Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (2): 290-310.DOI: 10.13745/j.esf.sf.2024.2.22
Previous Articles Next Articles
ZHU Ziguang1(), ZHU Guangyou2,*(
), LI Xi1
Received:
2023-12-13
Revised:
2024-02-29
Online:
2025-03-25
Published:
2025-03-25
CLC Number:
ZHU Ziguang, ZHU Guangyou, LI Xi. The enrichment mechanism of U element in black shale and its significant influence on the performance of organic matter oil and gas production[J]. Earth Science Frontiers, 2025, 32(2): 290-310.
Fig.1 Schematic diagram of U morphology of seawater system with Eh-Ph. Modified after [24]. (gray area represents minerals, white area represents dissolved uranyl complex)
富集类型 | 富集方式 | 富集机理 | 价态 | 实例 | 数据来源 |
---|---|---|---|---|---|
有机质 | 络合 | 有机化合物(富里酸和腐殖酸)和U络合形成稳定的化合物 | U(Ⅳ) U(Ⅵ) | 有机化合物的类型 环境的pH值 | 文献[ |
物理吸附 | 有机质本身作为一种良好的吸附剂将U吸附在其表面 | U(Ⅳ) U(Ⅵ) | 环境的pH值 | 文献[ | |
还原 | 有机质热演化过程中分解的H2S,CH4,H2和NH3等强还原物质 | U(Ⅵ) | 温度 | 文献[ | |
微生物 | 生物还原作用 | 微生物通过细胞色素、菌毛、电子穿梭体等介质向U传输电子 | U(Ⅵ) | 乙醇或乙酸盐浓度 环境金属离子浓度 | 文献[ |
生物吸附作用 | U被动且快速地吸附在微生物的表面 | U(Ⅳ) U(Ⅵ) | 环境pH和离子强度,环境 金属离子浓度,环境U浓度 | 文献[ | |
生物矿化作用 | U在微生物表面沉淀形成结晶或结晶结构 | U(Ⅵ) | 环境的pH值 | 文献[ | |
生物积聚作用 | 微生物主动摄取与微生物必需元素相近的金属元素 | U(Ⅳ) U(Ⅵ) | 环境pH值 碳酸盐碱度 | 文献[ | |
黏土矿物 | 吸附 | 黏土矿物的结构表面和颗粒边缘产生电荷对U产生吸附作用 | U(Ⅳ) U(Ⅵ) | 硫酸盐、碳酸盐、磷酸盐,黏土矿物的类型,环境金属离子浓度,腐殖酸;环境pH | 文献[ |
含铁矿物 | 吸附 | 含铁矿物本身作为一种良好的吸附剂将U吸附在其表面 | U(Ⅳ) U(Ⅵ) | 环境pH,碳酸盐浓度 | 文献[ |
还原 | 含铁矿物对U的还原主要通过Fe(Ⅱ)来完成 | U(Ⅵ) | 矿物的表面催化作用, 环境pH,可溶性的Fe(Ⅱ) | 文献[ | |
含硫矿物 | 吸附 | 含硫矿物表面不均匀吸附U | U(Ⅵ) | 环境pH、溶解性有机质 | 文献[ |
还原 | 含硫基团对U(Ⅵ)的还原 | U(Ⅵ) | 环境pH | 文献[ | |
含磷矿物 | 络合 | 磷酸盐和U形成稳定的络合物 | U(Ⅵ) | 环境pH,碳酸盐含量 | 文献[ |
Table 1 Methods and types of U enrichment of different components in black shale
富集类型 | 富集方式 | 富集机理 | 价态 | 实例 | 数据来源 |
---|---|---|---|---|---|
有机质 | 络合 | 有机化合物(富里酸和腐殖酸)和U络合形成稳定的化合物 | U(Ⅳ) U(Ⅵ) | 有机化合物的类型 环境的pH值 | 文献[ |
物理吸附 | 有机质本身作为一种良好的吸附剂将U吸附在其表面 | U(Ⅳ) U(Ⅵ) | 环境的pH值 | 文献[ | |
还原 | 有机质热演化过程中分解的H2S,CH4,H2和NH3等强还原物质 | U(Ⅵ) | 温度 | 文献[ | |
微生物 | 生物还原作用 | 微生物通过细胞色素、菌毛、电子穿梭体等介质向U传输电子 | U(Ⅵ) | 乙醇或乙酸盐浓度 环境金属离子浓度 | 文献[ |
生物吸附作用 | U被动且快速地吸附在微生物的表面 | U(Ⅳ) U(Ⅵ) | 环境pH和离子强度,环境 金属离子浓度,环境U浓度 | 文献[ | |
生物矿化作用 | U在微生物表面沉淀形成结晶或结晶结构 | U(Ⅵ) | 环境的pH值 | 文献[ | |
生物积聚作用 | 微生物主动摄取与微生物必需元素相近的金属元素 | U(Ⅳ) U(Ⅵ) | 环境pH值 碳酸盐碱度 | 文献[ | |
黏土矿物 | 吸附 | 黏土矿物的结构表面和颗粒边缘产生电荷对U产生吸附作用 | U(Ⅳ) U(Ⅵ) | 硫酸盐、碳酸盐、磷酸盐,黏土矿物的类型,环境金属离子浓度,腐殖酸;环境pH | 文献[ |
含铁矿物 | 吸附 | 含铁矿物本身作为一种良好的吸附剂将U吸附在其表面 | U(Ⅳ) U(Ⅵ) | 环境pH,碳酸盐浓度 | 文献[ |
还原 | 含铁矿物对U的还原主要通过Fe(Ⅱ)来完成 | U(Ⅵ) | 矿物的表面催化作用, 环境pH,可溶性的Fe(Ⅱ) | 文献[ | |
含硫矿物 | 吸附 | 含硫矿物表面不均匀吸附U | U(Ⅵ) | 环境pH、溶解性有机质 | 文献[ |
还原 | 含硫基团对U(Ⅵ)的还原 | U(Ⅵ) | 环境pH | 文献[ | |
含磷矿物 | 络合 | 磷酸盐和U形成稳定的络合物 | U(Ⅵ) | 环境pH,碳酸盐含量 | 文献[ |
[1] | SWANSON V E. Uranium in marine black shales of the United States[C]// Proc. Geneva Conference on peaceful uses of Atomic Energy, 1956, 6: 430-434. |
[2] | LEWAN M D, BUCHARDT B. Irradiation of organic matter by uranium decay in the Alum Shale, Sweden[J]. Geochimica et Cosmochimica Acta, 1989, 53(6): 1307-1322. |
[3] | LEV S M, FILER J K. Assessing the impact of black shale processes on REE and the U-Pb isotope system in the southern Appalachian Basin[J]. Chemical Geology, 2004, 206(3/4): 393-406. |
[4] | FISHER Q J, WIGNALL P B. Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata; England[J]. Chemical Geology, 2001, 175(3/4): 605-621. |
[5] |
