Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 105-126.DOI: 10.13745/j.esf.sf.2024.10.44
Previous Articles Next Articles
ZHANG Huishan1,2,3(), SONG Yucai2,*(
), LI Wenchang3,4, MA Zhongping1, ZHANG Jing1, HONG Jun1, LIU Lei5, LÜ Pengrui1, WANG Zhihua1, ZHANG Haidi1, YANG Bo1, Naghmah HAIDER6, Yasir Shaheen KHALIL6, Asad Ali NAREJO6
Received:
2024-08-10
Revised:
2024-10-15
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
ZHANG Huishan, SONG Yucai, LI Wenchang, MA Zhongping, ZHANG Jing, HONG Jun, LIU Lei, LÜ Pengrui, WANG Zhihua, ZHANG Haidi, YANG Bo, Naghmah HAIDER, Yasir Shaheen KHALIL, Asad Ali NAREJO. Geochemical distribution and metallogenic potential of Pb-Zn in Pakistan and its implications for mineral prospecting in sediment-hosted Pb-Zn deposits in the Tethys belt[J]. Earth Science Frontiers, 2025, 32(1): 105-126.
Fig.1 Distribution of sediment-hosted lead-zinc deposits in the Tethys belt and lead-zinc propecting areas in Pakistan (basemap after http://www.ngdc.noaa.gov/mgg/global/; data after [14⇓⇓-17])
元素 | 最大值 | 最小值 | 平均值 | 平均差 | 中位数 | 标准离差 | 方差 | 偏度 | 峰度 | 异常下限 |
---|---|---|---|---|---|---|---|---|---|---|
Pb | 155.90 | 0.37 | 13.44 | 4.98 | 12.90 | 8.22 | 67.53 | 4.95 | 66.38 | 18.4 |
Zn | 288.70 | 1.78 | 52.10 | 21.31 | 49.57 | 27.01 | 729.45 | 0.75 | 2.12 | 76.0 |
Table 1 Despcriptive statistics of lead and zinc (μg/g) in stream sediments of Pakistan
元素 | 最大值 | 最小值 | 平均值 | 平均差 | 中位数 | 标准离差 | 方差 | 偏度 | 峰度 | 异常下限 |
---|---|---|---|---|---|---|---|---|---|---|
Pb | 155.90 | 0.37 | 13.44 | 4.98 | 12.90 | 8.22 | 67.53 | 4.95 | 66.38 | 18.4 |
Zn | 288.70 | 1.78 | 52.10 | 21.31 | 49.57 | 27.01 | 729.45 | 0.75 | 2.12 | 76.0 |
元素 | 单元代号 | 样品数量/件 | 平均值/ (μg·g-1) | 最小值/ (μg·g-1) | 最大值/ (μg·g-1) | 标准离差/ (μg·g-1) | 均方差/ (μg·g-1) |
---|---|---|---|---|---|---|---|
Pb | 1 | 107 | 19.37 | 0.72 | 50.68 | 65.38 | 8.09 |
2 | 300 | 11.16 | 1.42 | 52.13 | 50.93 | 7.14 | |
3 | 246 | 18.62 | 1.54 | 155.90 | 157.15 | 12.54 | |
4 | 379 | 14.93 | 4.31 | 136.73 | 56.27 | 7.50 | |
5 | 145 | 11.06 | 1.08 | 28.53 | 22.68 | 4.76 | |
6 | 199 | 13.15 | 4.28 | 45.66 | 17.38 | 4.17 | |
7 | 1 088 | 11.45 | 0.37 | 116.59 | 51.01 | 7.14 | |
Zn | 1 | 107 | 58.02 | 3.77 | 134.05 | 511.99 | 22.63 |
2 | 300 | 67.86 | 15.59 | 133.69 | 304.68 | 17.46 | |
3 | 246 | 66.86 | 9.61 | 170.66 | 602.70 | 24.55 | |
4 | 379 | 41.07 | 10.10 | 102.97 | 296.17 | 17.21 | |
5 | 145 | 31.91 | 4.99 | 82.90 | 238.92 | 15.46 | |
6 | 199 | 65.87 | 21.95 | 288.70 | 581.15 | 24.11 | |
7 | 1 088 | 47.49 | 1.78 | 143.70 | 894.33 | 29.91 |
Table 2 Statistical values of lead and zinc (μg/g) in stream sediment samples from main tectonic units of Pakistan
元素 | 单元代号 | 样品数量/件 | 平均值/ (μg·g-1) | 最小值/ (μg·g-1) | 最大值/ (μg·g-1) | 标准离差/ (μg·g-1) | 均方差/ (μg·g-1) |
---|---|---|---|---|---|---|---|
Pb | 1 | 107 | 19.37 | 0.72 | 50.68 | 65.38 | 8.09 |
2 | 300 | 11.16 | 1.42 | 52.13 | 50.93 | 7.14 | |
3 | 246 | 18.62 | 1.54 | 155.90 | 157.15 | 12.54 | |
4 | 379 | 14.93 | 4.31 | 136.73 | 56.27 | 7.50 | |
5 | 145 | 11.06 | 1.08 | 28.53 | 22.68 | 4.76 | |
6 | 199 | 13.15 | 4.28 | 45.66 | 17.38 | 4.17 | |
7 | 1 088 | 11.45 | 0.37 | 116.59 | 51.01 | 7.14 | |
Zn | 1 | 107 | 58.02 | 3.77 | 134.05 | 511.99 | 22.63 |
2 | 300 | 67.86 | 15.59 | 133.69 | 304.68 | 17.46 | |
3 | 246 | 66.86 | 9.61 | 170.66 | 602.70 | 24.55 | |
