Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 127-141.DOI: 10.13745/j.esf.sf.2024.10.32
Previous Articles Next Articles
HONG Jun1,2(), Tahseenullah KHAN3, LI Wenyuan1,2, Yasir Shaheen KHALIL4, MA Zhongping1,2, ZHANG Jing2, WANG Zhihua2, ZHANG Huishan2, ZHANG Haidi2, LIU Chang2, Asad Ali NAREJO4
Received:
2024-08-01
Revised:
2024-10-10
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
HONG Jun, Tahseenullah KHAN, LI Wenyuan, Yasir Shaheen KHALIL, MA Zhongping, ZHANG Jing, WANG Zhihua, ZHANG Huishan, ZHANG Haidi, LIU Chang, Asad Ali NAREJO. Geochemical distribution of Li/Be in Pakistan: Implications for Li/Be prospecting[J]. Earth Science Frontiers, 2025, 32(1): 127-141.
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
频数/% | 0.5 | 1.2 | 2.0 | 3.0 | 4.5 | 8.0 | 15 | 25 | 40 | 60 | 75 | 85 | 92 | 95.5 | 97 | 98 | 98.8 | 99.5 | 100 | ||||||||
分级 | 内带 | 中带 | 外带 | 低背景 | 背景 | 高背景 | 外带 | 中带 | 内带 | ||||||||||||||||||
异常 | 负异常 | 背景 | 正异常 |
Table 1 Table correlating the cumulative frequency distribution of geochemical content isopleths and the corresponding frequencies of geochemical background and anomaly zoning
序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
频数/% | 0.5 | 1.2 | 2.0 | 3.0 | 4.5 | 8.0 | 15 | 25 | 40 | 60 | 75 | 85 | 92 | 95.5 | 97 | 98 | 98.8 | 99.5 | 100 | ||||||||
分级 | 内带 | 中带 | 外带 | 低背景 | 背景 | 高背景 | 外带 | 中带 | 内带 | ||||||||||||||||||
异常 | 负异常 | 背景 | 正异常 |
元素 | 样品数/件 | 最小值/(μg·g-1) | P2.5/(μg·g-1) | P25/(μg·g-1) | P75/(μg·g-1) | P95/(μg·g-1) |
---|---|---|---|---|---|---|
锂 | 2 547 | 1.56 | 5.09 | 11.15 | 20.68 | 40.13 |
铍 | 2 547 | 0.07 | 0.27 | 0.65 | 1.27 | 2.48 |
元素 | 样品数/件 | 最大值/(μg·g-1) | 平均值/(μg·g-1) | 标准差/(μg·g-1) | 异常下限/(μg·g-1) | |
锂 | 2 547 | 118.20 | 20.06 | 11.94 | 43.94 | |
铍 | 2 547 | 7.16 | 1.22 | 0.70 | 0.35 |
Table 2 Geochemical parameters descriptive statistics for Li and Be in stream sediments
元素 | 样品数/件 | 最小值/(μg·g-1) | P2.5/(μg·g-1) | P25/(μg·g-1) | P75/(μg·g-1) | P95/(μg·g-1) |
---|---|---|---|---|---|---|
锂 | 2 547 | 1.56 | 5.09 | 11.15 | 20.68 | 40.13 |
铍 | 2 547 | 0.07 | 0.27 | 0.65 | 1.27 | 2.48 |
元素 | 样品数/件 | 最大值/(μg·g-1) | 平均值/(μg·g-1) | 标准差/(μg·g-1) | 异常下限/(μg·g-1) | |
锂 | 2 547 | 118.20 | 20.06 | 11.94 | 43.94 | |
铍 | 2 547 | 7.16 | 1.22 | 0.70 | 0.35 |
元素 | 单元代号 | 样品数/件 | 平均值/ (μg·g-1) | 最小值/ (μg·g-1) | 最大值/ (μg·g-1) | 标准离差/ (μg·g-1) | 均方差/ (μg·g-1) |
---|---|---|---|---|---|---|---|
锂 | 1 | 214 | 48.61 | 12.97 | 83.95 | 464.46 | 21.55 |
2 | 600 | 35.94 | 1.83 | 89.44 | 330.57 | 18.18 | |
3 | 492 | 15.42 | 1.96 | 62.77 | 61.53 | 7.84 | |
4 | 758 | 26.18 | 3.78 | 68.49 | 174.90 | 13.23 | |
5 | 290 | 18.86 | 4.85 | 118.16 | 139.77 | 11.82 | |
6 | 398 | 19.69 | 1.96 | 48.04 | 52.75 | 7.26 | |
7 | 2 176 | 24.31 | 8.86 | 77.60 | 179.10 | 13.38 | |
8 | 142 | 19.38 | 1.56 | 79.44 | 214.60 | 14.65 | |
铍 | 1 | 214 | 3.92 | 2.07 | 7.16 | 2.48 | 1.57 |
2 | 600 | 2.64 | 0.07 | 6.13 | 0.94 | 0.97 | |
3 | 492 | 1.28 | 0.26 | 6.69 | 0.56 | 0.75 | |
4 | 758 | 2.03 | 0.19 | 6.28 | 0.94 | 0.97 | |
5 | 290 | 1.16 | 0.20 | 2.72 | 0.22 | 0.46 | |
6 | 398 | 0.86 | 0.08 | 2.32 | 0.19 | 0.44 | |
7 | 2 176 | 1.08 | 0.37 | 3.23 | 0.20 | 0.45 | |