GALINDO C, MOUGIN L, FAKHI S, et al. Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco)[J]. Journal of Environmental Radioactivity, 2007, 92(1): 41-54.
PMID |
[6] | YANG H, ZHANG W Z, WU K, et al. Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation, Erdos Basin, China[J]. Journal of Asian Earth Sciences, 2010, 39(4): 285-293. |
[7] |
朱光有, 赵坤, 李婷婷, 等. 中国华南地区下寒武统烃源岩沉积环境、发育模式与分布预测[J]. 石油学报, 2020, 41(12): 1567-1586.
DOI |
[8] | DISNAR J R, SUREAU J F. Organic matter in ore genesis: progress and perspectives[J]. Organic Geochemistry, 1990, 16(1/2/3): 577-599. |
[9] | WEI X F. Causes of high U and characteristics of hot shale at Longmaxi Formation in the Sichuan Basin and surrounding areas[J]. Reservoir Evaluation and Development, 2017, 7(3): 59-66. |
[10] | REGENSPURG S, MARGOT-ROQUIER C, HARFOUCHE M, et al. Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland)[J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2082-2098. |
[11] | MEUNIER J D, TROUILLER A, BRULHERT J, et al. Uranium and organic matter in a paleodeltaic environment; the Coutras Deposit (Gironde, France)[J]. Economic Geology, 1989, 84(6): 1541-1556. |
[12] | LENHART J J, CABANISS S E, MACCARTHY P, et al. Uranium(VI) complexation with citric, humic and fulvic acids[J]. Radiochimica Acta, 2000, 88(6): 345-354. |
[13] | NEWSOME L, MORRIS K, LLOYD J R. The biogeochemistry and bioremediation of uranium and other priority radionuclides[J]. Chemical Geology, 2014, 363: 164-184. |
[14] | BACHMAF S, MERKEL B J. Sorption of uranium(VI) at the clay mineral-water interface[J]. Environmental Earth Sciences, 2011, 63(5): 925-934. |
[15] | CHAKRABORTY S, FAVRE F, BANERJEE D, et al. U(Ⅵ) sorption and reduction by Fe(II) sorbed on montmorillonite[J]. Environmental Science and Technology, 2010, 44(10): 3779-3785. |
[16] | GOLDHABER M B, HEMINGWAY B S, MOHAGHEGHI A, et al. Origin of coffinite in sedimentary rocks by a sequential adsorption-reduction mechanism[J]. Bulletin de Minéralogie, 1987, 110(2): 131-144. |
[17] | XU J, ZHU S Y, LUO T Y, et al. Uranium mineralization and its radioactive decay-induced carbonization in a black shale-hosted polymetallic sulfide ore layer, southwest China[J]. Economic Geology, 2015, 110(6): 1643-1652. |
[18] | LEWAN M D, ULMISHEK G F, HARRISON W, et al. Gamma 60Co-irradiation of organic matter in the phosphoria retort shale[J]. Geochimica et Cosmochimica Acta, 1991, 55(4): 1051-1063. |
[19] | WANG W Q, LIU C Y, LIU W H, et al. Dominant products and reactions during organic matter radiolysis: implications for hydrocarbon generation of uranium-rich shales[J]. Marine and Petroleum Geology, 2022, 137: 105497. |
[20] | YANG S Y, SCHULZ H, HORSFIELD B, et al. On the changing petroleum generation properties of Alum Shale over geological time caused by uranium irradiation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 20-35. |
[21] | SILVA R C, SNOWDON L R, HUANG H P, et al. Radiolysis as a source of 13C depleted natural gases in the geosphere[J]. Organic Geochemistry, 2019, 138: 103911. |
[22] | YIN M S, SNOWDON L R, SILVA R C, et al. Impacts of natural irradiation on sedimentary organic matter-a review[J]. Organic Geochemistry, 2023, 180: 104602. |
[23] |
李茜, 朱光有, 李婷婷, 等. U同位素分馏行为及其在环境地球科学中的应用研究进展[J]. 地学前缘, 2024, 31(2): 447-471.
