Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (1): 91-104.DOI: 10.13745/j.esf.sf.2024.10.45
Previous Articles Next Articles
ZHANG Jing1,2(), LI Tianhu1,2, WANG Zhihua1,2, Naghmah HAIDER3, HONG Jun1,2, ZHANG Huishan1,2, LIANG Nan1,2
Received:
2024-08-01
Revised:
2024-10-15
Online:
2025-01-25
Published:
2025-01-15
CLC Number:
ZHANG Jing, LI Tianhu, WANG Zhihua, Naghmah HAIDER, HONG Jun, ZHANG Huishan, LIANG Nan. Geochemical characteristics and metallogenic potential analysis of porphyry copper deposits in Pakistan[J]. Earth Science Frontiers, 2025, 32(1): 91-104.
最大值 | 最小值 | 平均值 | 平均差 | 中位数 | 标准差 | 方差 | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|---|
146.25 | 1.01 | 23.39 | 12.75 | 18.6 | 17.40 | 302.7 | 1.62 | 4.06 |
Table 1 Parameter statistics of copper element in Pakistan
最大值 | 最小值 | 平均值 | 平均差 | 中位数 | 标准差 | 方差 | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|---|
146.25 | 1.01 | 23.39 | 12.75 | 18.6 | 17.40 | 302.7 | 1.62 | 4.06 |
图例编号 | 面积/km2 | 样品数 | 平均值/10-6 | 最小值/10-6 | 最大值/10-6 | 标准离差/10-6 |
---|---|---|---|---|---|---|
1 | 461 958 | 1 068 | 21.6 | 1.4 | 144.6 | 654.3 |
2 | 167 238 | 1 212 | 20.4 | 3.1 | 146.3 | 186.0 |
3 | 23 903 | 324 | 18.1 | 2.2 | 66.0 | 246.9 |
4 | 16 517 | 144 | 36.3 | 17.6 | 74.6 | 110.7 |
5 | 7 213 | 90 | 48.4 | 14.5 | 83.6 | 462.4 |
6 | 25 197 | 282 | 34.7 | 11.2 | 74.0 | 139.2 |
7 | 40 006 | 394 | 10.9 | 1.4 | 41.0 | 127.2 |
8 | 41 939 | 602 | 29.8 | 2.6 | 97.2 | 581.3 |
9 | 7 680 | 88 | 29.9 | 6.2 | 135.8 | 809.0 |
10 | 70 297 | 628 | 22.8 | 1.0 | 90.7 | 636.7 |
11 | 6 797 | 58 | 15.8 | 7.0 | 41.6 | 65.6 |
12 | 33 015 | 218 | 24.4 | 5.5 | 119.0 | 336.7 |
Table 2 Statistics of copper geochemical parameter for different stratigraphic units of the outcrop area in Pakistan.
图例编号 | 面积/km2 | 样品数 | 平均值/10-6 | 最小值/10-6 | 最大值/10-6 | 标准离差/10-6 |
---|---|---|---|---|---|---|
1 | 461 958 | 1 068 | 21.6 | 1.4 | 144.6 | 654.3 |
2 | 167 238 | 1 212 | 20.4 | 3.1 | 146.3 | 186.0 |
3 | 23 903 | 324 | 18.1 | 2.2 | 66.0 | 246.9 |
4 | 16 517 | 144 | 36.3 | 17.6 | 74.6 | 110.7 |
5 | 7 213 | 90 | 48.4 | 14.5 | 83.6 | 462.4 |
