Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (3): 375-391.DOI: 10.13745/j.esf.sf.2025.3.34
Previous Articles Next Articles
HE Sheng(), CAI Hongming, YUAN Wei, CHEN Jiubin*(
)
Received:
2025-02-11
Revised:
2025-02-24
Online:
2025-03-25
Published:
2025-04-20
CLC Number:
HE Sheng, CAI Hongming, YUAN Wei, CHEN Jiubin. Recent progress in mercury isotopes of the river system[J]. Earth Science Frontiers, 2025, 32(3): 375-391.
形态汞 | 方法名称 | 样品类型 | 优势 | 可能存在的问题 | 参考文献 |
---|---|---|---|---|---|
溶解态 总汞 | 离子交换树脂法 | 河水 | 富集、纯化大体积水体痕量汞 | 样品前处理周期长 | [ |
吹扫捕集法 | 河水 | 富集、纯化小体积水体汞 | 试剂使用量大,处理低浓度样品 时需控制空白 | [ | |
颗粒态 总汞 | 热解法 | 河流沉积物,悬浮颗 粒物,生物 | 富集、纯化颗粒物样品 | 前处理效率受管式炉数量、 降温速度等限制 | [ |
消解法 | 河流沉积物,悬浮颗 粒物,生物 | 批量快速处理少量(<1 g)样品 | 消解液需进一步富集纯化 | [ | |
甲基汞 | 蒸馏-气相色谱法 | 河流沉积物 | 分离沉积物样品甲基汞并 完成高精度同位素测试 | 回收率受乙基化效率影响 | [ |
蒸馏-离子 交换树脂法 | 河流沉积物、生物 | 不使用乙基化试剂,避免乙基化 过程产生的同位素分馏 | 样品前处理流程复杂,周期长 | [ |
Table 1 Summary of methods for Hg isotopes analysis of river samples
形态汞 | 方法名称 | 样品类型 | 优势 | 可能存在的问题 | 参考文献 |
---|---|---|---|---|---|
溶解态 总汞 | 离子交换树脂法 | 河水 | 富集、纯化大体积水体痕量汞 | 样品前处理周期长 | [ |
吹扫捕集法 | 河水 | 富集、纯化小体积水体汞 | 试剂使用量大,处理低浓度样品 时需控制空白 | [ | |
颗粒态 总汞 | 热解法 | 河流沉积物,悬浮颗 粒物,生物 | 富集、纯化颗粒物样品 | 前处理效率受管式炉数量、 降温速度等限制 | [ |
消解法 | 河流沉积物,悬浮颗 粒物,生物 | 批量快速处理少量(<1 g)样品 | 消解液需进一步富集纯化 | [ | |
甲基汞 | 蒸馏-气相色谱法 | 河流沉积物 | 分离沉积物样品甲基汞并 完成高精度同位素测试 | 回收率受乙基化效率影响 | [ |
蒸馏-离子 交换树脂法 | 河流沉积物、生物 | 不使用乙基化试剂,避免乙基化 过程产生的同位素分馏 | 样品前处理流程复杂,周期长 | [ |
Fig. 1 Published Hg concentrations and isotopes data of river samples including sediments,biota,river water and suspended particulate matters.Adapted from[11,30,35,40,43,48⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-81].
Fig.2 Odd-MIF of Hg isotopes (Δ199Hg) versus MDF (δ202Hg) (a) and even-MIF (Δ200Hg) (b) for river samples including sediments, biota, river water and suspended particulate matters. Reference is shown in Fig.1
名称 | 通量a/ (Mg·a-1) | 通量范围a/ (Mg·a-1,四分位距) | δ202Hg/ ‰ | SD | Δ199Hg/ ‰ | SD | 数据量 | 参考文献 |
---|---|---|---|---|---|---|---|---|
河流输入 | 1 000 | 980~1 100 | -1.58 | 0.30 | -0.20 | 0.12 | 106 | [ |
远洋输入 | 900 | 460~1 800 | -0.34 | 0.35 | 0.12 | 0.09 | 21 | [ |
大气沉降 | 310 | 270~340 | -0.02 | 0.51 | 0.10 | 0.18 | 399 | [ |
沉积物再悬浮 | 42 | 20~89 | -1.53 | 0.33 | -0.19 | 0.17 | 231 | [ |
输入 | 2 252 | -0.87 | -0.03 | |||||
近海输出 | 1 300 | 820~2 100 | -0.43 | 0.65 | 0.03 | 0.16 | 41 | [ |
沉积作用 | 730 | 410~1 100 | -1.53 | 0.33 | -0.19 | 0.17 | 231 | [ |
单质汞挥发 | 220 | 97~410 | -0.76 | — | 0.18 | — | — | [ |
输出 | 2 250 | -0.82 | -0.03 |
Table 2 Flux and isotope compositions of Hg input and output for river and coast
名称 | 通量a/ (Mg·a-1) | 通量范围a/ (Mg·a-1,四分位距) | δ202Hg/ ‰ | SD | Δ199Hg/ ‰ | SD | 数据量 | 参考文献 |
---|---|---|---|---|---|---|---|---|
河流输入 | 1 000 | 980~1 100 | -1.58 | 0.30 | -0.20 | 0.12 | 106 | [ |
远洋输入 | 900 | 460~1 800 | -0.34 | 0.35 | 0.12 | 0.09 | 21 | [ |
大气沉降 | 310 | 270~340 | -0.02 | 0.51 | 0.10 | 0.18 | 399 | [ |
沉积物再悬浮 | 42 | 20~89 | -1.53 | 0.33 | -0.19 | 0.17 | 231 | [ |
输入 | 2 252 | -0.87 | -0.03 | |||||
近海输出 | 1 300 | 820~2 100 | -0.43 | 0.65 | 0.03 | 0.16 | 41 | [ |
沉积作用 | 730 | 410~1 100 | -1.53 | 0.33 | -0.19 | 0.17 | 231 | [ |