4 | 379 | 41.07 | 10.10 | 102.97 | 296.17 | 17.21 | |
5 | 145 | 31.91 | 4.99 | 82.90 | 238.92 | 15.46 | |
6 | 199 | 65.87 | 21.95 | 288.70 | 581.15 | 24.11 | |
7 | 1 088 | 47.49 | 1.78 | 143.70 | 894.33 | 29.91 |
异常编号 | 面积/km2 | 样品数量/件 | 异常编号 | 面积/km2 | 样品数量/件 |
---|---|---|---|---|---|
Pb01 | 1 844.16 | 13 | Pb10 | 758.44 | 7 |
Pb02 | 1 084.65 | 9 | Pb11 | 2 255.80 | 14 |
Pb03 | 781.86 | 5 | Pb12 | 11 487.88 | 80 |
Pb04 | 781.95 | 6 | Pb13 | 2 945.04 | 15 |
Pb05 | 854.68 | 5 | Pb14 | 7 195.06 | 35 |
Pb06 | 662.54 | 6 | Pb15 | 2 942.27 | 20 |
Pb07 | 2 948.19 | 14 | Pb16 | 1 430.34 | 4 |
Pb08 | 6 258.94 | 51 | Pb17 | 10 047.64 | 41 |
Pb09 | 1 413.71 | 9 | Pb18 | 2 171.95 | 11 |
Table 3 Statistics of lead anomalies
异常编号 | 面积/km2 | 样品数量/件 | 异常编号 | 面积/km2 | 样品数量/件 |
---|---|---|---|---|---|
Pb01 | 1 844.16 | 13 | Pb10 | 758.44 | 7 |
Pb02 | 1 084.65 | 9 | Pb11 | 2 255.80 | 14 |
Pb03 | 781.86 | 5 | Pb12 | 11 487.88 | 80 |
Pb04 | 781.95 | 6 | Pb13 | 2 945.04 | 15 |
Pb05 | 854.68 | 5 | Pb14 | 7 195.06 | 35 |
Pb06 | 662.54 | 6 | Pb15 | 2 942.27 | 20 |
Pb07 | 2 948.19 | 14 | Pb16 | 1 430.34 | 4 |
Pb08 | 6 258.94 | 51 | Pb17 | 10 047.64 | 41 |
Pb09 | 1 413.71 | 9 | Pb18 | 2 171.95 | 11 |
Avg和排序 | Var和排序 | Pfd和排序 | Qm和排序 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
异常编号 | Avg | 异常编号 | Var | 异常编号 | Pfd | 异常编号 | Qm | |||
Pb02 | 32.65 | Pb10 | 2 194.57 | Pb10 | 3 642.14 | Pb12 | 4 901 369.48 | |||
Pb10 | 30.54 | Pb02 | 1 301.15 | Pb02 | 2 309.11 | Pb10 | 2 762 360.04 | |||
Pb16 | 27.71 | Pb12 | 303.69 | Pb12 | 426.66 | Pb02 | 2 504 577.07 | |||
Pb12 | 25.85 | Pb03 | 234.82 | Pb03 | 234.77 | Pb15 | 670 203.16 | |||
Pb15 | 25.36 | Pb15 | 165.30 | Pb15 | 227.78 | Pb14 | 536 433.33 | |||
Pb14 | 24.79 | Pb01 | 113.15 | Pb01 | 110.87 | Pb17 | 492 045.47 | |||
Pb17 | 23.56 | Pb14 | 55.33 | Pb14 | 74.56 | Pb01 | 204 459.65 | |||
Pb18 | 23.01 | Pb17 | 38.25 | Pb17 | 48.97 | Pb03 | 183 553.82 | |||
Pb06 | 22.11 | Pb08 | 26.61 | Pb08 | 29.08 | Pb08 | 182 004.82 | |||
Pb11 | 21.33 | Pb04 | 22.49 | Pb06 | 23.61 | Pb18 | 38 262.34 | |||
Pb13 | 21.28 | Pb06 | 19.65 | Pb04 | 22.91 | Pb11 | 30 717.12 | |||
Pb09 | 20.39 | Pb18 | 14.09 | Pb16 | 18.81 | Pb16 | 26 910.36 | |||
Pb07 | 20.37 | Pb16 | 12.49 | Pb18 | 17.62 | Pb13 | 25 306.07 | |||
Pb05 | 20.18 | Pb11 | 11.74 | Pb11 | 13.62 | Pb04 | 17 913.93 | |||
Pb08 | 20.10 | Pb05 | 9.83 | Pb05 | 10.78 | Pb06 | 15 643.53 | |||
Pb04 | 18.74 | Pb13 | 7.43 | Pb13 | 8.59 | Pb09 | 9 333.09 | |||
Pb03 | 18.40 | Pb09 | 5.96 | Pb09 | 6.60 | Pb05 | 9 213.96 | |||
Pb01 | 18.03 | Pb07 | 2.43 | Pb07 | 2.69 | Pb07 | 7 925.46 |
Table 4 Statistical table and ranking of lead anomalies
Avg和排序 | Var和排序 | Pfd和排序 | Qm和排序 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
异常编号 | Avg | 异常编号 | Var | 异常编号 | Pfd | 异常编号 | Qm | |||
Pb02 | 32.65 | Pb10 | 2 194.57 | Pb10 | 3 642.14 | Pb12 | 4 901 369.48 | |||
Pb10 | 30.54 | Pb02 | 1 301.15 | Pb02 | 2 309.11 | Pb10 | 2 762 360.04 | |||
Pb16 | 27.71 | Pb12 | 303.69 | Pb12 | 426.66 | Pb02 | 2 504 577.07 | |||
Pb12 | 25.85 | Pb03 | 234.82 | Pb03 | 234.77 | Pb15 | 670 203.16 | |||
Pb15 | 25.36 | Pb15 | 165.30 | Pb15 | 227.78 | Pb14 | 536 433.33 | |||
Pb14 | 24.79 | Pb01 | 113.15 | Pb01 | 110.87 | Pb17 | 492 045.47 | |||
Pb17 | 23.56 | Pb14 | 55.33 | Pb14 | 74.56 | Pb01 | 204 459.65 | |||