6 | 25 197 | 282 | 34.7 | 11.2 | 74.0 | 139.2 |
7 | 40 006 | 394 | 10.9 | 1.4 | 41.0 | 127.2 |
8 | 41 939 | 602 | 29.8 | 2.6 | 97.2 | 581.3 |
9 | 7 680 | 88 | 29.9 | 6.2 | 135.8 | 809.0 |
10 | 70 297 | 628 | 22.8 | 1.0 | 90.7 | 636.7 |
11 | 6 797 | 58 | 15.8 | 7.0 | 41.6 | 65.6 |
12 | 33 015 | 218 | 24.4 | 5.5 | 119.0 | 336.7 |
地质体 | 面积/km2 | 样品数 | 平均值/10-6 | 最小值/10-6 | 最大值/10-6 | 标准离差/10-6 |
---|---|---|---|---|---|---|
新生代酸性岩 | 6 425 | 26 | 39.09 | 21.15 | 58.0 | 107.0 |
中生代基性岩 | 16 159 | 105 | 34.11 | 9.95 | 74.2 | 150.9 |
蛇绿岩 | 9 572 | 69 | 32.78 | 8.61 | 144.6 | 2 345.0 |
前寒武纪地层、岩石 | 55 017 | 53 | 28.37 | 5.49 | 59.1 | 133.0 |
中生代酸性岩 | 63 543 | 216 | 28.28 | 3.03 | 119.0 | 275.9 |
古近系—新近系 | 244 646 | 1 014 | 26.92 | 1.44 | 84.6 | 264.1 |
中生界 | 88 972 | 485 | 25.11 | 1.99 | 135.8 | 559.8 |
第四系 | 432 543 | 409 | 23.73 | 2.38 | 146.3 | 424.1 |
古生界 | 42 214 | 125 | 22.35 | 1.01 | 90.7 | 168.0 |
前寒武纪酸性岩 | 4 249 | 24 | 19.33 | 7.45 | 35.9 | 72.5 |
古生代酸性岩 | 3 573 | 28 | 15.49 | 5.45 | 36.8 | 77.6 |
Table 3 Statistics of copper geochemical parameter for the main geological units (lithodeme) of the outcrop area in Pakistan
地质体 | 面积/km2 | 样品数 | 平均值/10-6 | 最小值/10-6 | 最大值/10-6 | 标准离差/10-6 |
---|---|---|---|---|---|---|
新生代酸性岩 | 6 425 | 26 | 39.09 | 21.15 | 58.0 | 107.0 |
中生代基性岩 | 16 159 | 105 | 34.11 | 9.95 | 74.2 | 150.9 |
蛇绿岩 | 9 572 | 69 | 32.78 | 8.61 | 144.6 | 2 345.0 |
前寒武纪地层、岩石 | 55 017 | 53 | 28.37 | 5.49 | 59.1 | 133.0 |
中生代酸性岩 | 63 543 | 216 | 28.28 | 3.03 | 119.0 | 275.9 |
古近系—新近系 | 244 646 | 1 014 | 26.92 | 1.44 | 84.6 | 264.1 |
中生界 | 88 972 | 485 | 25.11 | 1.99 | 135.8 | 559.8 |
第四系 | 432 543 | 409 | 23.73 | 2.38 | 146.3 | 424.1 |
古生界 | 42 214 | 125 | 22.35 | 1.01 | 90.7 | 168.0 |
前寒武纪酸性岩 | 4 249 | 24 | 19.33 | 7.45 | 35.9 | 72.5 |
古生代酸性岩 | 3 573 | 28 | 15.49 | 5.45 | 36.8 | 77.6 |
Avg及排序 | Sev及排序 | Pfd及排序 | Qm及排序 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
异常编号 | Avp-Cu | 异常编号 | Sev-Cu | 异常编号 | Pfd-Cu | 异常编号 | Qm-Cu | |||
Cu12 | 60.44 | Cu08 | 700.83 | Cu08 | 945.81 | Cu05 | 4 938 214 | |||
Cu05 | 59.21 | Cu10 | 503.69 | Cu10 | 693.76 | Cu01 | 4 205 105 | |||