单质汞挥发 | 220 | 97~410 | -0.76 | — | 0.18 | — | — | [ |
输出 | 2 250 | -0.82 | -0.03 |
[1] | DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10): 4967-4983. |
[2] | MOREL F M M, KRAEPIEL A M L, AMYOT M. The chemical cycle and bioaccumulation of mercury[J]. Annual Review of Ecology and Systematics, 1998, 29(1): 543-566. |
[3] | KESSLER R. The minamata convention on mercury: a first step toward protecting future generations[J]. Environmental Health Perspectives, 2013, 121(10): A304-A309. |
[4] | LIN Y, WANG S X, STEINDAL E H, et al. Minamata convention on mercury: Chinese progress and perspectives[J]. National Science Review, 2017, 4(5): 677-679. |
[5] | 赵彬, 杨洋, 张昊, 等. 汞污染地块分级风险管控技术体系研究[J]. 地学前缘, 2024, 31(02): 1-12. |
[6] | LIU M D, ZHANG Q R, MAAVARA T, et al. Rivers as the largest source of mercury to coastal oceans worldwide[J]. Nature Geoscience, 2021, 14(9): 672-677. |
[7] | BRIGHAM M E, WENTZ D A, AIKEN G R, et al. Mercury cycling in stream ecosystems. 1. water column chemistry and transport[J]. Environmental Science & Technology, 2009, 43(8): 2720-2725. |
[8] | MARVIN-DIPASQUALE M, LUTZ M A, BRIGHAM M E, et al. Mercury cycling in stream ecosystems. 2. benthic methylmercury production and bed sediment-pore water partitioning[J]. Environmental Science & Technology, 2009, 43(8): 2726-2732. |
[9] | ULLRICH S M, LLYUSHCHENKO M A, USKOV G A, et al. Mercury distribution and transport in a contaminated river system in Kazakhstan and associated impacts on aquatic biota[J]. Applied Geochemistry, 2007, 22(12): 2706-2734. |
[10] | NEVADO J J B, MARTíN-DOIMEADIOS R C R, BERNARDO F J G, et al. Mercury in the Tapajos River basin, Brazilian Amazon: a review[J]. Environment International, 2010, 36(6): 593-608. |
[11] | HE S, CAI H M, SUN R Y, et al. Stable isotopes reveal the contribution of glacier melting to mercury budget in Tibetan rivers[J]. Environmental Science & Technology Letters, 2024, 12(1): 85-91. |
[12] | ZOLKOS S, KRABBENHOFT D P, SUSLOVA A, et al. Mercury export from Arctic great rivers[J]. Environmental Science & Technology, 2020, 54(7): 4140-4148. |
[13] | SCHUSTER P F, STRIEGL R G, AIKEN G R, et al. Mercury export from the Yukon River basin and potential response to a changing climate[J]. Environmental Science & Technology, 2011, 45(21): 9262-9267. |
[14] | RODRíGUEZ-GONZáLEZ P, EPOV V N, BRIDOU R, et al. Species-specific stable isotope fractionation of mercury during Hg(II) methylation by an anaerobic bacteria (Desulfobulbus propionicus) under dark conditions[J]. Environmental Science & Technology, 2009, 43(24): 9183-9188. |
[15] | JISKRA M, WIEDERHOLD J G, BOURDON B, et al. Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite[J]. Environmental Science & Technology, 2012, 46(12): 6654-6662. |
[16] | ZHENG W, HINTELMANN H. Mercury isotope fractionation during photoreduction in natural water is controlled by its Hg/DOC ratio[J]. Geochimica Et Cosmochimica Acta, 2009, 73(22): 6704-6715. |
[17] |
ZHENG W, HINTELMANN H. Isotope fractionation of mercury during its photochemical reduction by low-molecular-weight organic compounds[J]. Journal of Physical Chemistry A, 2010, 114(12): 4246-4253.