Pb18 | 23.01 | Pb17 | 38.25 | Pb17 | 48.97 | Pb03 | 183 553.82 | |||
Pb06 | 22.11 | Pb08 | 26.61 | Pb08 | 29.08 | Pb08 | 182 004.82 | |||
Pb11 | 21.33 | Pb04 | 22.49 | Pb06 | 23.61 | Pb18 | 38 262.34 | |||
Pb13 | 21.28 | Pb06 | 19.65 | Pb04 | 22.91 | Pb11 | 30 717.12 | |||
Pb09 | 20.39 | Pb18 | 14.09 | Pb16 | 18.81 | Pb16 | 26 910.36 | |||
Pb07 | 20.37 | Pb16 | 12.49 | Pb18 | 17.62 | Pb13 | 25 306.07 | |||
Pb05 | 20.18 | Pb11 | 11.74 | Pb11 | 13.62 | Pb04 | 17 913.93 | |||
Pb08 | 20.10 | Pb05 | 9.83 | Pb05 | 10.78 | Pb06 | 15 643.53 | |||
Pb04 | 18.74 | Pb13 | 7.43 | Pb13 | 8.59 | Pb09 | 9 333.09 | |||
Pb03 | 18.40 | Pb09 | 5.96 | Pb09 | 6.60 | Pb05 | 9 213.96 | |||
Pb01 | 18.03 | Pb07 | 2.43 | Pb07 | 2.69 | Pb07 | 7 925.46 |
异常编号 | 面积/km2 | 样品数量/件 | 异常编号 | 面积/km2 | 样品数量/件 |
---|---|---|---|---|---|
Zn01 | 7 747.74 | 37 | Zn13 | 4 157.54 | 28 |
Zn02 | 59.276 5 | 2 | Zn14 | 6 801.25 | 28 |
Zn03 | 3 422.47 | 15 | Zn15 | 1 567.30 | 13 |
Zn04 | 2 216.71 | 8 | Zn16 | 1 693.19 | 8 |
Zn05 | 980.84 | 4 | Zn17 | 58.554 8 | 2 |
Zn06 | 444.65 | 6 | Zn18 | 41.29 | 2 |
Zn07 | 756.51 | 3 | Zn19 | 8 102.18 | 41 |
Zn08 | 88.85 | 2 | Zn20 | 1 404.28 | 9 |
Zn09 | 1 585.79 | 12 | Zn21 | 599.06 | 6 |
Zn10 | 1 414.70 | 11 | Zn22 | 57.33 | 2 |
Zn11 | 1 563.91 | 5 | Zn23 | 1 041.01 | 6 |
Zn12 | 8 170.52 | 71 | Zn24 | 1 142.74 | 9 |
Table 5 Statistics of zinc anomalies
异常编号 | 面积/km2 | 样品数量/件 | 异常编号 | 面积/km2 | 样品数量/件 |
---|---|---|---|---|---|
Zn01 | 7 747.74 | 37 | Zn13 | 4 157.54 | 28 |
Zn02 | 59.276 5 | 2 | Zn14 | 6 801.25 | 28 |
Zn03 | 3 422.47 | 15 | Zn15 | 1 567.30 | 13 |
Zn04 | 2 216.71 | 8 | Zn16 | 1 693.19 | 8 |
Zn05 | 980.84 | 4 | Zn17 | 58.554 8 | 2 |
Zn06 | 444.65 | 6 | Zn18 | 41.29 | 2 |
Zn07 | 756.51 | 3 | Zn19 | 8 102.18 | 41 |
Zn08 | 88.85 | 2 | Zn20 | 1 404.28 | 9 |
Zn09 | 1 585.79 | 12 | Zn21 | 599.06 | 6 |
Zn10 | 1 414.70 | 11 | Zn22 | 57.33 | 2 |
Zn11 | 1 563.91 | 5 | Zn23 | 1 041.01 | 6 |
Zn12 | 8 170.52 | 71 | Zn24 | 1 142.74 | 9 |
Avg和排序 | Var和排序 | Pfd和排序 | Qm和排序 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
异常编号 | Avg | 异常编号 | Var | 异常编号 | Pfd | 异常编号 | Qm | ||||||||||
Zn15 | 27.01 | Zn15 | 187.87 | Zn15 | 66.77 | Zn15 | 104 652.89 | ||||||||||
Zn23 | 24.20 | Zn04 | 147.09 | Zn04 | 30.69 | Zn01 | 88 392.65 | ||||||||||
Zn24 | 21.49 | Zn07 | 114.38 | Zn23 | 24.28 | Zn19 | 81 163.34 | ||||||||||
Zn09 | 20.29 | Zn19 | 76.52 | Zn07 | 23.43 | Zn04 | 68 041.06 | ||||||||||
Zn10 | 19.33 | Zn23 | 76.27 | Zn24 | 13.35 | Zn14 | 44 802.53 | ||||||||||
Zn14 | 18.93 | Zn01 | 65.72 | Zn01 | 11.41 | Zn12 | 35 533.86 | ||||||||||
Zn12 | 18.48 | Zn06 | 56.93 | Zn06 | 10.44 | Zn23 | 25 278.22 | ||||||||||
Zn13 | 18.15 | Zn24 | 47.19 | Zn19 | 10.02 | Zn07 | 17 722.92 | ||||||||||
Zn11 | 17.88 | Zn14 | 26.45 | Zn14 | 6.59 | Zn24 | 15 250.95 | ||||||||||
Zn16 | 16.71 | Zn12 | 17.88 | Zn09 | 4.66 | Zn13 | 13 463.23 | ||||||||||
Zn04 | 15.86 | Zn09 | 17.44 | Zn12 | 4.35 | Zn03 | 8 519.79 | ||||||||||
Zn07 | 15.57 | Zn03 | 13.87 | Zn13 | 3.24 | Zn09 | 7 384.65 | ||||||||||
Zn05 | 15.22 | Zn13 | 13.56 | Zn03 | 2.49 | Zn06 | 4 640.08 | ||||||||||
Zn06 | 13.93 | Zn05 | 8.97 | Zn05 | 1.80 | Zn16 | 2 284.60 | ||||||||||
Zn21 | 13.66 | Zn10 | 6.27 | Zn10 | 1.59 | Zn10 | 2 256.32 | ||||||||||
Zn03 | 13.64 | Zn16 | 6.14 | Zn16 | 1.35 | Zn05 | 1 762.31 | ||||||||||
