Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 35-56.DOI: 10.13745/j.esf.sf.2022.8.55
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 6) • Previous Articles Next Articles
TANG Yu1(), WANG Genhou1,*(
), HAN Fanglin2, LI Dian3, LIANG Xiao1, FENG Yipeng1, ZHANG Li4, WANG Zhuosheng2, HAN Ning1
Received:
2022-06-23
Revised:
2022-08-30
Online:
2023-03-25
Published:
2023-01-05
Contact:
WANG Genhou
CLC Number:
TANG Yu, WANG Genhou, HAN Fanglin, LI Dian, LIANG Xiao, FENG Yipeng, ZHANG Li, WANG Zhuosheng, HAN Ning. Late-Triassic stratigraphic redefinition of and structural deformation in the Tethys Himalayan Belt in Gyaca area, Tibet[J]. Earth Science Frontiers, 2023, 30(2): 35-56.
Fig.6 Tectonostratigraphy profile of Late-Triassic strata of the eastern Tethys Himalayan Belt. Stratigraphic unit and color scheme refer to Fig.2; cross-section locations see Fig.2, lines AB, CD.
Fig.7 Structural deformation characteristics of the Late-Triassic Langjiexue Group. Yellow lines represent bedding (S0); purple lines refer to axial-plane cleavage (S1).
Fig.8 Schematic diagram showing the tectonostratigraphic framework of the Late-Triassic strata of the eastern Tethys Himalayan Belt. Stratigraphic units refer to Fig.2.
[84] |
GAO R, LU Z W, KLEMPERER S L, et al. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nature Geoscience, 2016, 9: 555-560.
DOI URL |
[85] |
卢占武, 高锐, KLEMPERER S, 等. 喜马拉雅西部雅鲁藏布江缝合带地壳尺度的构造叠置[J]. 地学前缘, 2022, 29(2): 210-217.
DOI |
[86] |
DONG X Y, LI W H, LU Z W, et al. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics, 2020, 780(4): 228395.
DOI URL |
[87] |
GAO R, ZHOU H, GUO X Y, et al. Deep seismic reflection evidence on the deep processes of tectonic construction of the Tibetan Plateau[J]. Earth Science Frontiers, 2021, 28(5): 320-336.
DOI |
[88] | 付建刚, 李光明, 王根厚, 等. 北喜马拉雅双穹窿构造的建立: 来自藏南错那洞穹窿的厘定[J]. 中国地质, 2018, 45(4): 783-802. |
[89] | 李海兵, 戚学祥, VALLI F, 等. 喀喇昆仑断裂的形成时代: 锆石SHRIMP U-Pb年龄的制约[J]. 科学通报, 2007, 52(4): 438-447. |
[90] | CUO Z J, LU J M, ZHANG Z C. Cenozoic exhumation and thrusting in the northern Qilian Shan, northeastern margin of the Tibetan Plateau: constraints from sedimentological and apatite fission-track data[J]. Acta Ceologica Sinica, 2009, 83: 801-840. |
[91] |
MENG Q R, HU J M, YANG F Z. Timing and magnitude of displacement on the Altyn Tagh fault: constraints from stracigraphic correlation of adjoining Tarim and Qaidam basins, NW China[J]. Terra Nova, 2003, 13: 86-91.
DOI URL |
[92] |
DUPONT-NIVET G, KRIJGSMAN W, LANGEREIS C G, et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445: 635-638.
DOI URL |
[93] | MOLNAR P, TAPPONNIER P. The collision between India and Eurasia[J]. Scientific American, 1977, 236(4): 30-41. |
[1] |
MOLNARP, ENGLANG P, MARTINOD P J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 1993, 31: 357-396.
DOI URL |
[2] | 孙辉, 刘晓东. 青藏高原隆升气候效应的数值模拟研究进展概述[J]. 地学前缘, 2022, 29(5): 300-309. |
[3] |
DING L, SPICER R A, YANG J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-218.
DOI URL |
[4] | RAYMOND L A. Classification of mélange[J]. Special Paper of the Geological Society of America, 1984, 198: 7-20. |
[5] | CHANG C P, ANGELIER J, HUANG C Y. Evolution of subductions indicated by mélanges in Taiwan[M]//LALLEMAND S, FUNICIELLO F. Subduction zone geodynamics. Berlin: Springer, 2009: 207-225. |
[6] |
BURG J P, CHEN G. Tectonics and structure zonation of southern Tibet, China[J]. Nature, 1984, 311: 219-223.