DOI |
[24] | CUMBERLAND S A, DOUGLAS G, GRICE K, et al. Uranium mobility in organic matter-rich sediments: a review of geological and geochemical processes[J]. Earth-Science Reviews, 2016, 159: 160-185. |
[25] | FERRONSKIİ V I, POL$\overset\frown{\text{IA}}$KOV V A. Isotopes of the Earth’s hydrosphere[M]. Dordrecht: Springer, 2012. |
[26] | LANGMUIR D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits[J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 547-569. |
[27] | JANG J H, DEMPSEY B A, BURGOS W D. Solubility of schoepite: comparison and selection of complexation constants for U(Ⅵ)[J]. Water Research, 2006, 40(14): 2738-2746. |
[28] |
BANNING A, DEMMEL T, RÜDE T R, et al. Groundwater uranium origin and fate control in a river valley aquifer[J]. Environmental Science and Technology, 2013, 47(24): 13941-13948.
DOI PMID |
[29] | GORMAN-LEWIS D, BURNS P C, FEIN J B. Review of uranyl mineral solubility measurements[J]. The Journal of Chemical Thermodynamics, 2008, 40(3): 335-352. |
[30] | REILLER P E, VERCOUTER T, DURO L, et al. Thermodynamic data provided through the FUNMIG project: analyses and prospective[J]. Applied Geochemistry, 2012, 27(2): 414-426. |
[31] |
VAZQUEZ G J, DODGE C J, FRANCIS A J. Interactions of uranium with polyphosphate[J]. Chemosphere, 2007, 70(2): 263-269.
PMID |
[32] |
MAHER K, BARGAR J R, BROWN G E Jr. Environmental speciation of actinides[J]. Inorganic Chemistry, 2013, 52(7): 3510-3532.
DOI PMID |
[33] | HOSTETLER P B, GARRELS R M. Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone-type uranium deposits[J]. Economic Geology, 1962, 57(2): 137-167. |
[34] | WANG Z M, ULRICH K U, PAN C, et al. Measurement and modeling of U(Ⅳ) adsorption to metal oxide minerals[J]. Environmental Science and Technology Letters, 2015, 2(8): 227-232. |
[35] | ALESSI D S, LEZAMA-PACHECO J S, JANOT N, et al. Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer[J]. Environmental Science and Technology, 2014, 48(21): 12842-12850. |
[36] | BERNIER-LATMANI R, VEERAMANI H, DALLA VECCHIA E, et al. Non-uraninite products of microbial U(Ⅵ) reduction[J]. Environmental Science and Technology, 2010, 44(24): 9456-9462. |
[37] | STYLO M, ALESSI D S, SHAO P P, et al. Biogeochemical controls on the product of microbial U(Ⅵ) reduction[J]. Environmental Science and Technology, 2013, 47(21): 12351-12358. |
[38] |
BONE S E, DYNES J J, CLIFF J, et al. Uranium(IV) adsorption by natural organic matter in anoxic sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(4): 711-716.