Zn01 | 13.19 | Zn21 | 5.62 | Zn21 | 1.01 | Zn11 | 806.68 | ||||||||||
Zn19 | 9.95 | Zn11 | 2.19 | Zn11 | 0.52 | Zn21 | 605.59 | ||||||||||
Zn20 | 4.82 | Zn20 | 0.66 | Zn20 | 0.04 | Zn20 | 58.66 |
Table 6 Ranking of zinc anomalies by different methods
Avg和排序 | Var和排序 | Pfd和排序 | Qm和排序 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
异常编号 | Avg | 异常编号 | Var | 异常编号 | Pfd | 异常编号 | Qm | ||||||||||
Zn15 | 27.01 | Zn15 | 187.87 | Zn15 | 66.77 | Zn15 | 104 652.89 | ||||||||||
Zn23 | 24.20 | Zn04 | 147.09 | Zn04 | 30.69 | Zn01 | 88 392.65 | ||||||||||
Zn24 | 21.49 | Zn07 | 114.38 | Zn23 | 24.28 | Zn19 | 81 163.34 | ||||||||||
Zn09 | 20.29 | Zn19 | 76.52 | Zn07 | 23.43 | Zn04 | 68 041.06 | ||||||||||
Zn10 | 19.33 | Zn23 | 76.27 | Zn24 | 13.35 | Zn14 | 44 802.53 | ||||||||||
Zn14 | 18.93 | Zn01 | 65.72 | Zn01 | 11.41 | Zn12 | 35 533.86 | ||||||||||
Zn12 | 18.48 | Zn06 | 56.93 | Zn06 | 10.44 | Zn23 | 25 278.22 | ||||||||||
Zn13 | 18.15 | Zn24 | 47.19 | Zn19 | 10.02 | Zn07 | 17 722.92 | ||||||||||
Zn11 | 17.88 | Zn14 | 26.45 | Zn14 | 6.59 | Zn24 | 15 250.95 | ||||||||||
Zn16 | 16.71 | Zn12 | 17.88 | Zn09 | 4.66 | Zn13 | 13 463.23 | ||||||||||
Zn04 | 15.86 | Zn09 | 17.44 | Zn12 | 4.35 | Zn03 | 8 519.79 | ||||||||||
Zn07 | 15.57 | Zn03 | 13.87 | Zn13 | 3.24 | Zn09 | 7 384.65 | ||||||||||
Zn05 | 15.22 | Zn13 | 13.56 | Zn03 | 2.49 | Zn06 | 4 640.08 | ||||||||||
Zn06 | 13.93 | Zn05 | 8.97 | Zn05 | 1.80 | Zn16 | 2 284.60 | ||||||||||
Zn21 | 13.66 | Zn10 | 6.27 | Zn10 | 1.59 | Zn10 | 2 256.32 | ||||||||||
Zn03 | 13.64 | Zn16 | 6.14 | Zn16 | 1.35 | Zn05 | 1 762.31 | ||||||||||
Zn01 | 13.19 | Zn21 | 5.62 | Zn21 | 1.01 | Zn11 | 806.68 | ||||||||||
Zn19 | 9.95 | Zn11 | 2.19 | Zn11 | 0.52 | Zn21 | 605.59 | ||||||||||
Zn20 | 4.82 | Zn20 | 0.66 | Zn20 | 0.04 | Zn20 | 58.66 |
成矿系列 | 矿床类型 | 典型矿床 | 元素异常组合特征 |
---|---|---|---|
与沉积岩容矿 有关的铅锌多 金属成矿系列 | MVT型 | 新疆火烧云;青海多才玛和东莫扎抓;巴基斯坦苏迈; 陕西马元 | 成矿元素:Pb、Zn和Ag;伴生元素:Cd、Mo、As、Sb和Hg等。Pb、Zn、Ag和Cd异常套合较好,有浓度分带,Mo、As、Sb和Hg等元素具有一定异常显示 |
SEDEX型 | 巴基斯坦杜达和贡尕;美国红狗 | 成矿元素:Pb、Zn和Ag;伴生元素:Cd、Ba、As和Sb等。Pb和Zn异常套合较好,有浓度分带,Pb和Ba异常有一定显示,其他异常有浓度分带,与主成矿元素有一定套合 | |
与火山-沉积岩 容矿有关的铅锌 多金属成矿系列 | VMS型 | 新疆阿齐山和可可塔勒;四川呷村 | 成矿元素:Pb、Zn和Ag;伴生元素:As、Sb、Bi、Mn、Cd和Hg等。Pb和Zn异常套合较好,有浓度分带,Pb、Ag、Mn和Cd异常强度大,异常浓集中心较显著,其他元素有一定异常显示 |
与岩浆-热液活动 有关的铅锌多 金属成矿系列 | 夕卡岩型 | 新疆维宝;内蒙古白音诺尔;湖南宝山;青海什多龙 | 成矿元素:Pb、Zn和Ag,伴生元素:Au、Ag、As、Sb、Cd、W、Sn、Mo、Bi和In等,Pb、Zn、Ag、Pb和Cd异常套合较好,有浓度分带,其他元素具有一定异常显示 |
隐爆角 砾岩型 | 西藏纳如松多;江西冷水坑 | 成矿元素:Pb和Zn,伴生元素:Au、Ag、As和Mo等,异常强度均较大 | |
浅成低温 热液型 | 西藏斯弄多;新疆东天山照壁山 | 成矿元素:Pb和Zn,伴生元素:Au、Mo、Ag、As和Sb等,Pb、Zn、Au、Mo和Ag异常强度较大,其他元素具有一定异常显示 |
Table 7 Characteristics of geochemical anomaly combinations in typical lead-zinc deposits of different types[1,54⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-66]
成矿系列 | 矿床类型 | 典型矿床 | 元素异常组合特征 |
---|---|---|---|
与沉积岩容矿 有关的铅锌多 金属成矿系列 | MVT型 | 新疆火烧云;青海多才玛和东莫扎抓;巴基斯坦苏迈; 陕西马元 | 成矿元素:Pb、Zn和Ag;伴生元素:Cd、Mo、As、Sb和Hg等。Pb、Zn、Ag和Cd异常套合较好,有浓度分带,Mo、As、Sb和Hg等元素具有一定异常显示 |
SEDEX型 | 巴基斯坦杜达和贡尕;美国红狗 | 成矿元素:Pb、Zn和Ag;伴生元素:Cd、Ba、As和Sb等。Pb和Zn异常套合较好,有浓度分带,Pb和Ba异常有一定显示,其他异常有浓度分带,与主成矿元素有一定套合 | |
与火山-沉积岩 容矿有关的铅锌 多金属成矿系列 | VMS型 | 新疆阿齐山和可可塔勒;四川呷村 | 成矿元素:Pb、Zn和Ag;伴生元素:As、Sb、Bi、Mn、Cd和Hg等。Pb和Zn异常套合较好,有浓度分带,Pb、Ag、Mn和Cd异常强度大,异常浓集中心较显著,其他元素有一定异常显示 |
与岩浆-热液活动 有关的铅锌多 金属成矿系列 | 夕卡岩型 | 新疆维宝;内蒙古白音诺尔;湖南宝山;青海什多龙 | 成矿元素:Pb、Zn和Ag,伴生元素:Au、Ag、As、Sb、Cd、W、Sn、Mo、Bi和In等,Pb、Zn、Ag、Pb和Cd异常套合较好,有浓度分带,其他元素具有一定异常显示 |