DOI PMID |
[18] | ZHENG W, DEMERS J D, LU X, et al. Mercury stable isotope fractionation during abiotic dark oxidation in the presence of thiols and natural organic matter[J]. Environmental Science & Technology, 2019, 53(4): 1853-1862. |
[19] | ESTRADE N, CARIGNAN J, SONKE J E, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments[J]. Geochimica Et Cosmochimica Acta, 2009, 73(10): 2693-2711. |
[20] |
MOTTA L C, KRITEE K, BLUM J D, et al. Mercury isotope fractionation during the photochemical reduction of Hg(II) coordinated with organic ligands[J]. Journal of Physical Chemistry A, 2020, 124(14): 2842-2853.
DOI PMID |
[21] | CHEN J B, HINTELMANN H, FENG X B, et al. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada[J]. Geochimica Et Cosmochimica Acta, 2012, 90: 33-46. |
[22] |
冯新斌, 尹润生, 俞奔, 等. 汞同位素地球化学概述[J]. 地学前缘, 2015, 22(5): 124-135.
DOI |
[23] | BLUM J D, SHERMAN L S, JOHNSON M W. Mercury isotopes in Earth and environmental sciences[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 249-269. |
[24] | FOUCHER D, OGRINC N, HINTELMANN H. Tracing mercury contamination from the Idrija mining region (Slovenia) to the gulf of Trieste using Hg isotope ratio measurements[J]. Environmental Science & Technology, 2009, 43(1): 33-39. |
[25] |
BERGQUIST B A, BLUM J D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems[J]. Science, 2007, 318(5849): 417-420.
PMID |
[26] |
BLUM J D, BERGQUIST B A. Reporting of variations in the natural isotopic composition of mercury[J]. Analytical and Bioanalytical Chemistry, 2007, 388(2): 353-359.
PMID |
[27] | 郑旺, 赵亚秋, 孙若愚, 等. 汞的稳定同位素分馏机理[J]. 矿物岩石地球化学通报, 2021, 40(5): 1087-1110. |
[28] | CHEN J B, HINTELMANN H, DIMOCK B. Chromatographic pre-concentration of Hg from dilute aqueous solutions for isotopic measurement by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(9): 1402-1409. |
[29] | WOERNDLE G E, TSUI M T K, SEBESTYEN S D, et al. New insights on ecosystem mercury cycling revealed by stable isotopes of mercury in water flowing from a headwater peatland catchment[J]. Environmental Science & Technology, 2018, 52(4): 1854-1861. |
[30] | JANSSEN S E, TATE M T, KRABBENHOFT D P, et al. The influence of legacy contamination on the transport and bioaccumulation of mercury within the Mobile River basin[J]. Journal of Hazardous Materials, 2021, 404(Pt A): 124097-124097. |
[31] |
JANSSEN S E, LEPAK R F, TATE M T, et al. Rapid pre-concentration of mercury in solids and water for isotopic analysis[J]. Analytica Chimica Acta, 2019, 1054: 95-103.
DOI PMID |
[32] | LI K, LIN C J, YUAN W, et al. An improved method for recovering and preconcentrating mercury in natural water samples for stable isotope analysis[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2303-2313. |
[33] |
YIN H Q, YAO H, YUAN W, et al. Determination of the isotopic composition of aqueous mercury in a paddy ecosystem using diffusive gradients in thin films[J]. Analytical Chemistry, 2023, 95(33): 12290-12297.
