化、碳酸盐化 |
白银厂 | 大陆边缘裂谷 | 酸性火山岩(大理岩、硅质岩等沉积岩分布较广,含矿酸性火山岩呈厚层状的夹层产于大理岩中) | 层状、脉状(矿体上部有铁帽) | 黄铁矿、黄铜矿、闪锌矿和方铅矿,次生矿物有辉铜矿和蓝铜矿 | 致密块状、条带状、浸染状和脉状 | 硅化、绢云母化、绿泥石化、赤铁矿化和重晶石化,地表氧化现象广泛 |
塔吉克 | 大陆裂谷 | 中基性火山熔岩、中酸性火山碎屑岩、沉积岩(碳酸盐岩) | 层状(矿化体上部有铁帽) | 主要有针铁矿、赤铁矿、孔雀石,伴生硫化物矿石,含极少量的自然金、自然银 | 蜂窝状-块状、致密块状、角砾状 | 碳酸岩化、硅化、绿泥石化、黏土化 |
Table 5 Comparisons of the characteristics of typical VMS-type copper-lead-zinc deposits in the world. Adapted from [2⇓⇓⇓⇓-7,53].
矿床 | 构造环境 | 容矿岩石 | 矿体特征 | 矿石组合 | 矿石组构 | 围岩蚀变 |
---|---|---|---|---|---|---|
Nikolaevskoye | 大陆边缘裂谷 | 双峰式火山岩和沉积岩,(由条带状粉砂岩和细碧岩,以及粉砂岩、砂岩、灰岩和流纹质凝灰岩、熔岩互层组成) | 层状、脉状(矿体上部有铁帽) | 黄铁矿、黄铜矿、闪锌矿、方铅矿,其次为铜蓝、辉铜矿、自然金、自然银、脆硫锑铅矿、辉银矿、毒砂 | 浸染状、细脉-网脉状、脉状、致密块状和角砾状 | 绢云母化、绿泥石化、硅化、钠长石化和碳酸盐化 |
Ridder- Sokolnoye | 大陆边缘裂谷 | 双峰式火山岩和沉积岩,(酸性熔岩、火山碎屑岩,石英岩、粉砂泥岩) | 层状、脉状 | 黄铁矿、闪锌矿、方铅矿、黄铜矿、黝铜矿自然金 | 层状、韵律层状、条带状、致密块状、细脉-网脉状、细脉浸染状、脉状、角砾状、斑点状 | 硅化、绢云母化、白云岩化、绿泥石化、碳酸盐化 |
白银厂 | 大陆边缘裂谷 | 酸性火山岩(大理岩、硅质岩等沉积岩分布较广,含矿酸性火山岩呈厚层状的夹层产于大理岩中) | 层状、脉状(矿体上部有铁帽) | 黄铁矿、黄铜矿、闪锌矿和方铅矿,次生矿物有辉铜矿和蓝铜矿 | 致密块状、条带状、浸染状和脉状 | 硅化、绢云母化、绿泥石化、赤铁矿化和重晶石化,地表氧化现象广泛 |
塔吉克 | 大陆裂谷 | 中基性火山熔岩、中酸性火山碎屑岩、沉积岩(碳酸盐岩) | 层状(矿化体上部有铁帽) | 主要有针铁矿、赤铁矿、孔雀石,伴生硫化物矿石,含极少量的自然金、自然银 | 蜂窝状-块状、致密块状、角砾状 | 碳酸岩化、硅化、绿泥石化、黏土化 |
[1] | FRANKLIN J, SANGSTER D F, LYDON J W. Volcanic-associated massive sulfide deposits[J]. Economic Geology, 75th Anniversary Volume, 1981: 485-627. |
[2] | FRANKLIN J, GIBSON H, JONASSON I, et al. Volcanogenic massive sulfide deposits[J]. Economic Geology, 75th Anniversary Volume, 2005: 523-560. |
[3] | LARGE R R, MCPHIE J, GEMMELL J B, et al. The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions-some examples from Australia[J]. Economic Geology, 2001, 96: 913-938. |
[4] | HANNINGTON M D. Volcanogenic Massive Sulfide Deposits[J]. Treatise on Geochemistry, 2014: 463-488. |
[5] | SINGER D A. World class base and precious metal deposits a quantitative analysis[J]. Economic Geology, 1995, 90: 88-104. |
[6] | 毛景文, 张作衡, 白冶, 等. 世界典型矿床[M]. 北京: 地质出版社, 2012: 1-387. |
[7] | 戴自希, 盛继福, 白冶, 等. 世界铅锌资源的分布与潜力[M]. 北京: 地震出版社, 2005: 1-387. |
[8] | HOU Z Q, ZHANG H R. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2015, 70: 346-384. |
[9] | SONG Y C, LIU Y C, HOU Z Q, et al. Sediment-hosted Pb-Zn deposits in the Tethyan domain from China to Iran: Characteristics, tectonic setting, and ore controls[J]. Gondwana Research, 2019, 75: 249-281. |
[10] | 张辉善. 新特提斯构造域中东段沉积岩容矿铅锌成矿作用: 以青海多才玛和巴基斯坦杜达矿床为例[D]. 合肥: 中国科学技术大学, 2021. |
[11] | 吴福元, 万博, 赵亮, 等. 特提斯地球动力学[J]. 岩石学报, 2020, 36(6): 1627-1674. |
[12] | HOU Z Q, KHIN Z, PAN G T, et al. Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 2007, 31: 48-87. |