8 | 142 | 0.90 | 0.04 | 3.25 | 0.41 | 0.64 |
Table 3 Element concentrations descriptive statistics for Li and Be in stream sediments under each tectonic unit
元素 | 单元代号 | 样品数/件 | 平均值/ (μg·g-1) | 最小值/ (μg·g-1) | 最大值/ (μg·g-1) | 标准离差/ (μg·g-1) | 均方差/ (μg·g-1) |
---|---|---|---|---|---|---|---|
锂 | 1 | 214 | 48.61 | 12.97 | 83.95 | 464.46 | 21.55 |
2 | 600 | 35.94 | 1.83 | 89.44 | 330.57 | 18.18 | |
3 | 492 | 15.42 | 1.96 | 62.77 | 61.53 | 7.84 | |
4 | 758 | 26.18 | 3.78 | 68.49 | 174.90 | 13.23 | |
5 | 290 | 18.86 | 4.85 | 118.16 | 139.77 | 11.82 | |
6 | 398 | 19.69 | 1.96 | 48.04 | 52.75 | 7.26 | |
7 | 2 176 | 24.31 | 8.86 | 77.60 | 179.10 | 13.38 | |
8 | 142 | 19.38 | 1.56 | 79.44 | 214.60 | 14.65 | |
铍 | 1 | 214 | 3.92 | 2.07 | 7.16 | 2.48 | 1.57 |
2 | 600 | 2.64 | 0.07 | 6.13 | 0.94 | 0.97 | |
3 | 492 | 1.28 | 0.26 | 6.69 | 0.56 | 0.75 | |
4 | 758 | 2.03 | 0.19 | 6.28 | 0.94 | 0.97 | |
5 | 290 | 1.16 | 0.20 | 2.72 | 0.22 | 0.46 | |
6 | 398 | 0.86 | 0.08 | 2.32 | 0.19 | 0.44 | |
7 | 2 176 | 1.08 | 0.37 | 3.23 | 0.20 | 0.45 | |
8 | 142 | 0.90 | 0.04 | 3.25 | 0.41 | 0.64 |
[1] | LINNEN R L, VAN LICHTERVELDE M, CERNY P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280. |
[2] | CHAKHMOURADIAN A R, SMITH M P, KYNICKY J. From “strategic” tungsten to “green” neodymium: a century of critical metals at aglance[J]. Ore Geology Reviews, 2015, 64: 455-458. |
[3] | 李建康, 刘喜方, 王登红. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2269-2283. |
[4] | 许志琴, 朱文斌, 郑碧海, 等. 新能源锂矿战略与大陆动力学研究: 纪念南京大学地球科学与工程学院100周年华诞[J]. 地质学报, 2021, 95(10): 2937-2954. |
[5] | 李晓峰, 韦星林. 稀有金属锂铍矿床研究中的几个关键科学问题: 代序[J]. 岩石学报, 2022, 38(7): 1843-1847. |
[6] | 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209. |
[7] | 毛景文, 袁顺达, 谢桂青, 等. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 2019, 38(5): 935-969. |
[8] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. |
[9] | 吴福元, 王汝成, 刘小驰, 等. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 2021, 37(11): 3261-3276. |
[10] | 王汝成, 吴福元, 谢磊, 等. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 2017, 47(8): 871-880. |
[11] | AKOH J U, OGUNLEYE P O, IBRAHIM A A. Geochemical evolution of micas and Sn-, Nb-, Ta- mineralization associated with the rare metal pegmatite in Angwan Doka, central Nigeria[J]. Journal of African Earth Sciences, 2015, 112: 24-36. |
[12] | MELCHER F, GRAUPNER T, GÄBLER H E, et al. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667-719. |
[13] | SIEGEL K, VASYUKOVA O V, WILLIAMS-JONES A E. Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador[J]. Lithos, 2018, 308: 34-52. |
[14] | BREITER K, ĎURIŠOVÁ J, KORBELOVÁ Z, et al. Rock textures and mineral zoning: a clue to understanding rare-metal granite evolution: argemela stock, central-eastern Portugal[J]. Lithos, 2022, 410: 106562. |
[15] | KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources: relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48: 55-69. |
[16] | CERNY P, ERCIT T S. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 2005, 43(6): 2005-2026. |
[17] | OTHERS T D F. Archean rare-metal pegmatites in Zimbabwe and western Australia: geology and metallogeny of pollucite mineralisations[M]. Cham, Switzerland: Springer, 2019. |