DOI PMID |
[34] | LIU J, LIU Z, YANG S. Studying the availability of mercury using the DGT technique[M]. Methylmercury Accumulation in Rice. CRC Press: 141-156. |
[35] | DONOVAN P M, BLUM J D, SINGER M B, et al. Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining[J]. Science of the Total Environment, 2016, 568: 1192-1203. |
[36] | CROWTHER E R, DEMERS J D, BLUM J D, et al. Use of sequential extraction and mercury stable isotope analysis to assess remobilization of sediment-bound legacy mercury[J]. Environmental Science-Processes & Impacts, 2021, 23(5): 756-775. |
[37] | HUANG Q, LIU Y L, CHEN J B, et al. An improved dual-stage protocol to pre-concentrate mercury from airborne particles for precise isotopic measurement[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 957-966. |
[38] | SUN R Y, ENRICO M, HEIMBüRGER L E, et al. A double-stage tube furnace-acid-trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis[J]. Analytical and Bioanalytical Chemistry, 2013, 405(21): 6771-6781. |
[39] | DEMERS J D, BLUM J D, ZAK D R. Mercury isotopes in a forested ecosystem: implications for air-surface exchange dynamics and the global mercury cycle[J]. Global Biogeochemical Cycles, 2013, 27(1): 222-238. |
[40] | SONKE J E, SCHäFER J, CHMELEFF J, et al. Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries[J]. Chemical Geology, 2010, 279(3-4): 90-100. |
[41] | JANSSEN S E, RIVA-MURRAY K, DEWILD J F, et al. Chemical and physical controls on mercury source signatures in stream fish from the northeastern United States[J]. Environmental Science & Technology, 2019, 53(17): 10110-10119. |
[42] | ZHANG L, YIN Y G, LI Y B, et al. Mercury isotope fractionation during methylmercury transport and transformation: a review focusing on analytical method, fractionation characteristics, and its application[J]. Science of the Total Environment, 2022, 841: 156558. |
[43] | TSUI M T K, BLUM J D, KWON S Y, et al. Sources and transfers of methylmercury in adjacent river and forest food webs[J]. Environmental Science & Technology, 2012, 46(20): 10957-10964. |
[44] | JANSSEN S E, JOHNSON M W, BLUM J D, et al. Separation of monomethylmercury from estuarine sediments for mercury isotope analysis[J]. Chemical Geology, 2015, 411: 19-25. |
[45] | ROSERA T J, JANSSEN S E, TATE M T, et al. Methylmercury stable isotopes: new insights on assessing aquatic food web bioaccumulation in legacy impacted regions[J]. ACS ES & T Water, 2022, 2(5): 701-709. |
[46] | GRATZ L E, KEELER G J, BLUM J D, et al. Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air[J]. Environmental Science & Technology, 2010, 44(20): 7764-7770. |
[47] |
ROSERA T J, JANSSEN S E, TATE M T, et al. Isolation of methylmercury using distillation and anion-exchange chromatography for isotopic analyses in natural matrices[J]. Analytical and Bioanalytical Chemistry, 2020, 412(3): 681-690.
DOI PMID |
[48] | ZHANG Y Y, CHEN J B, ZHENG W, et al. Mercury isotope compositions in large anthropogenically impacted Pearl River, South China[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110229. |
[49] | GEHRKE G E, BLUM J D, MARVIN-DIPASQUALE M. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes[J]. Geochimica Et Cosmochimica Acta, 2011, 75(3): 691-705. |
[50] | DONOVAN P M, BLUM J D, SINGER M B, et al. Isotopic composition of inorganic mercury and methylmercury downstream of a historical gold mining region[J]. Environmental Science & Technology, 2016, 50(4): 1691-1702. |
[51] | MCGOVARIN S, HINTELMANN H. Tracking mercury sources in the Wabigoon River: use of stable mercury isotopes in bioindicator organisms[J]. Chemosphere, 2024, 365: 143376. |
[52] | JANSSEN S E, HOFFMAN J C, LEPAK R F, et al. Examining historical mercury sources in the Saint Louis River estuary: how legacy contamination influences biological mercury levels in Great Lakes coastal regions[J]. Science of the Total Environment, 2021, 779: 146284. |
[53] | DONOVAN P M, BLUM J D, DEMERS J D, et al. Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA[J]. Environmental Science & Technology, 2014, 48(7): 3666-3674. |
[54] |
SCHUDEL G, MISERENDINO R A, VEIGA M M, et al. An investigation of mercury sources in the Puyango-Tumbes River: using stable Hg isotopes to characterize transboundary Hg pollution[J]. Chemosphere, 2018, 202: 777-787.
DOI PMID |
[55] | WASHBURN S J, BLUM J D, DEMERS J D, et al. Isotopic characterization of mercury downstream of historic industrial contamination in the South River, Virginia[J]. Environmental Science & Technology, 2017, 51(19): 10965-10973. |
[56] | WASHBURN S J, BLUM J D, KURZ A Y, et al. Spatial and temporal variation in the isotopic composition of mercury in the South River, VA[J]. Chemical Geology, 2018, 494: 96-108. |
[57] |
REINFELDER J R, JANSSEN S E. Tracking legacy mercury in the Hackensack River estuary using mercury stable isotopes[J]. Journal of Hazardous Materials, 2019, 375: 121-129.
DOI PMID |
[58] | ARAUJO B F, HINTELMANN H, DIMOCK B, et al. Mercury speciation and Hg stable isotope ratios in sediments from Amazon floodplain lakes-Brazil[J]. Limnology and Oceanography, 2018, 63(3): 1134-1145. |
[59] | NITSCHKE N, GUEDRON S, TESSIER E, et al. Evaluation of the Hg contamination from gold mining in French Guiana at the watershed scale using Hg isotopic composition in river sediments[J]. ACS ES & T Water, 2024, 4(8): 3443-3452. |
[60] |
GOIX S, MAURICE L, LAFFONT L, et al. Quantifying the impacts of artisanal gold mining on a tropical river system using mercury isotopes[J]. Chemosphere, 2019, 219: 684-694.