[13] | 李文渊. 块状硫化物矿床的类型、 分布和形成环境[J]. 地球科学与环境学报, 2007, 29(4): 331-344. |
[14] | BADRZADEH Z, BARRETT T J, PETER J M, et al. Geology, mineralogy, and sulfur isotope geochemistry of the Sargaz Cu-Zn volcanogenic massive sulfide deposit, Sanandaj-Sirjan Zone, Iran[J]. Mineralium Deposita, 2011, 46(8): 905-923. |
[15] | LI W C, PAN G T, ZHANG X F, et al. Tectonic evolution and multi-episodic metallogenesis of the Sanjiang Paleo-Tethys multi-arc-basin-terrane system, SW Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2021, 104932: 1-24. |
[16] | 张洪瑞, 侯增谦, 杨志明. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 2010, 29: 113-133. |
[17] | CHAPMAN J B, SCOGGIN S H, KAPP P, et al. Mesozoic to cenozoic magmatic history of the Pamir[J]. Earth and Planetary Science Letters, 2018, 482: 181-192. |
[18] | 李宝强, 张晶, 范堡程, 等. 中塔合作帕米尔地球化学调查成果与展望[J]. 中国地质调查, 2014, 1(3): 22-31. |
[19] | 范堡程, 孟广路, 刘明义, 等. 塔吉克斯坦成矿单元划分及其特征[J]. 地质科技情报, 2017, 36(2): 168-175. |
[20] | 范堡程, 张晶, 孟广路. 帕米尔构造结锂矿资源潜力评价: 基于1: 100万地球化学调查[J]. 西北地质, 2022, 55(1): 156-166. |
[21] | 范堡程, 张晶, 孟广路. 地球化学块体理论在塔吉克斯坦金资源潜力预测中的应用[J]. 西北地质, 2020, 53(1): 139-146. |
[22] | WANG X Q, ZHANG B M, NIE L S, et al. Mapping Chemical Earth Program: Progress and challenge[J/OL]. Journal of Geochemical Exploration, 2020, 217: 106578. |
[23] | 王学求, 刘汉粮, 王玮, 等. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报, 2020, 41(6): 797-806. |
[24] | 王学求, 谢学锦, 张本仁, 等. 地壳全元素探测—构建“化学地球”[J]. 地质学报, 2010, 84(06): 854-864. |
[25] | 张晶, 李宝强, 李慧英. 区域地球化学方法在西天山地区成矿潜力评价中的应用[J]. 西北地质, 2017, 50(3): 162-172. |
[26] | 张晶, 孟广路, 王斌, 等. 西北地区区域地球化学特征与成果应用[M]. 武汉: 中国地质大学出版社, 2020: 150-165. |
[27] | 李兴振, 刘增乾, 潘桂棠, 等. 西南三江地区构造单元划分及地史演化[J]. 中国地质科学院成都地质矿产研究所所刊, 1991, 13: 1-19. |
[28] | 李兴振, 潘桂棠, 罗建宁. 论三江地区冈瓦纳和劳亚大陆的分界[M]// 青藏高原地质文集“三江”论文专辑. 北京: 地质出版社, 1990. |
[29] | 刘增乾, 李兴振, 叶庆同. 三江地区构造岩浆带的划分与矿产分布规律[M]. 北京: 地质出版社, 1993. |
[30] | 潘桂棠, 陈智梁, 李兴振, 等. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997. |
[31] | 钟大赉. 滇川西部古特提斯造山带[M]. 北京: 科学出版, 1998. |
[32] | 李三忠, 赵淑娟, 李玺瑶, 等. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性[J]. 岩石学报, 2016, 32(09): 2609-2627. |
[33] | STOECKLIN J. Possible ancient continental margins in Iran[M]// The geology of continental margins. Berlin, Heidelberg: Springer Berlin Heidelberg, 1974: 873-887. |
[34] | STOECKLIN J. Structural history and tectonics of Iran: A review[J]. AAPG Bulletin, 1968, 52: 1229-1258. |
[35] | SENGOR A M C. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications[J]. Nature, 1979, 279: 590-593. |
[36] | 李兴振, 许效松, 潘桂棠. 泛华夏大陆群与东特提斯构造域演化[J]. 沉积与特提斯地质, 1995, 4: 1-13. |