DOI URL |
[7] |
SEARLE M P, WINDLEY B F, COWARD M P, et al. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 1987, 98: 678-701.
DOI URL |
[8] |
AITCHISON J C. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (South Tibet)[J]. Earth and Planetary Science Letters, 2000, 183: 231-244.
DOI URL |
[9] | CAI F L, DING L, LEARY R J, et al. Tectonostratigraphy and provenance of an accretionary complex within the Yarlung-Zangpo suture zone, southern Tibet: insights into subduction-accretion processes in the Neo-Tethys[J]. Tectonophysics, 2012, 574: 181-192. |
[10] |
WANG H Q, DING L, KAPP P, et al. Earliest Cretaceous accretion of Neo-Tethys oceanic subduction along the Yarlung-Zangbo Suture Zone, Sangsang area, southern Tibet[J]. Tectonophysics, 2018, 744: 373-389.
DOI URL |
[11] |
ZHONG Y, LIU W L, TANG G J, et al. Origin of Mesozoic ophiolitic melanges in the western Yarlung Zangbo suture zone, SW Tibet[J]. Gondwana Research, 2019, 76: 204-223.
DOI URL |
[12] | 张万平, 莫宣学, 朱弟成, 等. 西藏朗县蛇绿混杂岩中变辉绿岩和变玄武岩的年代学和地球化学[J]. 成都理工大学学报(自然科学版), 2011, 38(5): 538-548. |
[13] | 李奋其, 李益多, 张士贞, 等. 西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义[J]. 中国地质, 2016, 43(1): 142-152. |
[14] |
PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14.
DOI URL |
[15] | 王立全, 潘桂堂, 丁俊, 等. 青藏高原及邻区地质图(1∶1500000)及说明书[M]. 北京: 地质出版社, 2013. |
[16] | 李祥辉, 王尹, 徐文礼, 等. 试论西藏南部上三叠统复理石朗杰学群与涅如组[J]. 地质学报, 2011, 85(10): 1551-1562. |
[17] |
LI X H, MATTERN F, ZHANG C K, et al. Multiple sources of the Upper Triassic flysch in the eastern Himalaya Orogen, Tibet, China: implications to palaeogeography and palaeotectonic evolution[J]. Tectonophysics, 2016, 666: 12-22.
DOI URL |
[18] | JADOUL F, BERRA F, GARZANTI E. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet)[J]. Journal of Asian Earth Sciences, 1998, 16(2/3): 172-194. |
[19] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[20] |
CAI F L, DING L, LASKOWSKI A K, et al. Late Triassic paleogeographic reconstruction along the Neo-Tethyan Ocean margins, southern Tibet[J]. Earth and Planetary Science Letters, 2016, 435: 105-114.
DOI URL |
[21] |
CAO H W, HUANG Y, LI G M, et al. Late Triassic sedimentary records in the northern Tethyan Himalaya: tectonic link with Greater India[J]. Geoscience Frontiers, 2018, 9: 273-291.
DOI URL |
[22] |
WANG J G, WU F Y, GARZANTI E, et al. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue group): the terminal of a sediment-routing system sourced in the Gondwanide orogen[J]. Gondwana Research, 2016, 34: 84-98.
DOI URL |
[23] |
FANG D R, WANG G H, HISADA K I, et al. Provenance of the Langjiexue Group to the south of the Yarlung-Tsangpo Suture Zone in south-eastern Tibet: insights on the evolution of the Neo-Tethys Ocean in the Late Triassic[J]. International Geology Review, 2019, 61(3): 341-360.
DOI URL |
[24] | 孟中玙, 王建刚, 纪伟强, 等. 藏东南朗杰学群是原地沉积而非外来地体: 来自印度大陆北缘浅海相曲龙贡巴组沉积物源的证据[J]. 中国科学: 地球科学, 2019, 49: 848-863. |
[25] | 肖文交, 敖松坚, 杨磊, 等. 喜马拉雅汇聚带结构-属性解剖及印度-亚洲大陆最终拼贴格局[J]. 中国科学: 地球科学, 2017, 47: 631-656. |
[26] |
AO S J, XIAO W J, WINDLEY B F, et al. Components and structures of the eastern Tethyan Himalayan Sequence in SW China: not a passive margin shelf but a mélange accretionary prism[J]. Geological Journal, 2018, 53: 2665-2689.