DOI PMID |
[39] | CROUÉ J P. Isolation of humic and non-humic NOM fractions: structural characterization[J]. Environmental Monitoring and Assessment, 2004, 92(1): 193-207. |
[40] | JOSEPH C, VAN LOON L R, JAKOB A, et al. Diffusion of U(Ⅵ) in opalinus clay: influence of temperature and humic acid[J]. Geochimica et Cosmochimica Acta, 2013, 109: 74-89. |
[41] | LI P C, XU Z Q, WANG Y, et al. The relationships between uranium mineralization and organic matter in 373 uranium deposit[J]. Advanced Materials Research, 2014, 962/963/964/965: 203-207. |
[42] | MIN M Z, MENG Z W, SHENG G Y, et al. Organic geochemistry of paleokarst-hosted uranium deposits, South China[J]. Journal of Geochemical Exploration, 2000, 68(3): 211-229. |
[43] | SPIRAKIS C S. The roles of organic matter in the formation of uranium deposits in sedimentary rocks[J]. Ore Geology Reviews, 1996, 11(1/2/3): 53-69. |
[44] | WARWICK P, EVANS N, HALL A, et al. Stability constants of U(Ⅵ) and U(Ⅳ)-humic acid complexes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 266(2): 179-190. |
[45] | REIMOLD W U, GIBSON R L. Processes on the early Earth[M]. Boulder, Colo.: Geological Society of America, 2006. |
[46] | MANAKA M, SEKI Y, OKUZAWA K, et al. Uranium sorption onto natural sediments within a small stream in central Japan[J]. Limnology, 2008, 9(3): 173-183. |
[47] |
TINNACHER R M, NICO P S, DAVIS J A, et al. Effects of fulvic acid on uranium(VI) sorption kinetics[J]. Environmental Science and Technology, 2013, 47(12): 6214-6222.
DOI PMID |
[48] | WILLIAMS K H, LONG P E, DAVIS J A, et al. Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater[J]. Geomicrobiology Journal, 2011, 28(5/6): 519-539. |
[49] | LOVLEY D R, PHILLIPS E J P, GORBY Y A, et al. Microbial reduction of uranium[J]. Nature, 1991, 350: 413-416. |
[50] | SUZUKI Y, KELLY S D, KEMNER K M, et al. Nanometre-size products of uranium bioreduction[J]. Nature, 2002, 419(6903): 134. |
[51] |
RICHTER K, SCHICKLBERGER M, GESCHER J. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration[J]. Applied and Environmental Microbiology, 2012, 78(4): 913-921.
DOI PMID |
[52] |
LLOYD JON R, CHING L, HODGES MYERSON ALLISON L, et al. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens[J]. Biochemical Journal, 2003, 369(Pt 1): 153-161.
PMID |
[53] | SHELOBOLINA E S, COPPI M V, KORENEVSKY A A, et al. Importance of c-Type cytochromes for U(Ⅵ) reduction by Geobacter sulfurreducens[J]. BMC Microbiology, 2007, 7(1): 16. |
[54] | LEANG C, QIAN X L, MESTER T, et al. Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens[J]. Applied and Environmental Microbiology, 2010, 76(12): 4080-4084. |
[55] | COLOGGI D L, LAMPA-PASTIRK S, SPEERS A M, et al. Extracellular reduction of uranium via Geobacterconductive pili as a protective cellular mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): 15248-15252. |
[56] | ORELLANA R, LEAVITT J J, COMOLLI L R, et al. U(Ⅵ) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens[J]. Applied and Environmental Microbiology, 2013, 79(20): 6369-6374. |
[57] |
HARALD V C, JUN O, SAKAYU S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer[J]. Applied and Environmental Microbiology, 2008, 74(3): 615-623.
DOI PMID |
[58] | TURICK C E, TISA L S, CACCAVO F Jr. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY[J]. Applied and Environmental Microbiology, 2002, 68(5): 2436-2444. |
[59] | LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590): 445-448. |
[60] | LOVLEY D R. Environmental microbe-metal interactions[M]. Washington: ASM Press, 2014. |
[61] | ALESSI D S, LEZAMA-PACHECO J S, STUBBS J E, et al. The product of microbial uranium reduction includes multiple species with U(Ⅳ)-phosphate coordination[J]. Geochimica et Cosmochimica Acta, 2014, 131: 115-127. |
[62] | BARGAR J R, WILLIAMS K H, CAMPBELL K M, et al. Uranium redox transition pathways in acetate-amended sediments[J]. Proceedings of the National Academy of Science, 2013, 110(12): 4506-4511. |
[63] | ULRICH K U, VEERAMANI H, BERNIER-LATMANI R, et al. Speciation-dependent kinetics of uranium(VI) bioreduction[J]. Geomicrobiology Journal, 2011, 28(5/6): 396-409. |
[64] | PLETTE A C C, BENEDETTI M F, VAN RIEMSDIJK W H. Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a gram-positive soil bacterium[J]. Environmental Science and Technology, 1996, 30(6): 1902-1910. |
[65] | STEWART B D, AMOS R T, NICO P S, et al. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions[J]. Geomicrobiology Journal, 2011, 28(5/6): 444-456. |
[66] | OZAKI T, KIMURA T, OHNUKI T, et al. Associations of Eu (III) with Gram-Negative Bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans[J]. Journal of Nuclear and Radiochemical Sciences, 2005, 6(1): 73-76. |
[67] | SCHIEWER S, VOLESKY B. Biosorption processes for heavy metal removal[M]// LOVLEY D R. Environmental Microbe-Metal Interactions. Washington: ASM Press, 2014: 329-362. |
[68] |
TSURUTA T. Removal and recovery of uranyl ion using various microorganisms[J]. Journal of Bioscience and Bioengineering, 2002, 94(1): 23-28.
