Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (5): 409-420.DOI: 10.13745/j.esf.sf.2024.2.8
Previous Articles Next Articles
YUAN Yaqiong1,2,3(), SUN Ping’an1,2,3,*(), YU Shi1,2,3, HE Shiyi1,2,3
Received:
2023-06-01
Revised:
2023-07-25
Online:
2024-09-25
Published:
2024-10-11
CLC Number:
YUAN Yaqiong, SUN Ping’an, YU Shi, HE Shiyi. Fractionation of stable isotopes and the carbon-water cycle in Yangtze River[J]. Earth Science Frontiers, 2024, 31(5): 409-420.
Fig.2 Distribution of δ18O-δD values in the Yangtze River (a) and hydrochemical characteristics of Dongting Lake (b), Ertan Reservoir (c), Geheyan Reservoir (d)
[1] | GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30. |
[2] | HINDSHAW R S, TIPPER E T, REYNOLDS B C, et al. Hydrological control of stream water chemistry in a glacial catchment (Damma Glacier, Switzerland)[J]. Chemical Geology, 2011, 285(1/2/3/4): 215-230. |
[3] | LI S Y, LU X X, HE M, et al. Major element chemistry in the Upper Yangtze River: a case study of the Longchuanjiang River[J]. Geomorphology, 2011, 129(1/2): 29-42. |
[4] | GAT J R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 1996, 24: 225-262. |
[5] | GIBSON J J, AGGARWAL P, HOGAN J, et al. Isotope studies in large river basins: a new global research focus[J]. Eos, Transactions American Geophysical Union, 2002, 83(52): 613-617. |
[6] | 刘丛强, 蒋颖魁, 陶发祥, 等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4): 404-414. |
[7] | 张连凯, 覃小群, 刘朋雨, 等. 硫酸参与的长江流域岩石化学风化与大气CO2消耗[J]. 地质学报, 2016, 90(8): 1933-1944. |
[8] |
SUN P A, HE S Y, YUAN Y Q, et al. Effects of aquatic phototrophs on seasonal hydrochemical, inorganic, and organic carbon variations in a typical Karst Basin, Southwest China[J]. Environmental Science and Pollution Research International, 2019, 26(32): 32836-32851.
DOI PMID |
[9] | WMO. WMO provisional statement on the state of the global climate in 2019[M]. Geneva: World Meteorological Organization, 2019: 35. |
[10] | 于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(4): 423-434. |
[11] | 袁道先. 碳循环与全球岩溶[J]. 第四纪研究, 1993, 13(1): 1-6. |
[12] | 刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶, 2000, 19(4): 293-300. |
[13] | 何师意, 康志强, 李清艳, 等. 高分辨率实时监测技术在岩溶碳汇估算中的应用: 以板寨地下河监测站为例[J]. 气候变化研究进展, 2011, 7(3): 157-161. |
[14] | MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428. |
[15] | GOMBERT P. Role of karstic dissolution in global carbon cycle[J]. Global and Planetary Change, 2002, 33(1/2): 177-184. |
[16] | LIU Z H, DREYBRODT W, WANG H J. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3/4): 162-172. |
[17] | MARTIN J B. Carbonate minerals in the global carbon cycle[J]. Chemical Geology, 2017, 449: 58-72. |
[18] | LI H W, WANG S J, BAI X Y, et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink[J]. Science of the Total Environment, 2018, 643: 157-170. |
[19] |
李朝君, 王世杰, 白晓永, 等. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7): 1319-1332.
DOI |
[20] |
CURL R L. Carbon shifted but not sequestered[J]. Science, 2012, 335(6069): 655.
DOI PMID |
[21] | LIU Z H, MACPHERSON G L, GROVES C, et al. Large and active CO2 uptake by coupled carbonate weathering[J]. Earth-Science Reviews, 2018, 182: 42-49. |
[22] | 刘彦, 张金流, 何媛媛, 等. 单生卵囊藻对DIC的利用及其对CaCO3沉积影响的研究[J]. 地球化学, 2010, 39(2): 191-196. |
[23] | ZHANG C, WANG J L, PU J B, et al. Bicarbonate daily variations in a karst river: the carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica (English Edition), 2012, 86(4): 973-979. |
[24] | 王培, 曹建华, 李亮, 等. 不同来源小球藻对岩溶水Ca2+、$\mathrm{HCO}_{3}^{-}$利用的初步研究[J]. 水生生物学报, 2013, 37(4): 626-631. |
[25] | 章程, 肖琼, 孙平安, 等. 岩溶碳循环及碳汇效应研究与展望[J]. 地质科技通报, 2022, 41(5): 190-198. |
[26] | 章程, 汪进良, 肖琼, 等. 斯洛文尼亚典型岩溶区土壤剖面CO2冬季动态变化特征[J]. 生态学报, 2022, 42(8): 3288-3299. |
[27] |
LIU Z H, GROVES C, YUAN D X, et al. South China karst aquifer storm-scale hydrochemistry[J]. Ground Water, 2004, 42(4): 491-499.