DOI URL |
[27] |
李典, 王根厚, 刘正勇, 等. 西藏南羌塘晚三叠世陆缘俯冲增生造山带的褶皱-冲断与增生杂岩双层结构厘定[J]. 地学前缘, 2022, 29(4): 231-248.
DOI |
[28] |
CHU M F, CHUNG S L, SONG B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2016, 34: 745-748.
DOI URL |
[29] |
MO X X, NIU Y L, DONG G C, et al. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 2008, 250: 49-67.
DOI URL |
[30] |
JI W Q, WU F Y, CHUNG S, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262: 229-245.
DOI URL |
[31] |
ZHU D C, ZHAO Z D, NIU Y L, et al. Lhasa Terrane in southern Tibet came from Australia[J]. Geology, 2011, 39: 727-730.
DOI URL |
[32] | KANG Z Q, XU J F, WILDE S A, et al. Geochronology and geochemistry of the Sangri Group volcanic rocks, southern Lhasa Terrane: implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc[J]. Lithos, 2014, 20: 157-168. |
[33] |
ZHANG Z M, DONG X, SANTOSH M, et al. Metamorphism and tectonic evolution of the Lhasa Terrane, central Tibet[J]. Gondwana Research, 2014, 25(1): 170-189.
DOI URL |
[34] |
GUYNN J H, KAPP P, PULLEN A, et al. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 2006, 34: 505-508.
DOI URL |
[35] |
DUPUIS C, HEBERTA R, DUBOIS-COTE V, et al. The Yarlung Zangbo Suture Zone ophiolitic mélange(southern Tibet): new insights from geochemistry of ultramafic rocks[J]. Journal of Asian Earth Sciences, 2005, 25: 937-960.
DOI URL |
[36] |
CHAN G H N, AITCHISON J C, CROWLEY Q G, et al. U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications[J]. Gondwana Research, 2015, 27 (2): 719-732.
DOI URL |
[37] | 潘桂堂, 丁俊. 青藏高原及邻区地质图(1∶1500000)说明书[M]. 成都: 地图出版社, 2004. |
[38] |
YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76: 1-131.
DOI URL |
[39] |
GARZANTI E, CASNEDI R, JADOUL F, et al. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya[J]. Sedimentary Geology, 1986, 48 (3/4): 237-265.
DOI URL |
[40] |
GARZANTI E. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin[J]. Journal of Asian Earth Sciences, 1999, 17: 805-827.
DOI URL |
[41] |
MYROW P M, THOMPSON K R, HUGHES N C, et al. Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India[J]. Geological Society of American Bulletin, 2006, 118 (3/4): 491-510.
DOI URL |
[42] | COTTLE J M, JESSUP M J, NEWELL D L, et al. Geochronology of granulitized eclogite from the Ama Drime Massif: implications for the tectonic evolution of the South Tibetan Himalaya[J]. Tectonics, 2009, 28: 1-25. |
[43] |
WIEDENBECK M, HANCHAR J M, PECK W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 9-39.
DOI URL |
[44] |
JACKSON S E, PEARSON N J, GRIFFIN W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1/2): 47-69.
DOI URL |
[45] |
SLAMA J, KOSLER J, CONDON D J, et al. Plesovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.
DOI URL |
[46] |
HU Z, LIU Y, GAO S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399.
DOI URL |
[47] |
LIU Y, HU Z, GAO S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
DOI URL |
[48] |
LIU Y, HU Z, ZONG K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
DOI URL |
[49] |
ANDERSEN T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
DOI URL |
[50] |
BECK R A, BURBANK D W, SERCOMBE W J, et al. Stratigraphic evidence for an early collision between Northwest India and Asia[J]. Nature, 1995, 373(65): 55-58.
DOI URL |
[51] | MASCLE G, PÊCHER A, GUILLOT S, et al. The Himalaya-Tibet collision[R]. Paris: Nepal Geological Society and Société Géologique de France, 2012. |
[52] |
HU X M, SINCLAIR H D, WANG J G, et al. Late Cretaceous - Palaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of India-Asia initial collision[J]. Basin Research, 2012, 24 (5): 520-543.
DOI URL |
[53] |
HU X M, GARZANTI E, WANG J G, et al. The timing of India-Asia collision onset: facts, theories, controversies[J]. Earth-Science Reviews, 2016, 160: 264-299.
DOI URL |
[54] |
DING L, QASIM M, JADOON I A K, et al. The India-Asia collision in north Pakistan: insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin[J]. Earth and Planetary Science Letters, 2016, 455: 49-61.