[18] | 陈衍景, 薛莅治, 王孝磊, 等. 世界伟晶岩型锂矿床地质研究进展[J]. 地质学报, 2021, 95(10): 2971-2995. |
[19] | 张辉, 吕正航, 唐勇. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 2019, 38(4): 792-814. |
[20] | 洪俊. 巴基斯坦构造-岩浆演化与金属成矿作用研究[D]. 北京: 中国地质科学院, 2021. |
[21] | 洪俊, 张辉善, 吕鹏瑞, 等. 巴基斯坦新特提斯构造-岩浆演化与重要金属成矿作用[J]. 西北地质, 2024, 57(3): 154-176. |
[22] | 王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480. |
[23] | 王学求, 刘汉粮, 王玮, 等. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报, 2020, 41(6): 797-806. |
[24] | 张洪瑞, 侯增谦, 杨志明. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 2010, 29(1): 113-133. |
[25] | 吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦成矿地质背景、主要金属矿产类型及其特征[J]. 地质科技情报, 2016, 35(4): 150-157. |
[26] | KAZMI A H, RANA R A. Tectonic map of Pakistan[Z]. Quetta: Geological Survey of Pakistan, 1982. |
[27] | 姚文光, 洪俊, 吕鹏瑞, 等. 苏莱曼山—喀喇昆仑山区域地质背景和成矿特征[M]. 北京: 地质出版社, 2019. |
[28] | MALKANI M S. Stratigraphy, mineral potential, geological history and paleogeography of Balochistan province, Pakistan[J]. Sindh University Research Journal (Science Series), 2011, 43(2): 269-290. |
[29] | RAZIQUE A. Magmatic evolution and genesis of the Reko Diq H14-H15 porphyry copper-gold deposit, district Chagai, Baluchistan-Pakistan[D]. Vancouver: University of British Columbia, 2013. |
[30] | PERELLO J, RAZIQUE A, SCHLODERER J, et al. The Chagai porphyry copper belt, Baluchistan Province, Pakistan[J]. Economic Geology, 2008, 103(8): 1583-1612. |
[31] | RICHARDS J P. Tectonic, magmatic, and metallogenic evolution of the Tethyan Orogen: from subduction to collision[J]. Ore Geology Reviews, 2015, 70: 323-345. |
[32] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. |
[33] | REHMAN H U, LEE H Y, CHUNG S L, et al. Source and mode of the Permianpanjal trap magmatism: evidence from zircon U-Pb and Hf isotopes and trace element data from the Himalayan ultrahigh-pressure rocks[J]. Lithos, 2016, 260: 286-299. |
[34] | 洪俊, 姚文光, 张晶, 等. 新特提斯缝合带中段都加状铬铁矿成矿规律对比研究[J]. 地质学报, 2015, 89(9): 1618-1628. |
[35] | 张辉善. 新特提斯构造域中东段沉积岩容矿铅锌成矿作用: 以青海多才玛和巴基斯坦杜达矿床为例[D]. 合肥: 中国科学技术大学, 2021. |
[36] | HUSSAIN A, SHAH M T, ARIF M, et al. Chemical composition of gemstones and characterization of their host pegmatites and country rocks from Chumar Bakhoor, Gilgit-Baltistan, Pakistan: implications for the source of gem-forming fluids[J]. Arabian Journal of Geosciences, 2021, 14(13): 1303. |
[37] | SORKHABI R, HEYDARI E. Asia out of Tethys: foreword[J]. Tectonophysics, 2008, 451: 1-6. |
[38] | 张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 33-42. |
[39] | 向运川. 区域地球化学数据管理信息系统的实现技术[J]. 物探与化探, 2002, 26(3): 209-214, 217. |
[40] | WEDEPOHL K H. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1995, 59: 1217-1232. |
[41] | BEBOUT G E, RYAN J G, LEEMAN W P. B-Be systematics in subduction-related metamorphic rocks: characterization of the subducted component[J]. Geochimica et Cosmochimica Acta, 1993, 57(10): 2227-2237. |
[42] | CHAN L H, ALT J C, TEAGLE D A H. Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP sites 504B and 896A[J]. Earth and Planetary Science Letters, 2002, 201(1): 187-201. |