PMID |
[69] |
TSURUTA T. Adsorption of uranium from acidic solution by microbes and effect of thorium on uranium adsorption by Streptomyces levoris[J]. Journal of Bioscience and Bioengineering, 2004, 97(4): 275-277.
PMID |
[70] | BYERLEY J J, SCHARER J M, CHARLES A M. Uranium (VI) biosorption from process solutions[J]. The Chemical Engineering Journal, 1987, 36(3): B49-B59. |
[71] |
SUZUKI Y, KELLY S D, KEMNER K M, et al. Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment[J]. Applied and Environmental Microbiology, 2005, 71(4): 1790-1797.
PMID |
[72] | MIN M Z, XU H F, CHEN J, et al. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China[J]. Ore Geology Reviews, 2005, 26(3/4): 198-206. |
[73] | MONDANI L, BENZERARA K, CARRIÈRE M, et al. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls[J]. PLoS One, 2011, 6(10): e25771. |
[74] | SALOME K R, GREEN S J, BEAZLEY M J, et al. The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals[J]. Geochimica et Cosmochimica Acta, 2013, 106: 344-363. |
[75] |
MACASKIE L E, EMPSON R M, CHEETHAM A K, et al. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4[J]. Science, 1992, 257(5071): 782-784.
PMID |
[76] | MACASKIE L E, BONTHRONE K M, YONG P, et al. Enzymically mediated bioprecipitation of uranium by a citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation[J]. Microbiology, 2000, 146(8): 1855-1867. |
[77] | BEAZLEY M J, MARTINEZ R J, WEBB S M, et al. The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils[J]. Geochimica et Cosmochimica Acta, 2011, 75(19): 5648-5663. |
[78] | ACHARYA C, APTE S K. Insights into the interactions of cyanobacteria with uranium[J]. Photosynthesis Research, 2013, 118(1): 83-94. |
[79] |
FOMINA M, CHARNOCK J M, HILLIER S, et al. Fungal transformations of uranium oxides[J]. Environmental Microbiology, 2007, 9(7): 1696-1710.
PMID |
[80] | DUFF M C, AMRHEIN C, BERTSCH P M, et al. The chemistry of uranium in evaporation pond sediment in the San Joaquin valley, California, USA, using X-ray fluorescence and XANES techniques[J]. Geochimica et Cosmochimica Acta, 1997, 61(1): 73-81. |
[81] | BACHMAF S, PLANER-FRIEDRICH B, MERKEL B J. Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite[J]. Radiochimica Acta, 2008, 96(6): 359-366. |
[82] | LIN Z, PULS R W. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process[J]. Environmental Geology, 2000, 39(7): 753-759. |
[83] | GRABIAS E, GŁADYSZ-PŁASKA A, KSIĄŻEK A, et al. Efficient uranium immobilization on red clay with phosphates[J]. Environmental Chemistry Letters, 2014, 12(2): 297-301. |
[84] | GŁADYSZ-PŁASKA A, GRABIAS E, MAJDAN M. Simultaneous adsorption of uranium(VI) and phosphate on red clay[J]. Progress in Nuclear Energy, 2018, 104: 150-159. |
[85] | BENEŠ P, KRATZER K, VLČKOVÁ, et al. Adsorption of uranium on clay and the effect of humic substances[J]. Radiochimica Acta, 1998, 82(s1): 367-374. |
[86] | JOSEPH C, SCHMEIDE K, SACHS S, et al. Sorption of uranium(VI) onto Opalinus Clay in the absence and presence of humic acid in Opalinus Clay pore water[J]. Chemical Geology, 2011, 284(3/4): 240-250. |
[87] | TOBILKO V, SPASONOVA L, KOVALCHUK I, et al. Adsorption of uranium (VI) from aqueous solutions by amino-functionalized clay minerals[J]. Colloids and Interfaces, 2019, 3(1): 41. |
[88] | WAITE T D, DAVIS J A, PAYNE T E, et al. Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model[J]. Geochimica et Cosmochimica Acta, 1994, 58(24): 5465-5478. |
[89] |
WAZNE M, KORFIATIS G P, MENG X G. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide[J]. Environmental Science and Technology, 2003, 37(16): 3619-3624.
