Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 18-34.DOI: 10.13745/j.esf.sf.2022.11.50
Special Issue: 印度-欧亚大陆碰撞及其远程效应
• Special Section on The India-Eurasia Collision and Its Long-Range Effect (Part 6) • Previous Articles Next Articles
BI Wenjun1(), ZHANG Jiawei2,*(
), LI Yalin3, DENG Yuzhen4
Received:
2022-10-13
Revised:
2022-11-20
Online:
2023-03-25
Published:
2023-01-05
Contact:
ZHANG Jiawei
CLC Number:
BI Wenjun, ZHANG Jiawei, LI Yalin, DENG Yuzhen. The uplift and exhumation processes in the Qiangtang terrane of Central Tibet since the Cretaceous[J]. Earth Science Frontiers, 2023, 30(2): 18-34.
Fig.4 (A) Histograms of the Qiangtang terrane data set of Fig.3, and (B) N-S trending thermochronological transect of the Qiangtang terrane (profile location see Fig.2)
[1] |
YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
DOI URL |
[2] |
KAPP P, DECELLES P G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses[J]. American Journal of Science, 2019, 319: 159-254.
DOI URL |
[3] | DEWEY J F, SHACKLETON R M, CHANG C F, et al. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1988, 327(1594): 379-413. |
[4] |
MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4201): 419-426.
PMID |
[5] |
MOLNAR P, ENGLAND P, MARTINOD J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon[J]. Reviews of Geophysics, 1993, 31(4): 357-396.
DOI URL |
[6] |
TAPPONNIER P, XU Z, ROGER F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677.
PMID |
[7] |
ZHENG H, CLIFT P D, WANG P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561.
DOI PMID |
[8] |
MOLNAR P, BOOS W R, BATTISTI D S. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 77-102.
DOI URL |
[9] |
DUPONT-NIVET G, KRIJGSMAN W, LANGEREIS C G, et al. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445 (7128): 635-638.
DOI URL |
[10] |
DUPONT-NIVET G, HOORN C, KONERT M. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin[J]. Geology, 2008, 36 (12): 987-990.
DOI URL |
[11] |
RAYMO M E, RUDDIMAN W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359: 117-122.
DOI URL |
[12] |
KENT-CORSON M L, RITTS B D, ZHUANG G, et al. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2009, 282 (1/2/3/4): 158-166.
DOI URL |
[13] |
DEWEY J F, BURKE K C A. Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision[J]. Journal of Geology, 1973, 81: 683-692.
DOI URL |
[14] |
ENGLAND P, HOUSEMAN G. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research, 1989, 94: 17561-17579.
DOI URL |
[15] | ARGAND E. La tectonique de l’ Asie[C]// Proceedings of the VIIIth International Geological Congress. Brussels, 1924: 181-372. |
[16] |
MEYER B, TAPPONNIER P, BOURJOT L, et al. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 1998, 135(1): 1-47.
DOI URL |
[17] |
ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276(5313): 788-790.
PMID |
[18] |
CLARK M K, ROYDEN L H. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8): 703-706.
DOI URL |
[19] |
DAVIES J H, VON BLANCKENBURG F. Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129: 85-102.
DOI URL |
[20] |
WANG C S, ZHAO X X, LIU Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992.
DOI PMID |
[21] |
WANG C S, DAI J G, ZHAO X X, et al. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 2014, 621: 1-43.
DOI URL |
[22] |
LI Y L, WANG C S, DAI J G, et al. Propagation of the deformation and growth of the Tibetan-Himalayan orogen: a review[J]. Earth Science Reviews, 2015, 143(1): 36-61.
DOI URL |
[23] | SPICER R A, SU T, VALDES P J, et al. Why the uplift of the Tibetan Plateau is a myth[J]. National Science Review, 2021, 8(1): 1-19. |
[24] |
DING L, XU Q, YUE Y, et al. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264.
DOI URL |
[25] |
LU H J, TIAN X B, YUN K, et al. Convective removal of the Tibetan Plateau mantle lithosphere by -26 Ma[J]. Tectonophysics, 2018, 731/732: 17-34.
DOI URL |
[26] |
ROHRMANN A, KAPP P, CARRAPA B, et al. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma[J]. Geology, 2012, 40(2): 187-192.