DOI PMID |
[61] | MISERENDINO R A, GUIMARDES J R D, SCHUDEL G, et al. Mercury pollution in Amapa, Brazil: mercury amalgamation in artisanal and small-scale gold mining or land-cover and land-use changes?[J]. ACS Earth and Space Chemistry, 2018, 2(5): 441-450. |
[62] |
ARAUJO B F, HINTELMANN H, DIMOCK B, et al. Concentrations and isotope ratios of mercury in sediments from shelf and continental slope at Campos basin near Rio de Janeiro, Brazil[J]. Chemosphere, 2017, 178: 42-50.
DOI PMID |
[63] | JIMéNEZ-MORENO M, BARRE J P G, PERROT V, et al. Sources and fate of mercury pollution in Almaden mining district (Spain): evidences from mercury isotopic compositions in sediments and lichens[J]. Chemosphere, 2016, 147: 430-438. |
[64] | SCHWAB L, ROTHE F M, MCLAGAN D S, et al. Large extent of mercury stable isotope fractionation in contaminated stream sediments induced by changes of mercury binding forms[J]. Frontiers in Environmental Chemistry, 2022, 3: 1058890. |
[65] | PRIBIL M J, RIMONDI V, COSTAGLIOLA P, et al. Assessing mercury distribution using isotopic fractionation of mercury processes and sources adjacent and downstream of a legacy mine district in Tuscany, Italy[J]. Applied Geochemistry, 2020, 117: 104600. |
[66] | BAPTISTA-SALAZAR C, HINTELMANN H, BIESTER H. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area[J]. Environmental Science-Processes & Impacts, 2018, 20(4): 621-631. |
[67] | YIN R S, FENG X B, WANG J X, et al. Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China[J]. Chemical Geology, 2013, 336: 72-79. |
[68] | LIU J L, FENG X B, YIN R S, et al. Mercury distributions and mercury isotope signatures in sediments of Dongjiang, the Pearl River Delta, China[J]. Chemical Geology, 2011, 287(1-2): 81-89. |
[69] | KIM Y G, KWON S Y, WASHBURN S J, et al. Environmental forensics approach to source investigation in a mercury contaminated river: insights from mercury stable isotopes[J]. Journal of Hazardous Materials, 2024, 461: 132559. |
[70] | TSUI M T K, BLUM J D, FINLAY J C, et al. Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed by stable mercury isotopes[J]. Environmental Science & Technology, 2014, 48(17): 10128-10135. |
[71] | KWON S Y, BLUM J D, CHEN C Y, et al. Mercury isotope study of sources and exposure pathways of methylmercury in estuarine food webs in the northeastern US[J]. Environmental Science & Technology, 2014, 48(17): 10089-10097. |
[72] | LIU C B, HUA X B, LIU H W, et al. Tracing aquatic bioavailable Hg in three different regions of China using fish Hg isotopes[J]. Ecotoxicology and Environmental Safety, 2018, 150: 327-334. |
[73] |
YIN R S, FENG X B, ZHANG J J, et al. Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China[J]. Chemosphere, 2016, 147: 173-179.
DOI PMID |
[74] | YANG Y H, KWON S Y, TSUI M T K, et al. Ecological traits of fish for mercury biomonitoring: insights from compound-specific nitrogen and stable mercury isotopes[J]. Environmental Science & Technology, 2022, 56(15): 10808-10817. |
[75] | CAMPEAU A, EKLöF K, SOERENSEN A L, et al. Sources of riverine mercury across the Mackenzie River basin; inferences from a combined Hg-C isotopes and optical properties approach[J]. Science of the Total Environment, 2022, 806: 150808. |
[76] | DEMERS J D, BLUM J D, BROOKS S C, et al. Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA[J]. Environmental Science-Processes & Impacts, 2018, 20(4): 686-707. |
[77] | TSUI M T K, UZUN H, RUECKER A, et al. Concentration and isotopic composition of mercury in a blackwater river affected by extreme flooding events[J]. Limnology and Oceanography, 2020, 65(9): 2158-2169. |
[78] | JISKRA M, WIEDERHOLD J G, SKYLLBERG U, et al. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes[J]. Environmental Science-Processes & Impacts, 2017, 19(10): 1235-1248. |
[79] |
ARAUJO B F, OSTERWALDER S, SZPONAR N, et al. Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere[J]. Nature Communications, 2022, 13(1): 4956.