PMID |
[90] | LATTA D E, BOYANOV M I, KEMNER K M, et al. Abiotic reduction of uranium by Fe(II) in soil[J]. Applied Geochemistry, 2012, 27(8): 1512-1524. |
[91] | HIEMSTRA T, VAN RIEMSDIJK W H, ROSSBERG A, et al. A surface structural model for ferrihydrite II: adsorption of uranyl and carbonate[J]. Geochimica et Cosmochimica Acta, 2009, 73(15): 4437-4451. |
[92] | MASSEY M S, LEZAMA-PACHECO J S, JONES M E, et al. Competing retention pathways of uranium upon reaction with Fe(II)[J]. Geochimica et Cosmochimica Acta, 2014, 142: 166-185. |
[93] | LIGER E, CHARLET L, CAPPELLEN P. Surface catalysis of uranium(VI) reduction by iron(II)[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 2939-2955. |
[94] | BOYANOV M I, O’LOUGHLIN E J, RODEN E E, et al. Adsorption of FeII and U(Ⅵ) to carboxyl-functionalized microspheres: the influence of speciation on uranyl reduction studied by titration and XAFS[J]. Geochimica et Cosmochimica Acta, 2007, 71(8): 1898-1912. |
[95] | O’LOUGHLIN E J, KELLY S D, COOK R E, et al. Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles[J]. Environmental Science and Technology, 2003, 37(4): 721-727. |
[96] | SCOTT T B, ALLEN G C, HEARD P J, et al. Reduction of U(Ⅵ) to U(Ⅳ) on the surface of magnetite[J]. Geochimica et Cosmochimica Acta, 2005, 69(24): 5639-5646. |
[97] | EL AAMRANI S, GIMÉNEZ J, ROVIRA M, et al. A spectroscopic study of uranium(VI) interaction with magnetite[J]. Applied Surface Science, 2007, 253(21): 8794-8797. |
[98] | VEERAMANI H, ALESSI D S, SUVOROVA E I, et al. Products of abiotic U(Ⅵ) reduction by biogenic magnetite and vivianite[J]. Geochimica et Cosmochimica Acta, 2011, 75(9): 2512-2528. |
[99] | DUFF M C, COUGHLIN J U, HUNTER D B. Uranium co-precipitation with iron oxide minerals[J]. Geochimica et Cosmochimica Acta, 2002, 66(20): 3533-3547. |
[100] | ILTON E S, PACHECO J S L, BARGAR J R, et al. Reduction of U(Ⅵ) incorporated in the structure of hematite[J]. Environmental Science and Technology, 2012, 46(17): 9428-9436. |
[101] |
MARSHALL T A, MORRIS K, LAW G T W, et al. Incorporation of uranium into hematite during crystallization from ferrihydrite[J]. Environmental Science and Technology, 2014, 48(7): 3724-3731.
DOI PMID |
[102] | BOLAND D D, COLLINS R N, PAYNE T E, et al. Effect of amorphous Fe(III) oxide transformation on the Fe(II)-mediated reduction of U(Ⅵ)[J]. Environmental Science and Technology, 2011, 45(4): 1327-1333. |
[103] |
STEWART B D, NICO P S, FENDORF S. Stability of uranium incorporated into Fe (hydr)oxides under fluctuating redox conditions[J]. Environmental Science and Technology, 2009, 43(13): 4922-4927.
PMID |
[104] | DONG H L, ZENG Q, SHENG Y Z, et al. Coupled iron cycling and organic matter transformation across redox interfaces[J]. Nature Reviews Earth and Environment, 2023, 4(9): 659-673. |
[105] | WERSIN P, HOCHELLA M F, PERSSON P, et al. Interaction between aqueous uranium (VI) and sulfide minerals: spectroscopic evidence for sorption and reduction[J]. Geochimica et Cosmochimica Acta, 1994, 58(13): 2829-2843. |
[106] | DESCOSTES M, SCHLEGEL M L, EGLIZAUD N, et al. Uptake of uranium and trace elements in pyrite (FeS2) suspensions[J]. Geochimica et Cosmochimica Acta, 2010, 74(5): 1551-1562. |
[107] |
BRUGGEMAN C, MAES N. Uptake of uranium(VI) by pyrite under boom clay conditions: influence of dissolved organic carbon[J]. Environmental Science and Technology, 2010, 44(11): 4210-4216.
DOI PMID |
[108] | MOYES L N, PARKMAN R H, CHARNOCK J M, et al. Uranium uptake from aqueous solution by interaction with goethite, lepidocrocite, muscovite, and mackinawite: an X-ray absorption spectroscopy study[J]. Environmental Science and Technology, 2000, 34(6): 1062-1068. |
[109] |
HUA B, DENG B. Reductive immobilization of uranium(VI) by amorphous iron sulfide[J]. Environmental Science and Technology, 2008, 42(23): 8703-8708.
PMID |
[110] |
AREY J S, SEAMAN J C, BERTSCH P M. Immobilization of uranium in contaminated sediments by hydroxyapatite addition[J]. Environmental Science and Technology, 1999, 33(2): 337-342.
DOI PMID |
[111] | MILLS, BIRCH, MAAS, et al. Lake boga granite, northwestern victoria: mineralogy, geochemistry and geochronology[J]. Australian Journal of Earth Sciences, 2008, 55(3): 281-299. |
[112] | FINCH R, MURAKAMI T. Systematics and paragenesis of uranium minerals[M]//Uranium. Berlin: De Gruyter, 1999: 91-180. |
[113] | MEHTA V S, MAILLOT F, WANG Z M, et al. Effect of co-solutes on the products and solubility of uranium(VI) precipitated with phosphate[J]. Chemical Geology, 2014, 364: 66-75. |
[114] |
ZHOU P, GU B. Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH[J]. Environmental science and technology, 2005, 39(12): 4435-4440.