Cu01 | 57.19 | Cu13 | 484.14 | Cu13 | 682.09 | Cu08 | 3 417 978 | |||
Cu13 | 54.81 | Cu09 | 411.07 | Cu05 | 570.11 | Cu13 | 2 702 566 | |||
Cu07 | 54.60 | Cu05 | 374.56 | Cu09 | 506.65 | Cu09 | 2 102 333 | |||
Cu10 | 53.58 | Cu01 | 273.42 | Cu01 | 401.97 | Cu04 | 2 060 088 | |||
Cu08 | 52.50 | Cu07 | 199.91 | Cu07 | 280.58 | Cu07 | 1 627 584 | |||
Cu03 | 49.42 | Cu04 | 150.51 | Cu04 | 187.06 | Cu10 | 1 200 251 | |||
Cu04 | 48.35 | Cu12 | 95.31 | Cu12 | 148.09 | Cu03 | 606 191 | |||
Cu11 | 48.30 | Cu03 | 90.36 | Cu03 | 114.80 | Cu11 | 190 149 | |||
Cu09 | 47.94 | Cu02 | 76.47 | Cu02 | 86.13 | Cu12 | 74 939 | |||
Cu02 | 43.81 | Cu11 | 62.18 | Cu11 | 77.21 | Cu02 | 30 753 | |||
Cu06 | 43.64 | Cu06 | 10.30 | Cu06 | 11.55 | Cu06 | 10 332 |
Table 5 Statistics of copper anomalies parameters and anomaly ranking
Avg及排序 | Sev及排序 | Pfd及排序 | Qm及排序 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
异常编号 | Avp-Cu | 异常编号 | Sev-Cu | 异常编号 | Pfd-Cu | 异常编号 | Qm-Cu | |||
Cu12 | 60.44 | Cu08 | 700.83 | Cu08 | 945.81 | Cu05 | 4 938 214 | |||
Cu05 | 59.21 | Cu10 | 503.69 | Cu10 | 693.76 | Cu01 | 4 205 105 | |||
Cu01 | 57.19 | Cu13 | 484.14 | Cu13 | 682.09 | Cu08 | 3 417 978 | |||
Cu13 | 54.81 | Cu09 | 411.07 | Cu05 | 570.11 | Cu13 | 2 702 566 | |||
Cu07 | 54.60 | Cu05 | 374.56 | Cu09 | 506.65 | Cu09 | 2 102 333 | |||
Cu10 | 53.58 | Cu01 | 273.42 | Cu01 | 401.97 | Cu04 | 2 060 088 | |||
Cu08 | 52.50 | Cu07 | 199.91 | Cu07 | 280.58 | Cu07 | 1 627 584 | |||
Cu03 | 49.42 | Cu04 | 150.51 | Cu04 | 187.06 | Cu10 | 1 200 251 | |||
Cu04 | 48.35 | Cu12 | 95.31 | Cu12 | 148.09 | Cu03 | 606 191 | |||
Cu11 | 48.30 | Cu03 | 90.36 | Cu03 | 114.80 | Cu11 | 190 149 | |||
Cu09 | 47.94 | Cu02 | 76.47 | Cu02 | 86.13 | Cu12 | 74 939 | |||
Cu02 | 43.81 | Cu11 | 62.18 | Cu11 | 77.21 | Cu02 | 30 753 | |||
Cu06 | 43.64 | Cu06 | 10.30 | Cu06 | 11.55 | Cu06 | 10 332 |
矿床名称 | 矿床规模 | 元素异常组合特征 |
---|---|---|
新疆包古图斑岩 型铜金矿 | 中型 | 成矿元素:Cu和Au;伴生元素:Ag、Bi(Mo)、As、Sb等,Cu和Pb为弱异常,As、Sb和Bi为强异常。W为强异常,矿床位于其背景范围,Co和Ti为弱异常,与矿床有一定距离 |
新疆哈腊苏铜矿 | 大型 | 成矿元素:Cu;伴生元素: Mo、Au、Ag、As、Sb等,Cu、Mo和Au异常具有内中外分带,Ag和Sb异常为内中带分带,As异常仅有外带 |
新疆土屋-延东铜矿 | 大型 | 成矿元素:Cu;伴生元素:Mo、Au、Sn、Ni、Co、Cr、Fe2O3等。Au异常较弱,其他异常浓集中心较显著 |