DOI PMID |
[80] | LI R L, YAN J Y, WANG C, et al. Mercury sources, transport, and transformation in rainfall-runoff processes: mercury isotope approach[J]. Water Research, 2024, 261: 122044. |
[81] | YAN J Y, LI R L, ALI M U, et al. Mercury migration to surface water from remediated mine waste and impacts of rainfall in a karst area-evidence from Hg isotopes[J]. Water Research, 2023, 230: 119592. |
[82] | MASON R P, SULLIVAN K A. Mercury and methylmercury transport through an urban watershed[J]. Water Research, 1998, 32(2): 321-330. |
[83] | GRIGAL D. Inputs and outputs of mercury from terrestrial watersheds: a review[J]. Environmental Reviews, 2002, 10(1): 1-39. |
[84] | LIU M D, ZHANG Q R, LUO Y, et al. Impact of water-induced soil erosion on the terrestrial transport and atmospheric emission of mercury in China[J]. Environmental Science & Technology, 2018, 52(12): 6945-6956. |
[85] | GAO X, YUAN W, CHEN J B, et al. Tracing the source and transport of Hg during pedogenesis in strongly weathered tropical soil using Hg isotopes[J]. Geochimica Et Cosmochimica Acta, 2023, 361: 101-112. |
[86] | BRADLEY P M, JOURNEY C A, LOWERY M A, et al. Shallow groundwater mercury supply in a coastal plain stream[J]. Environmental Science & Technology, 2012, 46(14): 7503-7511. |
[87] | YUAN S L, ZHANG Y Y, CHEN J B, et al. Large variation of mercury isotope composition during a single precipitation event at Lhasa City, Tibetan Plateau, China[J]. Procedia Earth and Planetary Science, 2015, 13: 282-286 |
[88] | YUAN S L, CHEN J B, CAI H M, et al. Sequential samples reveal significant variation of mercury isotope ratios during single rainfall events[J]. Science of the Total Environment, 2018, 624: 133-144. |
[89] | OBRIST D, AGNAN Y, JISKRA M, et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution[J]. Nature, 2017, 547(7662): 201-204. |
[90] | ZHENG W, CHANDAN P, STEFFEN A, et al. Mercury stable isotopes reveal the sources and transformations of atmospheric Hg in the high Arctic[J]. Applied Geochemistry, 2021, 131: 105002. |
[91] | SHERMAN L S, BLUM J D, JOHNSON K P, et al. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight[J]. Nature Geoscience, 2010, 3(3): 173-177. |
[92] | DOUGLAS T A, BLUM J D. Mercury isotopes reveal atmospheric gaseous mercury deposition directly to the Arctic coastal snowpack[J]. Environmental Science & Technology Letters, 2019, 6(4): 235-242. |
[93] | ZHENG W, OBRIST D, WEIS D, et al. Mercury isotope compositions across North American forests[J]. Global Biogeochemical Cycles, 2016, 30(10): 1475-1492. |
[94] | WANG X, LUO J, YIN R S, et al. Using mercury isotopes to understand mercury accumulation in the montane forest floor of the eastern Tibetan Plateau[J]. Environmental Science & Technology, 2017, 51(2): 801-809. |
[95] | MOYNIER F, JACKSON M G, ZHANG K, et al. The mercury isotopic composition of Earth’s mantle and the use of mass independently fractionated Hg to test for recycled crust[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094301. |
[96] | YIN R S, CHEN D, PAN X, et al. Mantle Hg isotopic heterogeneity and evidence of oceanic Hg recycling into the mantle[J]. Nature Communications, 2022, 13(1): 1-7. |
[97] | JISKRA M, WIEDERHOLD J G, SKYLLBERG U, et al. Mercury deposition and Re-emission pathways in boreal forest soils investigated with Hg isotope signatures[J]. Environmental Science & Technology, 2015, 49(12): 7188-7196. |
[98] | LIU N T, CAI X Y, JIA L Y, et al. Quantifying mercury distribution and source contribution in surface soil of Qinghai-Tibetan Plateau using mercury isotopes[J]. Environmental Science & Technology, 2023, 57(14): 5903-5912. |
[99] | BALDWIN A K, JANSSEN S E, TATE M T, et al. Mercury sources and budget for the Snake River above a hydroelectric reservoir complex[J]. Science of the Total Environment, 2024, 907: 167961. |
[100] | CHEN J B, HINTELMANN H, ZHENG W, et al. Isotopic evidence for distinct sources of mercury in lake waters and sediments[J]. Chemical Geology, 2016, 426: 33-44. |
[101] | 张媛媛. 大型人为干扰河流珠江中的汞及其稳定同位素地球化学研究[D]. 北京: 中国科学院大学, 2020. |
[102] | OUTRIDGE P M, MASON R P, WANG F, et al. Updated global and oceanic mercury budgets for the United Nations global mercury assessment 2018[J]. Environmental Science & Technology, 2018, 52(20): 11466-11477. |
[103] | SUN R Y, HINTELMANN H, WIKLUND J A, et al. Mercury isotope variations in lake sediment cores in response to direct mercury emissions from non-ferrous metal smelters and legacy mercury remobilization[J]. Environmental Science & Technology, 2022, 56(12): 8266-8277. |
[104] | RUDD J W M, KELLY C A, SELLERS P, et al. Why the English-Wabigoon river system is still polluted by mercury 57 years after its contamination[J]. Facets, 2021, 6: 2002-2027. |
[105] | LAFFONT L, SONKE J E, MAURICE L, et al. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury[J]. Environmental Science & Technology, 2011, 45(23): 9910-9916. |
[106] | SMITH R S, WIEDERHOLD J G, JEW A D, et al. Stable Hg isotope signatures in creek sediments impacted by a former Hg mine[J]. Environmental Science & Technology, 2015, 49(2): 767-776. |
[107] | FOUCHER D, HINTELMANN H, AL T A, et al. Mercury isotope fractionation in waters and sediments of the Murray Brook mine watershed (New Brunswick, Canada): tracing mercury contamination and transformation[J]. Chemical Geology, 2013, 336: 87-95. |
[108] | GAI K, HOELEN T P, HSU-KIM H, et al. Mobility of four common mercury species in model and natural unsaturated soils[J]. Environmental Science & Technology, 2016, 50(7): 3342-3351. |
[109] | 蔡虹明. 特定自然水环境过程中汞同位素分馏[D]. 北京: 中国科学院大学, 2016. |
[110] |
ZHENG W, HINTELMANN H. Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light[J]. Journal of Physical Chemistry A, 2010, 114(12): 4238-4245.