PMID |
[115] | BUCK E C, BROWN N R, DIETZ N L. Contaminant uranium phases and leaching at the fernald site in Ohio[J]. Environmental Science and Technology, 1996, 30(1): 81-88. |
[116] | SINGH A, ULRICH K U, GIAMMAR D E. Impact of phosphate on U(Ⅵ) immobilization in the presence of goethite[J]. Geochimica et Cosmochimica Acta, 2010, 74(22): 6324-6343. |
[117] | BERRY W, WILDE P, QUINBY-HUNT M, et al. Trace element signatures in Dictyonema Shales and their geochemical and stratigraphic significance[J]. Norsk Geol. Tidsskr, 1986, 66: 45-51. |
[118] | LEVENTHAL J S. Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States[J]. Mineralium Deposita, 1991, 26(2): 104-112. |
[119] | SCHOVSBO N H. Uranium enrichment shorewards in black shales: a case study from the Scandinavian Alum Shale[J]. Gff, 2002, 124(2): 107-115. |
[120] | DOVETON J H, MERRIAM D F. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface[J]. Chemical Geology, 2004, 206(3/4): 249-258. |
[121] | YANG S Y, SCHULZ H M, SCHOVSBO N, et al. The organic geochemistry of “Kolm”, a unique analogue for the understanding of molecular changes after significant uranium irradiation[J]. International Journal of Coal Geology, 2019, 209: 89-93. |
[122] | SCHULZ H M, YANG S Y, PANOVA E, et al. The role of Pleistocene meltwater-controlled uranium leaching in assessing irradiation-induced alteration of organic matter and petroleum potential in the Tremadocian Koporie Formation (Western Russia)[J]. Geochimica et Cosmochimica Acta, 2019, 245: 133-153. |
[123] | 曾天柱. 碳硅泥岩型铀矿成矿特征、形成机理及找矿前景的讨论[J]. 铀矿地质, 2002, 18(1): 46-51. |
[124] | 张本浩, 吴柏林, 刘池阳, 等. 鄂尔多斯盆地延长组长7富铀烃源岩铀的赋存状态[J]. 西北地质, 2011, 44(2): 124-132. |
[125] | BAILEY D L, HUMM J L, TODD-POKROPEK A, et al. Nuclear medicine physics: a handbook for teachers and students[J]. Medical Physics, 2014, 38(8): 766. |
[126] | LARTER S, SILVA R C, MARCANO N, et al. The dating of petroleum fluid residence time in subsurface reservoirs. Part 1: a radiolysis-based geochemical toolbox[J]. Geochimica et Cosmochimica Acta, 2019, 261: 305-326. |
[127] | COURT R W, SEPHTON M A, PARNELL J, et al. The alteration of organic matter in response to ionising irradiation: chemical trends and implications for extraterrestrial sample analysis[J]. Geochimica et Cosmochimica Acta, 2006, 70(4): 1020-1039. |
[128] | CHARLESBY A. The cross-linking and degradation of paraffin chains by high-energy radiation[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1954, 222(1148): 60-74. |
[129] | DEWHURST H A. Radiation chemistry of organic compounds. I. n-alkane liquids[J]. The Journal of Physical Chemistry, 1957, 61(11): 1466-1471. |
[130] | WANG H J, ZHAO W Z, CAI Y W, et al. Oil generation from the immature organic matter after artificial neutron irradiation[J]. Energy and Fuels, 2020, 34(2): 1276-1287. |
[131] | WANG H J, ZHAO W Z, CAI Y W, et al. Irradiation caused petroleum generation: evidence from simulation experiments at room temperature[J]. IOP Conference Series: Earth and Environmental Science, 2019, 360(1): 012037. |
[132] | ZHENG X W, SCHOVSBO N H, BIAN L B, et al. Alteration of organic macerals by uranium irradiation in lower Paleozoic marine shales[J]. International Journal of Coal Geology, 2021, 239: 103713. |
[133] | MOSSMAN D J, GAUTHIER-LAFAYE F, JACKSON S E. Carbonaceous substances associated with the Paleoproterozoic natural nuclear fission reactors of Oklo, Gabon: paragenesis, thermal maturation and carbon isotopic and trace element compositions[J]. Precambrian Research, 2001, 106(1/2): 135-148. |
[134] | YANG S Y, HORSFIELD B. Some predicted effects of minerals on the generation of petroleum in nature[J]. Energy and Fuels, 2016, 30(8): 6677-6687. |
[135] | FROLOV E, SMIRNOV M, MELIKHOV V, et al. Olefins of radiogenic origin in crude oils[J]. Organic Geochemistry, 1998, 29(1): 409-420. |
[136] | ZHAO J, TU K Y, LIU Y L, et al. Photo-controlled aptamers delivery by dual surface gold-magnetic nanoparticles for targeted cancer therapy[J]. Materials Science and Engineering: C, 2017, 80: 88-92. |
[137] | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 481-538. |
[138] | BROWN A A. PS formation of high helium gases: a guide for explorationists[C]// AAPG Convention. New Orleans: AAPG. 2010, 80115. |
[139] |
赵栋, 王晓锋, 刘文汇, 等. 壳源富氦天然气藏潜在氦源岩主要特征及有效性分析[J]. 天然气地球科学, 2024, 35(3): 507-517.