青海纳日贡 玛斑岩型铜矿 | 中型 | 成矿元素:Cu和Mo,伴生元素:Ag、W、Bi、Pb、Zn、Sb、Cd、Co和Cr,异常强度均较大 |
巴基斯坦山达克 | 大型 | 成矿元素:Cu和Au,伴生元素:Mo、Ag、Sb、Zn和As,异常强度均较大 |
巴基斯坦雷克迪克 | 超大型 | 成矿元素:Cu和Au,伴生元素:Mo、Ag、Sb、Pb、Zn、As、Co和Cr,除As异常,其他异常强度均较大 |
Table 6 Characteristics of anomaly associations for typical porphyry copper deposits
矿床名称 | 矿床规模 | 元素异常组合特征 |
---|---|---|
新疆包古图斑岩 型铜金矿 | 中型 | 成矿元素:Cu和Au;伴生元素:Ag、Bi(Mo)、As、Sb等,Cu和Pb为弱异常,As、Sb和Bi为强异常。W为强异常,矿床位于其背景范围,Co和Ti为弱异常,与矿床有一定距离 |
新疆哈腊苏铜矿 | 大型 | 成矿元素:Cu;伴生元素: Mo、Au、Ag、As、Sb等,Cu、Mo和Au异常具有内中外分带,Ag和Sb异常为内中带分带,As异常仅有外带 |
新疆土屋-延东铜矿 | 大型 | 成矿元素:Cu;伴生元素:Mo、Au、Sn、Ni、Co、Cr、Fe2O3等。Au异常较弱,其他异常浓集中心较显著 |
青海纳日贡 玛斑岩型铜矿 | 中型 | 成矿元素:Cu和Mo,伴生元素:Ag、W、Bi、Pb、Zn、Sb、Cd、Co和Cr,异常强度均较大 |
巴基斯坦山达克 | 大型 | 成矿元素:Cu和Au,伴生元素:Mo、Ag、Sb、Zn和As,异常强度均较大 |
巴基斯坦雷克迪克 | 超大型 | 成矿元素:Cu和Au,伴生元素:Mo、Ag、Sb、Pb、Zn、As、Co和Cr,除As异常,其他异常强度均较大 |
[1] | 贺明生, 唐珂, 邹赣生. 智利斑岩型铜矿地质特征及成矿规律[J]. 地质与资源, 2014, 23(3): 305-310. |
[2] | 马瑛. 斑岩铜矿的研究现状与展望[J]. 西部探矿工程, 2007, 19(9): 89-92. |
[3] | 王瑞, 朱弟成, 王青, 等. 特提斯造山带斑岩成矿作用[J]. 中国科学: 地球科学, 2020, 50(12): 1919-1946. |
[4] | 姚金炎. 关于斑岩铜矿的找矿[J]. 矿产与地质, 1999, 13(2): 65-69. |
[5] | 张云国, 周朝宪. 斑岩铜矿床研究进展[J]. 地球科学进展, 2011, 26(11): 1173-1190. |
[6] | ALIREZAEI S, HASSANPOUR S. An overview of porphyry copper deposits in Iran[J]. The 1st World Copper Congress, Tehran, Iran, 2011(1): 17-32. |
[7] | ALIZADEH H, ARIAN M. Rule of structural factors in formation of porphyry copper deposits in south western part of Kerman area, Iran[J]. Open Journal of Geology, 2015, 5(7): 489-498. |
[8] | MALKANI M S. Stratigraphy, mineral potential, geological history and paleobiogeography of balochistan province, Pakistan[J]. Sindh University Research Journal(Science Series), 2011, 43(2): 269-290. |
[9] | MUHAMMAD S M, MUHAMMAD I A, MUREED H K, et al. Mineral Resources of Pakistan-an update[J]. Science Technology and Development, 2016, 9: 90-114. |
[10] | 侯增谦, 曲晓明, 黄卫, 等. 冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙” 铜矿带[J]. 中国地质, 2001, 28(10): 27-29, 40. |
[11] | 李金祥, 秦克章, 李光明. 富金斑岩型铜矿床的基本特征、成矿物质来源与成矿高氧化岩浆-流体演化[J]. 岩石学报, 2006, 22(3): 678-688. |
[12] |
张洪瑞, 侯增谦. 碰撞带热结构与碰撞成矿系统[J]. 地学前缘, 2022, 29(2): 1-13.