DOI URL |
[27] | DING L, KAPP P, CAI F L, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth and Environment, 2022(3): 652-667. |
[28] |
WEI Y, ZHANG K X, GARZIONE C N, et al. Low palaeoelevation of the northern Lhasa terrane during late Eocene: fossil foraminifera and stable isotope evidence from the Gerze Basin[J]. Scientific Reports, 2016, 6: 27508.
DOI PMID |
[29] |
WANG H, DUTTA S, KELLY R S, et al. Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet[J]. Palaeoworld, 2018, 27(4): 506-513.
DOI URL |
[30] | FANG X M, DUPONT-NIVET G, WANG C S, et al. Revised chronology of central Tibet uplift (Lunpola Basin)[J]. Science Advances, 2020, 6(50): 1-10. |
[31] | XIONG Z Y, LIU X H, DING L, et al. The rise and demise of the Paleogene Central Tibetan Valley[J]. Science Advances, 2022, 8(6): eabj0944. |
[32] |
ZHAO Z B, LI C, LI C, et al. How does the elevation changing response to crustal thickening process in the central Tibetan Plateau since 120 Ma[J]. China Geology, 2021, 4 (1): 32-43.
DOI URL |
[33] |
ZHAO Z B, BONS P D, LI C, et al. The Cretaceous crustal shortening and thickening of the South Qiangtang Terrane and implications for Proto-Tibetan Plateau formation[J]. Gondwana Research, 2020, 78: 141-155.
DOI URL |
[34] |
ZHAO Z B, LU H J, WANG S G, et al. The Cenozoic multiple-stage uplift of the Qiangtang Terrane, Tibetan Plateau[J]. Frontiers in Earth Science, 2022, 10: 818079.
DOI URL |
[35] | KAPP P, MURPHY M A, YIN A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4): 1029. |
[36] | KAPP P, YIN A, MANNING C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 2003, 22(4): 1043-1069. |
[37] |
KAPP P, YIN A, HARRISON T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8): 865-878.
DOI URL |
[38] |
ZHANG K J, CAI J X, ZHANG Y X, et al. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications[J]. Earth and Planetary Science Letters, 2006, 245(3/4): 722-729.
DOI URL |
[39] |
ZHANG K J, ZHANG Y X, TANG X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision[J]. Earth Science Reviews, 2012, 114(3/4): 236-249.
DOI URL |
[40] |
BI W J, HAN Z P, LI Y L, et al. Deformation and cooling history of the central Qiangtang Terrane, Tibetan Plateau and its tectonic implications[J]. International Geology Review, 2020, 63(15): 1821-1837.
DOI URL |
[41] |
ZHAO Z B, BONS, P D, STÜBNER K, et al. Early cretaceous exhumation of the Qiangtang Terrane during collision with the Lhasa Terrane, central Tibet[J]. Terra Nova, 2017, 29(6): 382-391.
DOI URL |
[42] |
WU Z H, BAROSH P J, WU Z H, et al. Vast early Miocene lakes of the central Tibetan Plateau[J]. Geological Society of America Bulletin, 2008, 120(9): 1326-1337.
DOI URL |
[43] |
LI Y L, WANG C S, ZHAO X X, et al. Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet[J]. Gondwana Research, 2012, 22(2): 482-492.
DOI URL |
[44] |
MENG J, COE R S, WANG C S, et al. Reduced convergence within the Tibetan Plateau by 26 Ma[J]. Geophysical Research Letters, 2017, 44: 6624-6632.
DOI URL |
[45] | 李亚林, 王成善, 伊海生, 等. 西藏北部新生代大型逆冲推覆构造与唐古拉山的隆起[J]. 地质学报, 2006, 80(8): 1118-1130. |
[46] | 李亚林, 朱利东, 戴紧根, 等. 可可西里西段羊湖盆地沉积、构造特征及其动力学意义[J]. 岩石学报, 2013, 29(3): 1017-1026. |
[47] | BI W J, LI Y L, KAMP P J J, et al. Cretaceous-Cenozoic cooling history of the Qiangtang Terrane and implications for Central Tibet formation[J]. Geological Society of America Bulletin, 2022. https://doi.org/10.1130/B36313.1. |
[48] | 郑波, 陈文彬, 王增振, 等. 羌塘地块白垩纪剥蚀-冷却事件[J]. 地质论评, 2020, 66(5): 1143-1154. |
[49] | 李才. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 吉林大学学报(地球科学版), 1987(2): 155-166. |
[50] |
METCALFE I. Palaeozoic-Mesozoic history of SE Asia[J]. Geological Society, London, Special Publications, 2011, 355: 7-35.