DOI URL |
[55] | DING L, KAPP P, WAN X Q. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south-central Tibet[J]. Tectonics, 2005, 24: 1-18. |
[56] | 莫宣学, 赵志丹, 周肃, 等. 印度-亚洲大陆碰撞的时限[J]. 地质通报, 2007, 26(10): 1240-1244. |
[57] | AITCHISON J C, ALI J R, DAVIS A M. When and where did India and Asia collide?[J]. Journal of Geophysics Research, 2007, 112: B05423. |
[58] |
NAJMAN Y, APPEL E, BOUDAGHER-FADEL M, et al. Timing of India-Asia collision: geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysics Research, 2010, 115: B12416.
DOI URL |
[59] |
WU F Y, JI W Q, WANG J G, et al. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science, 2014, 314(2): 548-579.
DOI URL |
[60] |
DECELLES P G, KAPP P, GEHRELS G E, et al. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision[J]. Tectonics, 2014, 33: 824-849.
DOI URL |
[61] | WEI Z, LI X H, LI Y X, et al. Discovery of vestige sedimentary archives of the India-Asia collision in the eastern Yarlung Zangbo suture zone[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: e2019JB018192. |
[62] | AN W, HU X M, GARZANTI E, et al. New precise dating of the India-Asia collision in the Tibetan Himalaya at 61 Ma[J]. Geophysical Research Letters, 2021, 48(3): e2020GL090641. |
[63] | YI Z Y, WANG T, MEERT J G, et al. An initial collision of India and Asia in the equatorial humid belt[J]. Geophysical Research Letters, 2021, 48(9): e2021GL093408. |
[64] |
CAI F L, DING L, YUE Y H. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: implications for timing of India-Asia collision[J]. Earth and Planetary Science Letters, 2011, 305: 195-206.
DOI URL |
[65] | 丁林, MAKSATBEK S, 蔡福龙, 等. 印度与亚洲大陆初始碰撞时限、 封闭方式和过程[J]. 中国科学: 地球科学, 2017, 47: 293-309. |
[66] |
WANG H Q, DING L, CAI F L, et al. Early Tertiary deformation of the Zhongba-Gyangze Thrust in central southern Tibet[J]. Gondwana Research, 2017, 41: 235-248.
DOI URL |
[67] |
LI J, HU X M, GARZANTI E, et al. Shallow-water carbonate responses to the Paleocene-Eocene thermal maximum in the Tethyan Himalaya (southern Tibet): tectonic and climatic implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 153-165.
DOI URL |
[68] |
DAI J G, YIN A, LIU W C, et al. Nd isotopic compositions of the Tethyan Himalayan Sequence in southeastern Tibet[J]. Science China Earth Sciences, 2008, 51: 1306-1316
DOI URL |
[69] |
ZHANG C K, LI X H, MATTERN F, et al. Composition and sediment dispersal pattern of the Upper Triassic flysch in the eastern Himalayas, China: significance to provenance and basin analysis[J]. International Journal of Earth Sciences, 2017, 106: 1257-1276.
DOI URL |
[70] | 李广伟. 喜马拉雅地区上三叠统沉积物来源: 汇聚板块边缘物质构造属性[J]. 中国科学: 地球科学, 2019, 49: 1452-1454. |
[71] |
ZHANG C K, LI X H, MATTERN F, et al. Deposystem architectures and lithofacies of a submarine fan-dominated deep sea succession in an orogen: a case study from the Upper Triassic Langjiexue Group of southern Tibet[J]. Journal of Asian Earth Sciences, 2015, 111: 222-243.
DOI URL |
[72] |
FEDO C M, SIRCOMBE K N, RAINBIRD, R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 277-303.
DOI URL |
[73] |
GEHRELS G. Detrital zircon U-Pb geochronology applied to tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 127-149.
DOI URL |
[74] |
DICKINSON W R, GEHRELS G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288: 115-125.
DOI URL |
[75] | ZHENG Y F, CHEN Y X. Continental versus oceanic subduction zones[J]. National Science Review, 2016, 4: 495-519. |
[76] |
ZHOU J B. Accretionary complex: geological records from oceanic subduction to continental deep subduction[J]. Science China Earth Sciences, 2020, 63(12): 1868-1883.
DOI URL |
[77] |
ZHU D C, CHUNG S L, MO X X, et al. The 132 Ma Comei-Bunbury large igneous province: remnants identified in present-day southeastern Tibet and southwestern Australia[J]. Geology, 2009, 37: 583-586.