DOI |
[13] | 胡树起, 马生明, 刘崇民. 斑岩型铜矿勘查地球化学研究现状及进展[J]. 物探与化探, 2011, 35(4): 431-437. |
[14] | 张晶, 周军, 樊会民, 等. 西北地区典型矿床地质地球化学特征图集[M]. 武汉: 中国地质大学出版社, 2018. |
[15] | 方向, 唐菊兴, 李彦波, 等. 西藏多龙矿集区拿若铜(金)矿床成矿元素空间分布规律及地球化学勘查模型[J]. 中国地质, 2014, 41(3): 936-950 |
[16] | KAZMI A, JAN M Q. Geology and tectonics of Pakistan[M]. Karachi: Graphic Publishers, 1997: 87-94. |
[17] | 姚文光, 洪俊, 吕鹏瑞, 等. 苏莱曼山-喀喇昆仑山区域地质背景和成矿特征[M]. 北京: 地质出版社, 2019. |
[18] | 向运川. 区域地球化学数据管理信息系统的实现技术[J]. 物探与化探, 2002, 26(3): 209-214, 217. |
[19] | TAYLOR S R. Abundance of chemical elements in the continental crust: a new table[J]. Geochimica et Cosmochimica Acta, 1964, 28(8): 1273-1285. |
[20] | TAYLOR S R, MCLENAN S M. The continental crust: its composition and evolution[M]. London: Blackwell Scientific Publications, 1985: 312. |
[21] | 史长义, 梁萌, 冯斌. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 2016, 41(2): 234-251. |
[22] | 鄢明才, 迟清华. 中国东部地壳与岩石的化学组成[M]. 北京: 科学出版社, 1997. |
[23] | YAN M A C. The chemical compositions of the continental crust and rocks in the eastern part of China[M]. Beijing: Science Press, 2005. |
[24] | 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007. |
[25] | 张晶, 孟广路, 李宝强, 等. 西北地区区域地球化学特征与成果应用[M]. 武汉: 中国地质大学出版社, 2020. |
[26] | LIU B L, GUO K, LI C, et al. Copper prospectivity in Tibet, China: based on the identification of geochemical anomalies[J]. Ore Geology Reviews, 2020, 120: 102632. |
[27] | 谢学锦, 刘大文, 向运川, 等. 地球化学块体: 概念和方法学的发展[J]. 中国地质, 2002, 29(3): 225-233. |
[28] | 叶天竺. 矿产预测方法指南[M]. 北京: 地质出版社, 2003. |
[29] | 张晶, 李宝强, 李慧英. 区域地球化学方法在西天山地区成矿潜力评价中的应用[J]. 西北地质, 2017, 50(3): 162-172. |
[30] | 范堡程, 张晶, 孟广路, 等. 地球化学块体理论在塔吉克斯坦金资源潜力预测中的应用[J]. 西北地质, 2020, 53(1): 138-145. |
[31] | 欧阳宗圻. 典型有色金属矿床地球化学异常模式[M]. 北京: 科学出版社, 1990. |
[32] | 邵跃. 热液矿床岩石测量(原生晕法)找矿[M]. 北京: 地质出版社, 1997. |
[33] | 万方良, 陈爱清, 李祁辉, 等. 巴基斯坦达什特卡恩斑岩型铜矿地质特征及找矿潜力[J]. 地质与勘探, 2015, 51(1): 186-195. |
[34] | 吕鹏瑞, 姚文光, 张海迪, 等. 巴基斯坦雷克迪克矿集区斑岩Cu-Au矿床(点)地质及动力学研究进展[J]. 矿物岩石地球化学通报, 2016, 35(4): 769-780. |
[35] | PERELLÓ J, SILLITOE R H, ROSSELLO J, et al. Geology of porphyry Cu-Au and epithermal Cu-Au-Ag mineralization at filo del Sol, Argentina-Chile: extreme telescoping during Andean uplift[J]. Economic Geology, 2023, 118(6): 1261-1290. |
[36] | PERELLO J, RAZIQUE A, SCHLODERER J, et al. The Chagai porphyry copper belt, Baluchistan Province, Pakistan[J]. Economic Geology, 2008, 103(8): 1583-1612. |
[1] | LIU Jun’an, ZHU Yiping, JIANG Hantao, César De La Cruz POMA, Oliberth Pascual GODOY, Luis Enrique Vargas RODRÍGUEZ, GUO Weimin, YAO Chunyan, WANG Tiangang, ZHANG Ming, YAO Zhongyou. Geochemical characteristics and quality evaluation of soils in the Mantaro Basin, central Peru [J]. Earth Science Frontiers, 2025, 32(1): 219-235. |