DOI URL |
[51] |
李典, 王根厚, 刘正勇, 等. 西藏南羌塘增生杂岩中俯冲反向驱动高压变质岩折返: 来自猫耳山大型拆离断层的启示[J]. 地学前缘, 2021, 28(6): 205-225.
DOI |
[52] |
李典, 王根厚, 刘正勇, 等. 西藏南羌塘晚三叠世陆缘俯冲增生造山带的褶皱冲断与增生杂岩双层结构厘定[J]. 地学前缘, 2022, 29(4): 231-248.
DOI |
[53] |
KAPP P, YIN A, MANNING C E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang Block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28(1): 19-22.
DOI URL |
[54] |
ZHANG K J, ZHANG Y X, TANG X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews, 2012, 114(3/4): 236-249.
DOI URL |
[55] |
ZHANG K J, ZHANG Y X, LI B, et al. Temporal variations of Mesozoic sandstone compositions in the Qiangtang Block, northern Tibet (China): implications for provenance and tectonic setting[J]. Journal of Sedimentary Research, 2006, 76(8): 1035-1048.
DOI URL |
[56] |
ZHANG J W, SINCLAIR H D, LI Y L, et al. Subsidence and exhumation of the Mesozoic Qiangtang Basin: implications for the growth of the Tibetan Plateau[J]. Basin Research, 2019, 31(4): 754-781.
DOI URL |
[57] | 吴珍汉, 吴学文, 赵珍, 等. 羌塘地块南部晚白垩世火山岩离子探针测年及其对红层时代的约束[J]. 地球学报, 2014, 35(5): 567-572. |
[58] |
MA A L, HU X M, GARZANTI E, et al. Sedimentary and tectonic evolution of the southern Qiangtang Basin: implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4790-4813.
DOI URL |
[59] | 杜林涛, 李亚林. 北羌塘托纳木地区上白垩统阿布山组沉积特征、 物源分析及其构造意义[J]. 地球学报, 2022(4): 43. |
[60] | 杜林涛, 李亚林, 刘洋. 西藏羌塘地体中生代中—晚期不整合事件及其构造意义[J]. 地质科技通报, 2021, 40(4): 61-71. |
[61] | LI Y L, HE J, WANG C S, et al. Late Cretaceous K-rich magmatism in central Tibet: evidence for early elevation of the Tibetan plateau[J]. Lithos, 2013, 160: 1-13. |
[62] |
LI Y L, HE, J, WANG C S, et al. Cretaceous volcanic rocks in south Qiangtang Terrane: products of northward subduction of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 104: 69-83.
DOI URL |
[63] |
HE H Y, LI Y L, WANG C S, et al. Late Cretaceous (ca. 95 Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: petrogenetic and tectonic implications[J]. Lithos, 2018, 302/303: 389-404.
DOI URL |
[64] |
MENG J, ZHAO X X, WANG C S, et al. Palaeomagnetism and detrital zircon U-Pb geochronology of Cretaceous redbeds from central Tibet and tectonic implications[J]. Geological Journal, 2018, 53: 2315-2333.
DOI URL |
[65] | 吴珍汉, 赵珍, 吴中海, 等. 西藏双湖古近纪唢呐湖组碎屑锆石U-Pb年龄与古海拔高度[J]. 地质学报, 2018, 92(7): 17. |
[66] | 王剑, 曾胜强, 付修根, 等. 羌塘盆地唢呐湖组时代归属新证据[J]. 地质通报, 2019, 38(7): 3. |
[67] | 黄继钧, 伊海生, 林金辉. 羌塘盆地构造特征及油气远景初步分析[J]. 地质科学, 2004, 39(1): 1-10. |
[68] | 黄继钧, 李亚林. 羌塘盆地岩石有限应变及地壳缩短分析[J]. 地质学报, 2007, 81(5): 599-605. |
[69] |
LU Z W, GAO R, LI Y T, et al. The upper crustal structure of the Qiangtang Basin revealed by seismic reflection data[J]. Tectonophysics, 2013, 606: 171-177.