PMID |
[28] | 章程. 不同土地利用土下溶蚀速率季节差异及其影响因素: 以重庆金佛山为例[J]. 地质论评, 2010, 56(1): 136-140. |
[29] |
PU J B, LI J H, ZHANG T, et al. Diel-scale variation of dissolved inorganic carbon during a rainfall event in a small karst stream in southern China[J]. Environmental Science and Pollution Research International, 2019, 26(11): 11029-11041.
DOI PMID |
[30] | 原雅琼, 孙平安, 苏钊, 等. 岩溶流域洪水过程水化学动态变化及影响因素[J]. 环境科学, 2019, 40(11): 4889-4899. |
[31] | SUN P A, HE S Y, YU S, et al. Dynamics in riverine inorganic and organic carbon based on carbonate weathering coupled with aquatic photosynthesis in a karst catchment, Southwest China[J]. Water Research, 2021, 189: 116658. |
[32] | 孙婷婷. 长江流域水稳定同位素变化特征研究[D]. 南京: 河海大学, 2007. |
[33] | 陈新明, 甘义群, 刘运德, 等. 长江干流水体氢氧同位素空间分布特征[J]. 地质科技情报, 2011, 30(5): 110-114. |
[34] | 丁悌平, 高建飞, 石国钰, 等. 长江水氢、氧同位素组成的时空变化及其环境意义[J]. 地质学报, 2013, 87(5): 661-676. |
[35] | 杨守业, 王朔, 连尔刚, 等. 长江河水氢氧同位素组成示踪流域地表水循环[J]. 同济大学学报(自然科学版), 2021, 49(10): 1353-1362. |
[36] | 王亚平, 王岚, 许春雪, 等. 长江水系水文地球化学特征及主要离子的化学成因[J]. 地质通报, 2010, 29(2/3): 446-456. |
[37] | 张亚男, 甘义群, 李小倩, 等. 2013年长江丰水期河水化学特征及控制因素[J]. 长江流域资源与环境, 2016, 25(4): 645-654. |
[38] | 王琪, 于奭, 蒋萍萍, 等. 长江流域主要干/支流水化学特征及外源酸的影响[J]. 环境科学, 2021, 42(10): 4687-4697. |
[39] | 黄奇波, 覃小群, 刘朋雨, 等. 硫酸对乌江中上游段岩溶水化学及δ13CDIC 的影响[J]. 环境科学, 2015, 36(9): 3220-3229. |
[40] | 水利部水文局. 全国水情年报2016[R]. 北京: 水利部水文局, 2016: 70. |
[41] |
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
PMID |
[42] | LIU J R, SONG X F, YUAN G F, et al. Stable isotopic compositions of precipitation in China[J]. Tellus Series B Chemical and Physical Meteorology B, 2014, 66: 22567. |
[43] | 陈中笑, 程军, 郭品文, 等. 中国降水稳定同位素的分布特点及其影响因素[J]. 大气科学学报, 2010, 33(6): 667-679. |
[44] | LI S L, LIU C Q, LI J, et al. Assessment of the sources of nitrate in the Changjiang River, China using a nitrogen and oxygen isotopic approach[J]. Environmental Scienceand Technology, 2010, 44(5): 1573-1578. |
[45] | 蒲俊兵. 重庆岩溶地下水氢氧稳定同位素地球化学特征[J]. 地球学报, 2013, 34(6): 713-722. |
[46] | 尹观, 倪师军. 地下水氘过量参数的演化[J]. 矿物岩石地球化学通报, 2001, 20(4): 409-411. |
[47] | DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. |
[48] | MARFIA A M, KRISHNAMURTHY R V, ATEKWANA E A, et al. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, central America[J]. Applied Geochemistry, 2004, 19(6): 937-946. |
[49] | 张应华, 仵彦卿, 温小虎, 等. 环境同位素在水循环研究中的应用[J]. 水科学进展, 2006, 17(5): 738-747. |
[50] | 尹观, 倪师军, 张其春. 氘过量参数及其水文地质学意义: 以四川九寨沟和冶勒水文地质研究为例[J]. 成都理工学院学报, 2001, 28(3): 251-254. |
[51] | 许琦, 李建鸿, 孙平安, 等. 西江水氢氧同位素组成的空间变化及环境意义[J]. 环境科学, 2017, 38(6): 2308-2316. |
[52] | 李廷勇, 李红春, 沈川洲, 等. 2006—2008年重庆大气降水δD和δ18 O特征初步分析[J]. 水科学进展, 2010, 21(6): 757-764. |
[53] | 王婷, 高德强, 徐庆, 等. 三峡库区秭归段大气降水δD和δ18O特征及水汽来源[J]. 林业科学研究, 2020, 33(6): 88-95. |
[54] | 朱璇, 肖薇, 王晶苑, 等. 南京降水氢氧同位素监测特征[J]. 应用气象学报, 2022, 33(3): 353-363. |
[55] | SUN H G, HAN J T, ZHANG S R, et al. Carbon isotopic evidence for transformation of DIC to POC in the lower Xijiang River, SE China[J]. Quaternary International, 2015, 380: 288-296. |
[56] | PU J B, LI J H, KHADKA M B, et al. In-stream metabolism and atmospheric carbon sequestration in a groundwater-fed karst stream[J]. Science of the Total Environment, 2017, 579: 1343-1355. |
[57] | 曹建华, 周莉, 杨慧, 等. 桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3): 431-437. |
[58] | 彭建堂, 胡瑞忠. 湘中锡矿山超大型锑矿床的碳、氧同位素体系[J]. 地质论评, 2001, 47(1): 34-41. |