隐爆角 砾岩型 | 西藏纳如松多;江西冷水坑 | 成矿元素:Pb和Zn,伴生元素:Au、Ag、As和Mo等,异常强度均较大 | |
浅成低温 热液型 | 西藏斯弄多;新疆东天山照壁山 | 成矿元素:Pb和Zn,伴生元素:Au、Mo、Ag、As和Sb等,Pb、Zn、Au、Mo和Ag异常强度较大,其他元素具有一定异常显示 |
[1] | 戴自希, 盛继福, 白冶, 等. 世界铅锌资源的分布与潜力[M]. 北京: 地震出版社, 2005. |
[2] | LEACH D L, SANGSTER D, KELLEY K D, et al. Sediment-hosted lead-zinc deposits: a global perspective[J]. Economic Geology, 100th Anniversary, 2005: 561-607. |
[3] | MUDD G M, JOWITT S M, WERNER T T. The world’s lead-zinc mineral resources: scarcity, data, issues andopportunities[J]. Ore Geology Reviews, 2017, 80: 1160-1190. |
[4] | 张长青, 芮宗瑶, 陈毓川, 等. 中国铅锌矿资源潜力和主要战略接续区[J]. 中国地质, 2013, 40(1): 248-272. |
[5] | MONECKE T, PETERSEN S, HANNINGTON M D, et al. The minor element endowment of modern sea-floor massive sulfides and comparison with deposits hosted in ancient volcanic successions[M]// VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits. Knoxville: Society of Economic Geologists, 2016: 245-306. |
[6] | 王安建, 王高尚, 李建武, 等. 全球矿产资源形势报告(2022年)[R]. 北京: 自然资源部中国地质调查局, 2022. |
[7] | 刘英超, 侯增谦, 岳龙龙, 等. 中国沉积岩容矿铅锌矿床中的关键金属[J]. 科学通报, 2022, 67(增刊1): 406-424. |
[8] | 温汉捷, 朱传威, 杜胜江, 等. 中国镓锗铊镉资源[J]. 科学通报, 2020, 65(33): 3688-3699. |
[9] | 叶霖, 韦晨, 胡宇思, 等. 锗的地球化学及资源储备展望[J]. 矿床地质, 2019, 38(4): 711-728. |
[10] | MELCHER F, BUCHHOLZ O. Germanium[M]// GUNN G. Critical metals handbook. West Sussex: John Wiley and Sons, Ltd., 2014: 177-203. |
[11] | FOLEY N K, JASKULA B W, KIMBALL B E, et al. Gallium[M]// SCHULZ K J, DE YOUNG J H Jr, SEAL II R R, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply. Washington: US Geological Survey Professional Paper, 2017, 1802: H1-H35. |
[12] | MARSH E E, HITZMAN M W, LEACH D L. Critical elements in sediment-hosted deposits (clastic-dominated Zn-Pb-Ag, Mississippi valley-type Zn-Pb, sedimentaryrock-hosted stratiform Cu, and carbonate-hosted polymetallic deposits): a review[M]// VERPLANCK P L, HITZMAN M W. Rare earth and critical elements in ore deposits: reviews in economic geology. Littleton: Society of Economic Geologists, 2016, 18: 307-321. |
[13] | GOODFELLOW W, LYDON J. Sedimentary exhalative (SEDEX)deposits[M]// GOODFELLOW W D. Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Toronto: Geological Association of Canada, Mineral Deposits Division, 2007, 5: 163-183. |
[14] | HOU Z Q, ZHANG H R. Geodynamics and metallogeny of the eastern Tethyan metallogenicdomain[J]. Ore Geology Reviews, 2015, 70: 346-384. |
[15] | SONG Y C, LIU Y C, HOU Z Q, et al. Sediment-hosted Pb-Zn deposits in the Tethyan domain from China to Iran: characteristics, tectonic setting, and orecontrols[J]. Gondwana Research, 2019, 75: 249-281. |
[16] | 张辉善. 新特提斯构造域中东段沉积岩容矿铅锌成矿作用: 以青海多才玛和巴基斯坦杜达矿床为例[D]. 合肥: 中国科学技术大学, 2021. |
[17] | YIGIT O. Mineral deposits of Turkey in relation to Tethyan metallogeny: implications for future mineralexploration[J]. Economic Geology, 2009, 104(1): 19-51. |
[18] | ZHANG H S, SONG Y C, SUN J N, et al. A new discovery of mineralization as subseafloor hydrothermal replacement in the Duddar super-large SEDEX lead-zinc deposit in Pakistan[J]. Journal of Earth Science, 2024, 35(3): 1075-1078. |
[19] | AHSAN S, QURESHI I. Mineral/rock resources of Lasbela and Khuzdar districts[J]. Geology Bulletin University Peshawar, 1997, 30: 41-51. |