[43] | TANG Y J, ZHANG H F, YING J F. Review of the lithium isotope system as a geochemical tracer[J]. International Geology Review, 2007, 49(4): 374-388. |
[44] | 王登红, 邹天人, 李红阳. 稀有金属经济地质的研究进展[J]. 地质科技情报, 1998, 17(3): 63-68. |
[45] | 邹天人, 李庆昌. 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006. |
[46] | 李建康, 邹天人, 王登红, 等. 中国铍矿成矿规律[J]. 矿床地质, 2017, 36(4): 951-978. |
[47] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111. |
[48] | GRUBER P W, MEDINA P A, KEOLEIAN G A, et al. Global lithium availability[J]. Journal of Industry Ecology, 2011, 15(5): 760-755. |
[49] |
BENSON T R, COBLE M A, RYTUBA J J, et al. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins[J]. Nature Communications, 2017, 8(1): 270.
DOI PMID |
[50] | BENSON T R, MAHOOD G A, GROVE M. Geology and 40Ar/39Ar geochronology of the middle Miocene McDermitt volcanic field, Oregon and Nevada: silicic volcanism associated with propagating flood basalt dikes at initiation of the Yellowstone hotspot[J]. GSA Bulletin, 2017, 129(9/10): 1027-1051. |
[51] | 徐兴旺, 翟明国, 洪涛, 等. 大陆地壳锂铍迁移-循环过程与富集-成矿机制[J]. 岩石学报, 2023, 39(3): 639-658. |
[52] | ČERNÝ P. Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research[J]. Applied Geochemistry, 1992, 7(5): 393-416. |
[53] | SCHULZ K J, DEYOUNG JR J H, SEAL II R R, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply[R]. New York: U.S. Geological Survey Professional Paper, 2017. |
[54] | WARREN J K. Evaporites through time: tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3/4): 217-268. |
[55] | 范堡程, 张晶, 孟广路, 等. 地球化学块体理论在塔吉克斯坦金资源潜力预测中的应用[J]. 西北地质, 2020, 53(1): 138-145. |
[56] | ARIF M, HENRY D J, MOON C J. Host rock characteristics and source of chromium and beryllium for emerald mineralization in the ophiolitic rocks of the Indus Suture Zone in Swat, NW Pakistan[J]. Ore Geology Reviews, 2011, 39(1/2): 1-20. |
[57] | HONG J, KHAN T, LI W Y, et al. SHRIMP U-Pb ages, mineralogy, and geochemistry of carbonatite-alkaline complexes of the Sillai Patti and Koga areas, NW Pakistan: implications for petrogenesis and REE mineralization[J]. Ore Geology Reviews, 2021, 139: 104547. |
[58] | DILLES J H, SNEE L W, LAURS B M. Geology, Ar-Ar age, and stable isotope geochemistry of suture-related emerald mineralization, Swat, Pakistan Himalaya[J]. Geological Society of America, 1994, 26 (7): 311. |
[1] | WANG Hua-Qiu, ZHANG Bi-Min, TAO Wen-Sheng, LIU Xue-Min. [J]. Earth Science Frontiers, 20140101, 21(1): 65-74. |
[2] | ZHANG Huishan, SONG Yucai, LI Wenchang, MA Zhongping, ZHANG Jing, HONG Jun, LIU Lei, LÜ Pengrui, WANG Zhihua, ZHANG Haidi, YANG Bo, Naghmah HAIDER, Yasir Shaheen KHALIL, Asad Ali NAREJO. Geochemical distribution and metallogenic potential of Pb-Zn in Pakistan and its implications for mineral prospecting in sediment-hosted Pb-Zn deposits in the Tethys belt [J]. Earth Science Frontiers, 2025, 32(1): 105-126. |
[3] | ZHANG Huishan, ZHANG Jing, HONG Jun, XI Dehua, MA Zhongping, MENG Guanglu, LUO Yanjun, ZHANG Haidi, LIU Mingyi, LÜ Pengrui, YANG Bo, CAO Jifei. Discovery of iron-copper polymetallic mineralization in the Pamir, Tajikistan and its implications for the exploration of VMS-type copper-lead-zinc deposits in the Paleo-Tethys domain [J]. Earth Science Frontiers, 2025, 32(1): 142-161. |