[37] | 李荣社, 计文化, 何世平, 等. 中国西部古亚洲与特提斯两大构造域划分问题讨论[J]. 新疆地质, 2011, 29(3): 247-250. |
[38] | AMES L, TILTON G R, ZHOU G. Timing of collision of the Sino-Korean and Yangtse cration: U-Pb zircon dating of coesite-bearing ecogites[J]. Geology, 1993, 21(4): 339-342. |
[39] | METCALFE I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33. |
[40] | METCALFE I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys[J]. Australian Journal of Earth Sciences, 1996, 43: 605-623. |
[41] | STAMPFLI G M. Tethyan oceans[J]. Geological society, london, special publications, 2000, 173(1): 1-23. |
[42] | 吴根耀, 矢野孝雄. 东亚大陆边缘的构造格架及其中-新生代演化[J]. 地质通报, 2007, 26: 86-89. |
[43] | 许志琴, 杨经绥, 李化启, 等. 中国大陆印支碰撞造山系及其造山机制[J]. 岩石学报, 2012, 28(06): 1697-1709. |
[44] | ROGERS J J W. A history of continents in the past three billion years[J]. Journal of Geology, 1996, 104: 91-107. |
[45] | 洪俊, 计文化, 张辉善, 等. 南帕米尔北缘切实界别辉长岩LA-ICP-MS锆石U-Pb定年、 地球化学特征及其地质意义[J]. 地质通报, 2014, 33(6): 820-829. |
[46] | 洪俊, 计文化, 张辉善, 等. 帕米尔东缘杜格里富碱斑岩锆石U-Pb定年、 地球化学特征及构造意义[J]. 地质学报, 2015, 89(9): 1463-1654. |
[47] | 洪俊, 计文化, 张海迪, 等. 帕米尔地区穆尔尕布辉长岩-闪长岩的成因: 锆石U-Pb年龄、 Hf同位素及岩石地球化学证据[J]. 中国地质, 2017, 44(4): 722-736. |
[48] | BURTMAN V S, MOLNAR P. Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir[J]. Geological Society of America Special Papers, 1993, 281: 1-76. |
[49] | ROBINSON A C, YIN A, MANNIN C E, et al. Cenozoic evolution of the eastern Pamir: implications for strain accommodation mechanisms at the western end of the Himalayan-Tibetan orogen[J]. Geological Society Of America Bulletin, 2007, 119, 882-896. |
[50] | 苏联国家地质委员会. 1∶20万苏联J43-XXI幅区域地质调查报告[R]. 杜尚别: 苏联国家地质委员会, 1956. |
[51] | 河南省地质调查院. 1∶25万中国J43C003002(克克吐鲁克)、 J43C003003(塔什库尔干塔吉克自治县)幅区域地质调查报告[R]. 郑州: 河南省地质调查院, 2005. |
[52] | 向运川. 区域地球化学数据管理信息系统的实现技术[J]. 物探与化探, 2002, 26(3): 209-214. |
[53] | 张辉善, 李艳广, 全守村, 等. 阿尔金喀腊达坂铅锌矿床金属硫化物元素地球化学特征及其对成矿作用的制约[J]. 岩石学报, 2018, 34(08): 2295-2311. |
[54] | 李宝强, 孟广路, 祁世军, 等. 兴都库什-西昆仑成矿带地质矿产概论[M]. 北京: 地质出版社, 2013: 1-245. |
[1] | WANG Hua-Qiu, ZHANG Bi-Min, TAO Wen-Sheng, LIU Xue-Min. [J]. Earth Science Frontiers, 20140101, 21(1): 65-74. |
[2] | LIU Jun’an, ZHU Yiping, JIANG Hantao, César De La Cruz POMA, Oliberth Pascual GODOY, Luis Enrique Vargas RODRÍGUEZ, GUO Weimin, YAO Chunyan, WANG Tiangang, ZHANG Ming, YAO Zhongyou. Geochemical characteristics and quality evaluation of soils in the Mantaro Basin, central Peru [J]. Earth Science Frontiers, 2025, 32(1): 219-235. |