[20] | AHSAN S N, MALLICK K A. Geology and genesis of barite deposits of Lasbela and Khuzdar districts, Balochistan, Pakistan[J]. Resource Geology, 1999, 49(2): 105-111. |
[21] | KAZMI A H, ABBAS G S. Metallogeny and mineral deposits ofPakistan[M]. Orient Petroleum Inc. Publishers, 2001: 1-264. |
[22] | 姚文光, 洪俊, 吕鹏瑞, 等. 苏莱曼山—喀喇昆仑山区域地质背景和成矿特征[M]. 北京: 地质出版社, 2019. |
[23] | KAZMI A H, RANA R A. Tectonic map of Pakistan[Z]. Quetta: Geological Survey of Pakistan, 1982. |
[24] | WANG X Q, ZHANG B M, NIE L S, et al. Mapping chemical earth program: progress and challenge[J]. Journal of Geochemical Exploration, 2020, 217: 106578. |
[25] | 王学求, 刘汉粮, 王玮, 等. 中国锂矿地球化学背景与空间分布: 远景区预测[J]. 地球学报, 2020, 41(6): 797-806. |
[26] | 王学求, 谢学锦, 张本仁, 等. 地壳全元素探测: 构建“化学地球”[J]. 地质学报, 2010, 84(6): 854-864. |
[27] | 张洪瑞, 侯增谦, 杨志明. 特提斯成矿域主要金属矿床类型与成矿过程[J]. 矿床地质, 2010, 29(1): 113-133. |
[28] | 吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦成矿地质背景、主要金属矿产类型及其特征[J]. 地质科技情报, 2016, 35(4): 150-157. |
[29] | 洪俊, 张辉善, 吕鹏瑞, 等. 巴基斯坦新特提斯构造-岩浆演化与重要金属成矿作用[J]. 西北地质, 2024, 57(3): 154-176. |
[30] | METCALFE I. Gondwanaland dispersion, Asian accretion and evolution of Eastern Tethys[J]. Australian Journal of Earth Sciences, 1996, 43(6): 605-623. |
[31] | BORTOLOTTI V, PRINCIPI G. Tethyan ophiolites and Pangea break-up[J]. Island Arc, 2005, 14(4): 442-470. |
[32] | REHMAN H U, SENO T, YAMAMOTO H, et al. Timing of collision of the Kohistan-Ladakh Arc with India and Asia: debate[J]. Island Arc, 2011, 20 (3): 308-328. |
[33] | SENGOR A M C, NATALIN B A. Palaeotectonics of Asia: fragments of a synthesis[M]// YIN A, HARRISON M. The tectonic evolution of Asia. Cambridge: Cambridge University Press, 1996: 443-486. |
[34] | SORKHABI R, HEYDARI E. Asia out of Tethys: foreword[J]. Tectonophysics, 2008, 451(1/2/3/4): 1-6. |
[35] | 张勤, 白金峰, 王烨. 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012, 19(3): 33-42. |
[36] | 王学求, 周建, 徐善法, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480. |
[37] | 向运川. 区域地球化学数据管理信息系统的实现技术[J]. 物探与化探, 2002, 26(3): 209-214, 217. |
[38] | 谢学锦, 刘大文, 向运川, 等. 地球化学块体: 概念和方法学的发展[J]. 中国地质, 2002, 29(3): 225-233. |
[39] | 叶天竺. 矿产预测方法指南[M]. 北京: 地质出版社, 2003. |
[40] | 张晶, 李宝强, 李慧英. 区域地球化学方法在西天山地区成矿潜力评价中的应用[J]. 西北地质, 2017, 50(3): 162-172. |
[41] | 张晶, 孟广路, 王斌, 等. 西北地区区域地球化学特征与成果应用[M]. 武汉: 中国地质大学出版社, 2020. |
[42] | RUDNICK R L, GAO S. The Composition of the continental crus[M]// HOLLAND H D, CONDIE K. The crust, vol. 3, treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[43] | GOODFELLOW W D, LYDON J W, TURNER R J. Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphidedeposits[J]. Geological Association of Canada, Special Paper, 1993, 40: 201-252. |
[44] | LEACH D L, BRADLEY D C, HUSTON D, et al. Sediment-hosted lead-zinc deposits in earth history[J]. Economic Geology, 2010, 105(3): 593-625. |
[45] | MEINERT L D, DIPPLE G, NICOLESCU S. World skarn deposits[J]. Economic Geology, 2005, 98: 299-336. |
[46] | SILLITOE R H. Ore-related breccias in volcanoplutonic arcs[J]. Economic Geology, 1985, 80(6): 1467-1514. |
[47] | CANET C, CAMPRUBÍ A, GONZÁLEZ-PARTIDA E, et al. Mineral assemblages of the francisco I. Madero Zn-Cu-Pb-(Ag) deposit, Zacatecas, Mexico: implications for ore depositgenesis[J]. Ore Geology Reviews, 2009, 35(3/4): 423-435. |
[48] | HEDENQUIST J W. Volcanic-related hydrothennal systenrs in the Circum-Pacifie Basin and their potential for mineralization[J]. Mining Geology, 1987, 37(3): 347-364. |