[59] | ZHANG J, QUAY P D, WILBUR D O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta, 1995, 59(1): 107-114. |
[60] | 杨德寿, 龚建明, 贺行良, 等. 青藏高原乌丽冻土区二氧化碳成因探讨[J]. 现代地质, 2013, 27(6): 1392-1398. |
[61] | 刘立新, 周凌唏, 夏玲君, 等. 气体稳定同位素比质谱法分析本底大气CO2的δ13C和δ18O[J]. 环境科学学报, 2012, 32(6): 1299-1305. |
[62] | 蒋忠诚, 袁道先, 曹建华, 等. 中国岩溶碳汇潜力研究[J]. 地球学报, 2012, 33(2): 129-134. |
[63] | YANG R, LIU Z H, ZENG C, et al. Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi, Puding, SW China[J]. Journal of Hydrology, 2012, 468: 151-158. |
[64] | ZHANG C, YUAN D X, CAO J H. Analysis of the environmental sensitivities of a typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China[J]. Environmental Geology, 2005, 47(5): 615-619. |
[65] | LIU Z H, LIU X L, LIAO C J. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool: insights from high time-resolution monitoring of physico-chemistry of water[J]. Environmental Geology, 2008, 55(6): 1159-1168. |
[1] | LIU Yuan-Zheng, MA Jin, MA Wen-Chao. The role of the Zipingpu reservoir in the generation of the Wenchuan earthquake. [J]. Earth Science Frontiers, 20140101, 21(1): 150-160. |
[2] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[3] | ZHAO Kan, SHEN Jian, CAI Yun, ZHAO Sumin. Insights into the root causes of difficulties in reinjection in sandstone geothermal reservoir and countermeasures [J]. Earth Science Frontiers, 2024, 31(6): 196-203. |
[4] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[5] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[6] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[7] | WANG Guiling, MA Feng, ZHANG Wei, ZHU Xi, YU Mingxiao, ZHANG Hanxiong, LUO Cheng. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area [J]. Earth Science Frontiers, 2024, 31(6): 52-66. |
[8] | DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks [J]. Earth Science Frontiers, 2024, 31(5): 1-16. |
[9] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[10] | YIN Shuai, ZHANG Ziyang, ZHANG Xingxing, WANG Jingchen, HU Wei, DING Wenlong, LI Hu. Fracture development mode in fan delta front unconventional tight oil reservoirs: A case study of Paleogene He-3 in southeastern Biyang Depression [J]. Earth Science Frontiers, 2024, 31(5): 139-155. |
[11] | PAN Lei, DU Hongquan, LI Leitao, LONG Tao, YIN Xuefeng. Fracture development characteristics and main controlling factors of natural fracture in the Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 156-165. |
[12] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[13] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
[14] | ZHAO Shengxian, LI Bo, CHEN Xin, LIU Wenping, ZHANG Chenglin, JI Chunhai, LIU Yongyang, LIU Dongchen, CAO lieyan, CHEN Yulong, LI Jiajun, LEI Yue, TAN Jingqiang. Structural differences of shale laminae and their controlling mechanisms in the Wufeng-Longmaxi Formations in Tiangongtang, southwestern Sichuan [J]. Earth Science Frontiers, 2024, 31(5): 75-88. |
[15] | HAN Pengyuan, DING Wenlong, YANG Debin, DENG Guangxiao, WANG Zhen, MA Hailong, LÜ Jing, GENG Tian. Characteristics and main controlling factors of fracture development in the Ordovician carbonate reservoir, Tahe oilfield [J]. Earth Science Frontiers, 2024, 31(5): 209-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||