DOI URL |
[70] | 吴珍汉, 叶培盛, 胡道功, 等. 青藏高原羌塘盆地南部古近纪逆冲推覆构造系统[J]. 地质通报, 2011, 31(7): 1009-1016. |
[71] |
WU Z H, YE P C, BAROSH P J, et al. Early Cenozoic mega thrusting in the Qiangtang Block of the northern Tibetan Plateau[J]. Acta Geologica Sinica, 2012, 86(4): 11.
DOI URL |
[72] | 吴珍汉, 刘志伟, 赵珍, 等. 羌塘盆地隆鄂尼-昂达尔错古油藏逆冲推覆构造隆升[J]. 地质学报, 2016, 90(4): 615-627. |
[73] | 吴珍汉, 季长军, 赵珍, 等. 羌塘盆地半岛湖—东湖地区主力烃源岩及油气资源潜力[J]. 地质学报, 2019, 93(7): 1738-1753. |
[74] | 吴珍汉, 宋洋, 赵珍. 北羌塘凹陷重力地震联合反演预测深部油藏[J]. 地球学报, 2021, 42(1): 1-8. |
[75] | 赵珍, 吴珍汉, 于俊秋, 等. 西藏中部尼玛—荣玛地区逆冲推覆构造特征[J]. 地质学报, 2019, 93(8): 1849-1866. |
[76] | 吴珍汉, 高锐, 卢占武, 等. 羌塘盆地结构构造与油气勘探方向[J]. 地质学报, 2014, 88(6): 1130-1144. |
[77] | 陈文彬, 贺永忠, 占王忠, 等. 藏北南羌塘安多县鄂斯玛地区早白垩世孢粉化石Dicheiropollis的发现及其地质意义[J]. 地质通报, 2012, 31(10): 1602-1607. |
[78] |
LI L, GARZIONE C N, PULLEN A, et al. Late Cretaceous: Cenozoic basin evolution and topographic growth of the Hoh Xil Basin, central Tibetan Plateau[J]. Geological Society of America Bulletin, 2017, 130(3/4): 499-521.
DOI URL |
[79] |
STAISCH L M, NIEMI N A, CHANG H, et al. A Cretaceous-Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: implications for the tectonic evolution of the northern Tibet Plateau[J]. Tectonics, 2014, 33(3): 281-301.
DOI URL |
[80] |
DING L, KAPP P, YUE Y H, et al. Post-collisional calc-alkaline lavas and xenoliths from the southern Qiangtang Terrane, central Tibet[J]. Earth and Planetary Science Letters, 2007, 254: 28-38.
DOI URL |
[81] | 赖绍聪, 秦江锋, 李永飞, 等. 藏北羌塘比隆错一带新生代火山岩的成因: 壳幔过渡带局部熔融的地球化学证据[J]. 地质通报, 2006, 25(1): 64-69. |
[82] | 付修根, 王剑, 宋春彦, 等. 羌塘盆地第一口油气科学钻探井油气地质成果及勘探意义[J]. 沉积与特提斯地质, 2020, 40(1): 15-25. |
[83] |
MIN K. Low-temperature thermochronometry of meteorites[J]. Reviews in Mineralogy and Geochemistry, 2005, 58: 567-588.
DOI URL |
[84] |
REINERS P W, BRANDON M T. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 419-466.
DOI URL |
[85] | RUHL K, HODGES K. The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: an example from the central Nepalese Himalaya[J]. Tectonics, 2005, 24: TC4015. |
[86] | PEYTON S L, CARRAPA B. An Introduction to low-temperature thermochronologic techniques, methodology, and applications[J]. AAPG Studies in Geology, 2013, 65: 15-36. |
[87] | 于俊秋, 吴珍汉, 赵珍, 等. 藏北改则康托盆地逆冲推覆构造磷灰石裂变径迹年代学制约[J]. 地质通报, 2018, 37(6): 987-995. |
[88] |
LI C, ZHAO Z B, LU H J, et al. Late Mesozoic-Cenozoic multistage exhumation of the central Bangong-Nujiang Suture, central Tibet[J]. Tectonophysics, 2022, 827: 229268.