[49] | FRANKLIN J M, GIBSON H L, JONASSON I R, et al. Volcanogenic massive sulfidedeposits[M]// Sudbury: Society of Economic Geologists, 2005: 523-560. |
[50] | LARGE R R, MCPHIE J, GEMMELL J B, et al. The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: some examples from Australia[J]. Economic Geology, 2001, 96(5): 913-938. |
[51] | HANNINGTON M D. Volcanogenic massive sulfidedeposits[M]// FRANKLIN J, GIBSON H L, JONASSON I, et al. Treatise on geochemistry. Amsterdam: Elsevier, 2014: 463-488. |
[52] | ARLEGUI L E. Paleostress reconstruction from striated fault data sets in the Kirthar fold belt, Southern Pakistan[J]. International Geology Review, 2001, 43(6): 539-547. |
[53] | 吴良士. 巴基斯坦伊斯兰共和国矿产资源及其地质特征[J]. 矿床地质, 2010, 29(2): 379-381. |
[54] | WU Y H, YU P P, CHEN X, et al. Earlier stage, higher temperature, and deeper space facilitate indium precipitation in a skarn system, as exemplified by the Baoshan Pb-Zn polymetallic deposit, South China[J]. Ore Geology Reviews, 2023, 163: 105745. |
[55] | 张文宽, 杨本锦, 钟晓朗. 呷村超大型银多金属矿床的地球化学特征及找矿远景[J]. 地质地球化学, 1994, 22(1): 62-66. |
[56] | 高建华, 范文玉, 张林奎. 地球化学快速评价方法在找矿靶区圈定中的应用[J]. 沉积与特提斯地质, 2007, 27(4): 7-10. |
[57] | NASEEM S, SHEIKH S A, QADEERUDDIN M, et al. Geochemical stream sediment survey in Winder Valley, Balochistan, Pakistan[J]. Journal of Geochemical Exploration, 2002, 76(1): 1-12. |
[58] | 毛景文, 张作衡, 王义天, 等. 国外主要矿床类型、特点及找矿勘查[M]. 北京: 地质出版社, 2012. |
[59] | YANG W Z, XIE Y, FU S H, et al. The Tianshuihai lead-zinc deposit, Xinjiang, NW China: a successful case of multi-scale geochemical mapping[J]. Journal of Geochemical Exploration, 2014, 139: 136-143. |
[60] | 谢渝, 陶玲, 李惠, 等. 西昆仑甜水海地区地球化学普查及其找矿效果[J]. 物探与化探, 2017, 41(3): 410-420. |
[61] | 张晶, 周军, 樊会民, 等. 西北地区典型矿床地质地球化学特征图集[M]. 武汉: 中国地质大学出版社, 2018. |
[62] | 田江涛, 杨屹, 张小军, 等. 化探对东天山阿齐山铅锌矿发现的作用及意义[J]. 新疆地质, 2018, 36(4): 435-440. |
[63] | 郭海明. 西藏那曲安多县多才玛Pb-Zn矿床地质特征及矿化富集规律[D]. 长春: 吉林大学, 2018. |
[64] | 贺海龙. 江西冷水坑矿集区黄金坑重点检查区找矿潜力分析[J]. 世界有色金属, 2019(24): 63-64. |
[65] | 张雪琴, 徐登峰, 赵云, 等. 新疆东天山照壁山金铅锌多金属矿床地质特征及矿床成因[J]. 矿床地质, 2023, 42(6): 1121-1138. |
[66] | 杨宗耀, 唐菊兴, 任东兴, 等. 西藏斯弄多银多金属矿床地球物理和地球化学勘查进展[J]. 地球科学, 2024, 49(3): 1081-1103. |
[67] | 刘英超, 侯增谦, 岳龙龙, 等. 中国沉积岩容矿铅锌矿床中的关键金属[J]. 科学通报, 2022, 67: 406-424. |
[68] | CHEN C, MENG L, XU J, et al. Texture and geochemistry of sphalerite from the Chitudian Pb-Zn-Ag deposit, southern margin of the North China Craton: implications for the enrichments of Cd, Ga, and In[J]. Ore Geology Reviews, 2023, 156: 105392. |
[1] | WANG Hua-Qiu, ZHANG Bi-Min, TAO Wen-Sheng, LIU Xue-Min. [J]. Earth Science Frontiers, 20140101, 21(1): 65-74. |
[2] | DENG Jun, WANG Chang-Meng, LI Wen-Chang, YANG Li-Jiang, WANG Qiang-Fei. The situation and enlightenment of the research of the tectonic evolution and metallogenesis in the Sanjiang Tethys. [J]. Earth Science Frontiers, 20140101, 21(1): 52-64. |
[3] | HONG Jun, Tahseenullah KHAN, LI Wenyuan, Yasir Shaheen KHALIL, MA Zhongping, ZHANG Jing, WANG Zhihua, ZHANG Huishan, ZHANG Haidi, LIU Chang, Asad Ali NAREJO. Geochemical distribution of Li/Be in Pakistan: Implications for Li/Be prospecting [J]. Earth Science Frontiers, 2025, 32(1): 127-141. |