[3] | WU Fafu, ZHAO Kai, SONG Song, LUO Junqiang, ZHANG Huishan, YU Wenming, LIU Jiangtao, CHENG Xiang, LIU Hao, ZENG Xiongwei, HE Yaoyan, XIANG Peng, WANG Jianxiong, HU Peng. Geochemical distribution of Pb and Zn in the Eastern High Atlas, Morocco: Implications for Pb-Zn ore prospecting [J]. Earth Science Frontiers, 2025, 32(1): 162-182. |
[4] | HONG Jun, Tahseenullah KHAN, LI Wenyuan, Yasir Shaheen KHALIL, MA Zhongping, ZHANG Jing, WANG Zhihua, ZHANG Huishan, ZHANG Haidi, LIU Chang, Asad Ali NAREJO. Geochemical distribution of Li/Be in Pakistan: Implications for Li/Be prospecting [J]. Earth Science Frontiers, 2025, 32(1): 127-141. |
[5] | ZHANG Huishan, SONG Yucai, LI Wenchang, MA Zhongping, ZHANG Jing, HONG Jun, LIU Lei, LÜ Pengrui, WANG Zhihua, ZHANG Haidi, YANG Bo, Naghmah HAIDER, Yasir Shaheen KHALIL, Asad Ali NAREJO. Geochemical distribution and metallogenic potential of Pb-Zn in Pakistan and its implications for mineral prospecting in sediment-hosted Pb-Zn deposits in the Tethys belt [J]. Earth Science Frontiers, 2025, 32(1): 105-126. |
[6] | CHUAN Maoshan, HU Le, LIN Ruxi, MAO Chongzhen, LI Shizhong, LI Suoming, YUAN Yongsheng. Origin and tectonic implication of early Mesozoic “mung bean rock” in the western margin of the Yangtze Platform: Zircon U-Pb age, trace element and Hf isotope constraints [J]. Earth Science Frontiers, 2024, 31(2): 204-223. |
[7] | WANG Genhou, LI Dian, LIANG Xiao. Structure, composition and evolution of the Indosinian South Qiantang accretionary complex [J]. Earth Science Frontiers, 2023, 30(3): 242-261. |
[8] | FENG Jun, ZHANG Qi, LUO Jianmin. Deeply mining the intrinsic value of geodata to improve the accuracy of predicting by quantitatively optimizing method for prospecting target areas [J]. Earth Science Frontiers, 2022, 29(4): 403-411. |
[9] | LI Kuo,PENG Min,ZHAO Chuandong,YANG Ke,ZHOU Yalong,LIU Fei,TANG Shiqi,YANG Fan,HAN Wei,YANG Zheng,CHENG Xiaomeng,XIA Xueqi,GUAN Tao,LUO Jianlan,CHENG Hangxin. Vicennial implementation of geochemical survey of land quality in China [J]. Earth Science Frontiers, 2019, 26(6): 128-158. |
[10] | . The IUGS/IAGC Task Group on Global Geochemical Baselines [J]. Earth Science Frontiers, 2012, 19(3): 1-6. |
[11] | XI Xiao-Huan, YANG Zhong-Fang, CUI Yu-Jun, SUN Chu-Mei, XU Cheng-An, LI Min. A study of soil carbon distribution and change in Northeast Plain. [J]. Earth Science Frontiers, 2010, 17(3): 213-221. |
[12] | XI Xiao-Huan YANG Zhong-Fang JIA Hua-Ji LI Min. Calculation techniques for soil carbon storage of China based on multipurpose geochemical survey [J]. Earth Science Frontiers, 2009, 16(1): 194-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||