DOI URL |
[89] |
QIAN X Y, LI Y L, DAI J G, et al. Apatite and zircon (U-Th)/He thermochronological evidence for Mesozoic exhumation of the central Tibetan Mountain Range[J]. Geological Journal, 2021, 56: 599-611.
DOI URL |
[90] | XUE W W, NAJMAN Y N, HU X M, et al. Late Cretaceous to Late Eocene exhumation in the Nima area, central Tibet: implications for development of low relief topography of the Tibetan Plateau[J]. Tectonics, 2022, 41(3): e2021TC006989. |
[91] |
TONG K, LI Z W, ZHU L D, et al. Thermochronology constraints on the Cretaceous-Cenozoic thermo-tectonic evolution in the Gaize region, central-western Tibetan Plateau: implications for westward extending of the proto-Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2022, 240: 105419.
DOI URL |
[92] | 王立成, 魏玉帅. 西藏羌塘盆地白垩纪中期构造事件的磷灰石裂变径迹证据[J]. 岩石学报, 2013(3): 1039-1047. |
[93] | REN Z L, CUI J P, LIU C Y, et al. Apatite fission track evidence of uplift cooling in the Qiangtang Basin and constraints on the Tibetan Plateau uplift[J]. Acta Geologica Sinica, 2015, 89: 467-484. |
[94] |
YANG H H, TANG J X, SONG Y, et al. Thermal study of the Duolong ore district in Tibet: implications for the uplift history of the Qiangtang Terrane[J]. International Geology Review, 2021, 63: 735-747.
DOI URL |
[95] |
SONG C Y, WANG J, FU X G, et al. Mesozoic and Cenozoic cooling history of the Qiangtang Block, northern Tibet, China: new constraints from apatite and zircon fission track data[J]. Terrestrial Atmospheric and Oceanic Sciences, 2013, 24(6): 985-998.
DOI URL |
[96] | 宋春彦, 王剑, 付修根, 等. 羌塘盆地白垩纪以来快速隆升剥蚀的热年代学证据[J]. 东北石油大学学报, 2018, 42(6): 62-72. |
[97] |
ZHANG J W, LI Y L, XU M, et al. New apatite fission track evidence from the northern Qiangtang Terrane reveal two-phase evolution of central Tibet[J]. Terra Nova, 2021, 33: 95-108.
DOI URL |
[98] |
赵珍, 陆露, 吴珍汉. 羌塘盆地中央隆起带的抬升演化: 构造-热年代学约束[J]. 地学前缘, 2019, 26(2): 249-263.
DOI |
[99] | 杨欢欢, 宋扬, DILLES J H, 等. 西藏多龙矿集区热构造演化历史: 来自磷灰石(U-Th)/He的证据[J]. 岩石学报, 2019, 35(3): 867-877. |
[100] |
GLEADOW A J W, BELTON D X, KOHN B P, et al. Fission track dating of phosphate minerals and the thermochronology of apatite[J]. Reviews in Mineralogy and Geochemistry, 2002, 48: 579-630.
DOI URL |
[101] | TAGAMI T, SHIMADA C. Natural long-term annealing of the zircon fission track system around a granitic pluton[J]. Journal of Geophysical Research: Solid Earth, 1996, 101: 8245-8255. |
[102] | 王剑, 丁俊, 王成善, 等. 青藏高原油气资源战略选区调查与评价[M]. 北京: 地质出版社, 2009. |
[103] |
FLOWERS R M, KETCHAM R A, SHUSTER D L, et al. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta, 2009, 73: 2347-2365.
DOI URL |
[104] |
LAW R, ALLEN M B. Diachronous Tibetan Plateau landscape evolution derived from lava field geomorphology[J]. Geology, 2020, 48: 263-267.
DOI URL |
[105] | VAN HINSBERGEN D J J, STEINBERGER B, DOUBROVINE P V, et al. Acceleration and deceleration of India-Asia convergence since the Cretaceous: roles of mantle plumes and continental collision[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B6): 1-20. |
[106] |
CHEN S S, FAN W M, SHI R D, et al. Removal of deep lithosphere in ancient continental collisional orogens: a case study from central Tibet, China[J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 1225-1243.
DOI URL |
[107] | HU F Y, WU F Y, CHAPMAN J B, et al. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from whole-rock Sr/Y and La/Yb ratios[J]. Geophysical Research Letters, 2020, 47: 1-10. |
[108] |
DECELLES P G, KAPP P, DING L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119: 654-680.