[4] | ZHANG Huishan, ZHANG Jing, HONG Jun, XI Dehua, MA Zhongping, MENG Guanglu, LUO Yanjun, ZHANG Haidi, LIU Mingyi, LÜ Pengrui, YANG Bo, CAO Jifei. Discovery of iron-copper polymetallic mineralization in the Pamir, Tajikistan and its implications for the exploration of VMS-type copper-lead-zinc deposits in the Paleo-Tethys domain [J]. Earth Science Frontiers, 2025, 32(1): 142-161. |
[5] | WU Fafu, ZHAO Kai, SONG Song, LUO Junqiang, ZHANG Huishan, YU Wenming, LIU Jiangtao, CHENG Xiang, LIU Hao, ZENG Xiongwei, HE Yaoyan, XIANG Peng, WANG Jianxiong, HU Peng. Geochemical distribution of Pb and Zn in the Eastern High Atlas, Morocco: Implications for Pb-Zn ore prospecting [J]. Earth Science Frontiers, 2025, 32(1): 162-182. |
[6] | LIU Jun’an, ZHU Yiping, JIANG Hantao, César De La Cruz POMA, Oliberth Pascual GODOY, Luis Enrique Vargas RODRÍGUEZ, GUO Weimin, YAO Chunyan, WANG Tiangang, ZHANG Ming, YAO Zhongyou. Geochemical characteristics and quality evaluation of soils in the Mantaro Basin, central Peru [J]. Earth Science Frontiers, 2025, 32(1): 219-235. |
[7] | ZHANG Jing, LI Tianhu, WANG Zhihua, Naghmah HAIDER, HONG Jun, ZHANG Huishan, LIANG Nan. Geochemical characteristics and metallogenic potential analysis of porphyry copper deposits in Pakistan [J]. Earth Science Frontiers, 2025, 32(1): 91-104. |
[8] | CHUAN Maoshan, HU Le, LIN Ruxi, MAO Chongzhen, LI Shizhong, LI Suoming, YUAN Yongsheng. Origin and tectonic implication of early Mesozoic “mung bean rock” in the western margin of the Yangtze Platform: Zircon U-Pb age, trace element and Hf isotope constraints [J]. Earth Science Frontiers, 2024, 31(2): 204-223. |
[9] | WANG Genhou, LI Dian, LIANG Xiao. Structure, composition and evolution of the Indosinian South Qiantang accretionary complex [J]. Earth Science Frontiers, 2023, 30(3): 242-261. |
[10] | ZHAO Xiaoyan, YANG Zhusen, YANG Yang, CAO Yu, FAN Jianbiao, ZHAO Miao. Discovery of Early Cretaceous metamorphic basic rock and plagioclase amphibolite in Yalaxiangbo, Tibet and its geological significance [J]. Earth Science Frontiers, 2023, 30(2): 163-182. |
[11] | TANG Yu, WANG Genhou, HAN Fanglin, LI Dian, LIANG Xiao, FENG Yipeng, ZHANG Li, WANG Zhuosheng, HAN Ning. Late-Triassic stratigraphic redefinition of and structural deformation in the Tethys Himalayan Belt in Gyaca area, Tibet [J]. Earth Science Frontiers, 2023, 30(2): 35-56. |
[12] | FENG Jun, ZHANG Qi, LUO Jianmin. Deeply mining the intrinsic value of geodata to improve the accuracy of predicting by quantitatively optimizing method for prospecting target areas [J]. Earth Science Frontiers, 2022, 29(4): 403-411. |
[13] | ZHANG Yongsheng, ZHENG Mianping. Metallogenic models of potassium ore deposits in China and demonstration of deep exploration technology [J]. Earth Science Frontiers, 2021, 28(6): 1-9. |
[14] | WAN Xiaoqiao. Dynamic response of Mesozoic-Cenozoic foraminiferal paleogeography to the Tibetan Tethys evolution [J]. Earth Science Frontiers, 2020, 27(6): 116-127. |
[15] | LI Guobiao, WANG Tianyang, LI Xinfa, NIU Xiaolu, ZHANG Wenyuan, XIE Dan, LI Yuewei, YAO Youjia, LI Qi, MA Xuesong, LI Xingpeng, XIU Di, HAN Zichen, ZHAO Shengnan, HAN Yi, XUE Song, REN Rong, JIA Zhixia. A review on marine Cretaceous-Paleogene biostratigraphy of and major geological events in Tibet-Tethyan Himalaya [J]. Earth Science Frontiers, 2020, 27(6): 144-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||