DOI PMID |
[111] | WASHBURN S J, BLUM J D, DONOVAN P M, et al. Isotopic evidence for mercury photoreduction and retention on particles in surface waters of central California, USA[J]. Science of the Total Environment, 2019, 674: 451-461. |
[112] | LAURIER F J G, COSSA D, GONZALEZ J L, et al. Mercury transformations and exchanges in a high turbidity estuary: the role of organic matter and amorphous oxyhydroxides[J]. Geochimica Et Cosmochimica Acta, 2003, 67(18): 3329-3345. |
[113] | 王丽娟. 工业污染海湾沉积物汞的来源和迁移转化的同位素示踪[D]. 天津: 天津大学, 2023. |
[114] | LIU Y L, CHEN J B, LIU J F, et al. Coprecipitation of mercury from natural iodine-containing seawater for accurate isotope measurement[J]. Analytical Chemistry, 2021, 93(48): 15905-15912. |
[115] | YIN R S, FENG X B, CHEN B W, et al. Identifying the sources and processes of mercury in subtropical estuarine and ocean sediments using Hg isotopic composition[J]. Environmental Science & Technology, 2015, 49(3): 1347-1355. |
[116] | MENG M, SUN R Y, LIU H W, et al. An integrated model for input and migration of mercury in Chinese coastal sediments[J]. Environmental Science & Technology, 2019, 53(5): 2460-2471. |
[117] | JUNG S, KWON S Y, LI M L, et al. Elucidating sources of mercury in the west coast of Korea and the Chinese marginal seas using mercury stable isotopes[J]. Science of the Total Environment, 2022, 814: 152598. |
[118] | LI M L, SCHARTUP A T, VALBERG A P, et al. Environmental origins of methylmercury accumulated in subarctic estuarine fish indicated by mercury stable isotopes[J]. Environmental Science & Technology, 2016, 50(21): 11559-11568. |
[119] | JANSSEN S E, KOTALIK C J, EAGLES-SMITH C A, et al. Mercury isotope values in shoreline spiders reveal the transfer of aquatic mercury sources to terrestrial food webs[J]. Environmental Science & Technology Letters, 2023, 10(10): 891-896. |
[120] | JISKRA M, HEIMBURGER-BOAVIDA L E, DESGRANGES M M, et al. Mercury stable isotopes constrain atmospheric sources to the ocean[J]. Nature, 2021, 597(7878): 678-682. |
[121] | HE M J, LV S P, YIN R S, et al. Continuous flow-double purge and trap method for preconcentrating mercury in large volumes of seawater for stable isotope analysis[J]. Analytical Chemistry, 2024, 96(7): 2767-2773. |
[122] | MOTTA L C, BLUM J D, JOHNSON M W, et al. Mercury cycling in the North Pacific subtropical gyre as revealed by mercury stable isotope ratios[J]. Global Biogeochemical Cycles, 2019, 33(6): 777-794. |
[123] | STROK M, BAYA P A, DIETRICH D, et al. Mercury speciation and mercury stable isotope composition in sediments from the Canadian Arctic Archipelago[J]. Science of the Total Environment, 2019, 671: 655-665. |
[124] | SUN R Y, JISKRA M, AMOS H M, et al. Modelling the mercury stable isotope distribution of Earth surface reservoirs: implications for global Hg cycling[J]. Geochimica Et Cosmochimica Acta, 2019, 246: 156-173. |
[125] | ZHENG W, FOUCHER D, HINTELMANN H. Mercury isotope fractionation during volatilization of Hg(0) from solution into the gas phase[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(9): 1097-1104. |
[126] | YANG S C, LI P, SUN K F, et al. Mercury isotope compositions in seawater and marine fish revealed the sources and processes of mercury in the food web within differing marine compartments[J]. Water Research, 2023, 241: 120150. |
[127] |
FENG X B, JIANG H M, QIU G L, et al. Geochemical processes of mercury in Wujiangdu and Dongfeng reservoirs, Guizhou, China[J]. Environmental Pollution, 2009, 157(11): 2970-2984.