DOI URL |
[78] |
BIAN W, YANG T, MA Y, et al. Paleomagnetic and geochronological results from the Zhela and Weimei formations lava flows of the Eastern Tethyan Himalaya: new insights into the breakup of eastern Gondwana[J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 44-64.
DOI URL |
[79] |
HUEN V R, RANERO C R, VANNUCCHI P. Generic model of subduction erosion[J]. Geology, 2004, 32: 913-916.
DOI URL |
[80] |
CLIFT P D, VANNUCCHI P, MORGAN J P. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust[J]. Earth-Science Reviews, 2009, 97: 80-104.
DOI URL |
[81] | 张正一, 董冬冬, 张广旭, 等. 板块俯冲侵蚀雅浦岛弧的地形制约[J]. 海洋地质与第四纪地质, 2017, 37(1): 41-50. |
[82] |
张进, 曲军峰, 赵衡, 等. 俯冲增生杂岩带变形特征、 成因机制及与后期变形的区别[J]. 地学前缘, 2022, 29(2): 56-78.
DOI |
[83] | YANG Z Y, WANG Q, HAO L L, et al. Subduction erosion and crustal material recycling indicated by adakites in central Tibet[J]. Geology, 2021, 49(6): 535-541. |
[1] | LIU Lingxia, LU Rui, XIE Wenping, LIU Bo, WANG Yaru, YAO Haihui, LIN Wenjing. Distribution and hydrogeochemical characteristics of hot springs in northeastern Tibetan Plateau [J]. Earth Science Frontiers, 2024, 31(6): 173-195. |
[2] | JU Wei, YANG Hui, HOU Guiting, NING Weike, LI Yongkang, LIANG Xiaobai. Development and distribution pattern of fault-controlled fractures in complex structural deformation zones [J]. Earth Science Frontiers, 2024, 31(5): 130-138. |
[3] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[4] | BI Xianmei, MO Xuanxue, LIU Yanbin. Very low-grade metamorphic rocks in southern Tibet and their significance on geological processes and resources [J]. Earth Science Frontiers, 2024, 31(1): 201-210. |
[5] | CHENG Yongzhi, GAO Rui, LU Zhanwu, LI Wenhui, WANG Guangwen, CHEN Si, WU Guowei, CAI Yuguo. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(5): 314-333. |
[6] | ZHANG Jin, ZHANG Beihang, ZHAO Heng, YUN Long, QU Junfeng, WANG Zhenyi, YANG Yaqi, ZHAO Shuo. Late Cenozoic deformation characteristics and mechanism of the Beishan-Alxa region [J]. Earth Science Frontiers, 2023, 30(5): 334-357. |
[7] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
[8] | TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas [J]. Earth Science Frontiers, 2023, 30(4): 270-282. |
[9] | LIU Xiaoyu, YANG Wencai, CHEN Zhaoxi, QU Chen, YU Changqing. Attributes and evolution of the eastern massif in the Qinghai-Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(3): 233-241. |
[10] | WU Chen, CHEN Xuanhua, DING Lin. Tectonic evolution and Cenozoic deformation history of the Qilian orogen [J]. Earth Science Frontiers, 2023, 30(3): 262-281. |
[11] | BI Wenjun, ZHANG Jiawei, LI Yalin, DENG Yuzhen. The uplift and exhumation processes in the Qiangtang terrane of Central Tibet since the Cretaceous [J]. Earth Science Frontiers, 2023, 30(2): 18-34. |
[12] | JIA Chengzao, CHEN Zhuxin, LEI Yongliang, WANG Lining, REN Rong, SU Nan, YANG Geng. Deformation mechanisms and structural models of the fold-thrust belts of central and western China [J]. Earth Science Frontiers, 2022, 29(6): 156-174. |
[13] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[14] | LI Bingshuai, YAN Maodu, ZHANG Weilin. Early Cenozoic rotation feature in the northern Qaidam marginal thrust belt and its tectonic implications [J]. Earth Science Frontiers, 2022, 29(4): 249-264. |
[15] | GONG Chenglin, LIU Li, SHAO Dali, GUO Rongtao, ZHU Yijie, QI Kun. Depositional patterns of the Bengal-Nicobar Fan system since the Late Miocene: Seesaw-like stepwise changes and the source-sink model [J]. Earth Science Frontiers, 2022, 29(4): 25-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||