[2] | YANG Zhibo, JI Hancheng, BAO Zhidong, SHI Yanqing, ZHAO Yajing, XIANG Pengfei. Dolomite crystal structure and geochemical characteristics in response to depositional environment: An example of dolomite from the Late Ediacaran Dengying Formation of the Yangzi Plateau [J]. Earth Science Frontiers, 2024, 31(3): 68-79. |
[3] | MENG Kang, SHAO Deyong, ZHANG Liuliu, LI Liwu, ZHANG Yu, LUO Huan, SONG Hui, ZHANG Tongwei. Geochemical characteristics of residual gas released from crushed shale from the Shuijingtuo Formation in Yichang, western Hubei—indication for gas-bearing capacity of shale [J]. Earth Science Frontiers, 2023, 30(3): 14-27. |
[4] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[5] | DONG Xiaoyu, KONG Ruoyan, YAN Danping, QIU Liang, QIU Junting. Origin and gold mineralization significance of Late Triassic syn-tectonic dykes in the Qingchengzi area, Liaodong Peninsula [J]. Earth Science Frontiers, 2023, 30(2): 215-238. |
[6] | DAI Wan, JIANG Xiaowei, LUO Yinfei, ZHANG Hong, LEI Yude, TONG Jue. Identification and quantification of factors controlling hydrogen and oxygen isotopes of geothermal water: An example from the Guide Basin, Qinghai Province [J]. Earth Science Frontiers, 2021, 28(1): 420-427. |
[7] | GAO Lianfeng, LI Puzhuang, ZHANG Zhenguo, WAN Xiaoqiao, XIA Shiqiang, DONG Guiyu, WANG Zhaosheng, LENG Chunpeng, ZHANG Ying, YAO Jiming, ZHANG Linting, YU Jiangtao, YIN Shiyan. Paleoceanographic environment in Gyangzê, South Tibet during the Jurassic-Cretaceous boundary interval [J]. Earth Science Frontiers, 2020, 27(4): 272-281. |
[8] | MA Yuehua, TANG Baochun, SU Shengyun, ZHANG Shengsheng, LI Chengying. Geochemical characteristics of geothermal fluids and water-rock interaction in geothermal reservoirs in and around the Gonghe Basin, Qinghai Province [J]. Earth Science Frontiers, 2020, 27(1): 123-133. |
[9] | WANG Bei-Hua, ZHANG Fu-Dong, WANG Ping, XU Xiao-Chun, HAO Huo-Jin. Geological and geochemical characteristics and genesis of magmatic rocks related to porphyry Mo deposits in the Beihuaiyang region. [J]. Earth Science Frontiers, 2016, 23(4): 46-62. |
[10] | . The heterogeneity of shale gas reservoir in the Yanchang Formation, Xiasiwan area, Ordos Basin. [J]. Earth Science Frontiers, 2016, 23(1): 134-145. |
[11] | . Geochemical characteristics of the Mesozoic volcanic belt in southeast coast of China. [J]. Earth Science Frontiers, 2012, 19(3): 93-100. |
[12] | XIAO Wen-Jin LU Jiu-Ru LIU Qing-Xiao FENG Hui AN Dun-Xi HU Sheng-Yang HU Wei-Shi TUN He-Ai. Analysis of geochemical characteristics and formation age of geothermal fluid deposited in Beiyuan Jiayuan to Beijing Olympic Park Area. [J]. Earth Science Frontiers, 2009, 16(2): 384-395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||