[4] | WU Fafu, ZHAO Kai, SONG Song, LUO Junqiang, ZHANG Huishan, YU Wenming, LIU Jiangtao, CHENG Xiang, LIU Hao, ZENG Xiongwei, HE Yaoyan, XIANG Peng, WANG Jianxiong, HU Peng. Geochemical distribution of Pb and Zn in the Eastern High Atlas, Morocco: Implications for Pb-Zn ore prospecting [J]. Earth Science Frontiers, 2025, 32(1): 162-182. |
[5] | LIU Jun’an, ZHU Yiping, JIANG Hantao, César De La Cruz POMA, Oliberth Pascual GODOY, Luis Enrique Vargas RODRÍGUEZ, GUO Weimin, YAO Chunyan, WANG Tiangang, ZHANG Ming, YAO Zhongyou. Geochemical characteristics and quality evaluation of soils in the Mantaro Basin, central Peru [J]. Earth Science Frontiers, 2025, 32(1): 219-235. |
[6] | WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data [J]. Earth Science Frontiers, 2023, 30(5): 216-226. |
[7] | WEI Haoyuan, ZHU Zongliang, XIAO Wenhua, WEI Jun, WEI Deqiang, YUAN Bochao, XIANG Xin. Oil-gas geological features and exploration direction in the Qingxi Sag, Jiuquan Basin [J]. Earth Science Frontiers, 2023, 30(1): 69-80. |
[8] | LI Dawei, MI Shiyun, WEN Zhixin, WANG Zhaoming, LIU Zuodong, WANG Yonghua, WU Zhenzhen, NIU Min, ZHANG Qian. Hydrocarbon accumulation conditions in and resource potential of the Asia-Pacific region [J]. Earth Science Frontiers, 2022, 29(6): 136-145. |
[9] | WU Xiaozhi, LIUZHUANG Xiaoxue, WANG Jian, ZHENG Min, CHEN Xiaoming, QI Xuefeng. Petroleum resource potential, distribution and key exploration fields in China [J]. Earth Science Frontiers, 2022, 29(6): 146-155. |
[10] | XU Xuhui, LU Jianlin, WANG Baohua, ZHENG Lunju, FANG Chengming, CAI Pengrui, ZHAO Linjie. Marine basins in China: Petroleum resource dynamic evolution and exploration directions [J]. Earth Science Frontiers, 2022, 29(6): 73-83. |
[11] | FENG Jun, ZHANG Qi, LUO Jianmin. Deeply mining the intrinsic value of geodata to improve the accuracy of predicting by quantitatively optimizing method for prospecting target areas [J]. Earth Science Frontiers, 2022, 29(4): 403-411. |
[12] | SUN Minghang, LIU Demin, KANG Zhiqiang, GUAN Yanwu, LIANG Guoke, HUANG Xiqiang, YE Jiahui, GUO Shangyu, SUN Xingting, TANG Wei, FENG Minhao. Analysis of hot-dry geothermal resource potential in southeastern Guangxi [J]. Earth Science Frontiers, 2020, 27(1): 72-80. |
[13] | LI Kuo,PENG Min,ZHAO Chuandong,YANG Ke,ZHOU Yalong,LIU Fei,TANG Shiqi,YANG Fan,HAN Wei,YANG Zheng,CHENG Xiaomeng,XIA Xueqi,GUAN Tao,LUO Jianlan,CHENG Hangxin. Vicennial implementation of geochemical survey of land quality in China [J]. Earth Science Frontiers, 2019, 26(6): 128-158. |
[14] | SONG Xianglong,LI Nan,XIAO Keyan,FAN Jianfu,CUI Ning. Design and implementation of a information management system for the national mineral resources potential evaluation project. [J]. Earth Science Frontiers, 2018, 25(3): 196-203. |
[15] | CAO Ye,TANG Yao,YAO Meijuan,SHANG Pengqiang,ZOU Zhendong,QIU Guoyu,XIONG Xianxiao. Geological characteristics and resource potential analysis of sulfur deposits in China. [J]. Earth Science Frontiers, 2018, 25(3): 179-195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||