DOI PMID |
[1] | CHEN Hongwei, ZHU Zhichao, LI Zhengzui, YU Weihou, ZHOU Hui, YU Shasha, PENG Xiangxun. Interaction between the river and groundwater in the Dongting Lake during extreme climate: Taking the Zijiang River segment in the Dongting Lake as an example [J]. Earth Science Frontiers, 2025, 32(2): 445-455. |
[2] | CHU Yanjia, HE Baonan, CHEN Zhen, HE Jiangtao. Research on identifying the outliers of the TDS in shallow groundwater based on the random forest model [J]. Earth Science Frontiers, 2025, 32(2): 456-468. |
[3] | WANG Wei, CHENG Xing, GAO Xubo, TIAN Zhenhuan, LIU Chunhua, WU Zhanhui, LI Chengcheng, KONG Shuqiong. The genesis of groundwater chemistry in Yellow River Delta: A case study of Gudao Town, Dongying City, Shandong Province [J]. Earth Science Frontiers, 2025, 32(2): 469-483. |
[4] | LIANG Wenxiang, LUO Zhen, CHEN Fulong, WANG Tongxia, AN Jie, LONG Aihua, HE Chaofei. Simulation and prediction of inland river runoff based on CMIP6 multi-model ensemble [J]. Earth Science Frontiers, 2024, 31(6): 450-461. |
[5] | ZHAO Zengfeng, WANG Chuyou, QIU Xiaocong, ZHOU Ruijuan, YANG Qiangqiang, ZHAO Ruizhi. Hydrochemical characteristics of surface water and genetic mechanism of high fluorine water in Qingshui River Basin in Ningxia [J]. Earth Science Frontiers, 2024, 31(6): 462-473. |
[6] | WU Qing, HUANG Fen, GUO Yongli, XIAO Qiong, SUN Ping’an, YANG Hui, BAI Bing. Geochemical characteristics of trace elements and their implications in the small karst basin, Southwest China [J]. Earth Science Frontiers, 2024, 31(5): 397-408. |
[7] | YUAN Yaqiong, SUN Ping’an, YU Shi, HE Shiyi. Fractionation of stable isotopes and the carbon-water cycle in Yangtze River [J]. Earth Science Frontiers, 2024, 31(5): 409-420. |
[8] | SUN Caiyun, ZHENG Bingqing, LI Jun, FU Hongming, SUN Rongqing, LIU Honghao, LIAO Zuying, JIANG Hongsheng, WU Zhenbin, XIA Shibin, WANG Pei. Study on the effect of submerged plants on the stability of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 430-439. |
[9] | TIAN Shujun, WEN Yuhang, WU Wenqia, LI Kai. Study on the migration rate of the slope-break knickpoints and the tectonic uplift history in the Minjiang River [J]. Earth Science Frontiers, 2024, 31(4): 314-325. |
[10] | TU Chunlin, HE Chengzhong, MA Yiqi, YIN Linhu, TAO Lanchu, YANG Minghua. Pollution Characteristics, Ecological risk and source apportionment of heavy metals in sediments of the Pearl River Basin [J]. Earth Science Frontiers, 2024, 31(3): 410-419. |
[11] | WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan [J]. Earth Science Frontiers, 2024, 31(2): 435-446. |
[12] | CHEN Wenlin, ZHENG Qiugen, HUANG Yiming, ZHANG Yi, LIN Changsong. Recover the Liyue Basin position in the southern margin of the South China Sea before seafloor spreading [J]. Earth Science Frontiers, 2023, 30(5): 420-429. |
[13] | XIE Yincai, YU Shi, MIAO Xiongyi, LI Jun, HE Shiyi, SUN Ping’an. Chemical weathering and its associated CO2 consumption on the Tibetan Plateau: A case of the Lhasa River Basin [J]. Earth Science Frontiers, 2023, 30(5): 510-525. |
[14] | CHEN Kang, DING Yongkang, ZHANG Xiaochen. Spatiotemporal dynamics and control factors of vegetation cover in the Fuyang River Basin based on geographical detector model [J]. Earth Science Frontiers, 2023, 30(5): 526-540. |
[15] | XIA Dunsheng, YANG Junhuai, WANG Shuyuan, LIU Xin, CHEN Zixuan, ZHAO Lai, NIU Xiaoyi, JIN Ming, GAO Fuyuan, LING Zhiyong, WANG Fei, LI Zaijun, WANG Xin, JIA Jia, YANG Shengli. Aeolian deposits in the Yarlung Zangbo River basin, southern Tibetan Plateau: Spatial distribution, depositional model and environmental impact [J]. Earth Science Frontiers, 2023, 30(4): 229-244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||