DOI URL |
[109] | SUN G Y, HU X M, SINCLAIR H D, et al. Late Cretaceous evolution of the Coqen Basin (Lhasa Terrane) and implications for early topographic growth on the Tibetan Plateau[J]. Geological Society of America Bulletin, 2015, 127(7/8): 1001-1020. |
[110] |
WANG J G, HU X M, GARZANTI E, et al. Early Cretaceous topographic growth of the Lhasaplano, Tibetan Plateau: constraints from the Damxung Conglomerate[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 5748-5765.
DOI URL |
[111] | LIU D L, SHI R D, DING L, et al. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: new volcanic constraints from central Tibet[J]. Lithos, 2018, 296/297/298/299: 452-470. |
[112] |
付顺, 赵应权, 王进军, 等. 白垩纪羌塘地体西南缘的陆-陆碰撞: 来自班怒带西段的花岗岩约束[J]. 地学前缘, 2022, 29(2): 416-430.
DOI |
[113] |
BIAN W W, YANG T T, MA Y M, et al. New Early Cretaceous palaeomagnetic and geochronological results from the far western Lhasa terrane: contributions to the Lhasa-Qiangtang collision[J]. Scientific Reports, 2017, 7(1): 16216-.
DOI PMID |
[114] |
GUO R H, LI S Z, YU S Y, et al. Collisional processes between the Qiangtang Block and the Lhasa Block: insights from structural analysis of the Bangong-Nujiang suture zone, central Tibet[J]. Geological Journal, 2019, 54: 946-960.
DOI URL |
[115] |
LUO A B, FAN J J, ZHANG B C, et al. Cretaceous uplift history of the Tibetan Plateau: insights from the transition of marine to terrestrial facies in central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601: 111103.
DOI URL |
[116] |
HAN Z P, SINCLAIR H D, LI Y L, et al. Internal drainage has sustained low-relief Tibetan landscapes since the early Miocene[J]. Geophysical Research Letters, 2019, 46: 8741-8752.
DOI URL |
[117] |
KAPP P, DECELLES P G, GEHRELS G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119: 917-933.
DOI URL |
[118] |
REPLUMAZ A, GUILLOT S, VILLASENOR A, et al. Amount of Asian lithospheric mantle subducted during the India/Asia collision[J]. Gondwana Research, 2013, 24: 936-945.
DOI URL |
[119] |
GUILLOT S, REPLUMAZ A. Importance of continental subductions for the growth of the Tibetan Plateau[J]. Bulletin de la Société Géologique de France, 2013, 184: 199-223.
DOI URL |
[120] | ZENG Y C, DUCEA M N, XU J F, et al. Negligible surface uplift following foundering of thickened central Tibetan lower crust[J]. Geology, 2020, 48: 45-50. |
[121] |
WANG Q, WYMAN D A, XU J, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 2008, 272(1): 158-171.
DOI URL |
[122] | JEPSON G, CARRAPA B, GILLESPIE J, et al. Climate as the great equalizer of continental-scale erosion[J]. Geophysical Research Letters, 2021, 48(20): e2021GL095008. |
[123] |
BLISNIUK P M, HACKER B R, GLODNY J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 2001, 412: 628-632.
DOI URL |
[124] |
XU Q, DING L, ZHANG L Y, et al. Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau[J]. Earth and Planetary Science Letters, 2013, 362: 31-42.
DOI URL |
[125] |
LI L, FAN M, DAVILA N, et al. Carbonate stable and clumped isotopic evidence for late Eocene moderate to high elevation of the east-central Tibetan Plateau and its geodynamic implications[J]. Geological Society of America Bulletin, 2018, 131(5/6): 831-844.
DOI URL |
[126] | LIN J, DAI J G, ZHUANG G S, et al. Late Eocene-Oligocene high relief paleotopography in the north-central Tibetan Plateau: insights from detrital zircon U-Pb geochronology and leaf wax hydrogen isotope studies[J]. Tectonics, 2020, 39(2): 1-25. |
[127] | HU F Y, WU F Y, CHAPMAN J B, et al. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from whole-rock Sr/Y and La/Yb ratios[J]. Geophysical Research Letters, 2020, 47: 1. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||