DOI |
[140] | 陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]: 地球科学, 2019, 44(3): 1024-1041. |
[141] | PENG W L, LIU Q Y, ZHANG Y, et al. The first extra-large helium-rich gas field identified in a tight sandstone of the Dongsheng Gas Field, Ordos Basin, China[J]. Science China Earth Sciences, 2022, 65(5): 874-881. |
[142] | MAIONE S J. Helium exploration-A 21st century challenge[J], Houston Geological Society Bulletin, 2004, 46(4): 27-28. |
[143] | WANG H J, ZHAO W Z, CAI Y W, et al. Irradiation caused gas generation from organic matter: evidence from the neutron irradiation experiment[J]. IOP Conference Series: Earth and Environmental Science, 2020, 569(1): 012090. |
[144] | LE GUILLOU C, REMUSAT L, BERNARD S, et al. Amorphization and D/H fractionation of kerogens during experimental electron irradiation: comparison with chondritic organic matter[J]. Icarus, 2013, 226(1): 101-110. |
[145] | WANG W Q, LIU C Y, ZHANG D D, et al. Radioactive genesis of hydrogen gas under geological conditions: an experimental study[J]. Acta Geologica Sinica - English Edition, 2019, 93(4): 1125-1134. |
[146] | WANG W Q, LIU C Y, LIU W H, et al. Factors influencing hydrogen yield in water radiolysis and implications for hydrocarbon generation: a review[J]. Arabian Journal of Geosciences, 2018, 11(18): 542. |
[147] | 毛光周, 刘池洋, 张东东, 等. 铀对(Ⅱ型)低熟烃源岩生烃演化的影响[J]. 地质学报, 2012, 86(11): 1833-1840. |
[148] | ZHANG F, JIAO Y Q, WU L Q, et al. Changes in physicochemical properties of organic matter by uranium irradiation: a case study from the Ordos Basin in China[J]. Journal of Environmental Radioactivity, 2020, 211: 106105. |
[149] | SASSEN R. Effects of radiation exposure on indicators of thermal maturity[J]. Organic Geochemistry, 1984, 5(4): 183-186. |
[150] | CLAXTON M J, PATIENCE R L, PARK P J D, et al. Molecular modelling of bond energies in potential kerogen sub-units[J]. Organic Geochemistry, 1993: 198-201. |
[151] | DAHL J, HALLBERG R, KAPLAN I R. The effects of radioactive decay of uranium on elemental and isotopic ratios of Alum shale kerogen[J]. Applied Geochemistry, 1988, 3(6): 583-589. |
[1] | ZHANG Yifan, LIU Haiyan, DONG Shu, GUO Huaming, WANG Zhen, SUN Zhanxue, ZHOU Zhongkui. Geochemical characteristics of rare earth elements in acid mine drainage and sediments from the Xiangshan uranium mine tailings area [J]. Earth Science Frontiers, 2025, 32(2): 412-429. |
[2] | DONG Shu, LIU Haiyan, ZHANG Yifan, WANG Zhen, GUO Huaming, SUN Zhanxue, ZHOU Zhongkui. Bioaccumulation of rare earth elements, uranium and thorium in plant-rhizosphere soil in Xiangshan uranium tailings areas [J]. Earth Science Frontiers, 2024, 31(6): 474-489. |
[3] | HUANG Siyu, PU Junbing, PAN Moucheng, LI Jianhong, ZHANG Tao. Effects of algae-derived organic matter source on sediment mineralization in the karst reservoir [J]. Earth Science Frontiers, 2024, 31(5): 387-396. |
[4] | DOU Lirong, HUANG Wensong, KONG Xiangwen, WANG Ping, ZHAO Zibin. Hydrocarbon enrichment mechanism of Duvernay marine shale in the Western Canada Basin [J]. Earth Science Frontiers, 2024, 31(4): 191-205. |
[5] | ZHANG Qidao, LI Dezong, LI Zhiwei, WANG Donghui, YU Yifan, ZHU Xingqiang, CAI Quanyu, LI Ming. Geochemical characteristics and genesis of lithium rich clay rocks in the Pudi area of northwestern Guizhou [J]. Earth Science Frontiers, 2024, 31(4): 258-280. |
[6] | QIU Linfei, LI Ziying, ZHANG Zilong, WANG Longhui, LI Zhencheng, HAN Meizhi, WANG Tingting. Characteristics of organic matter in Lower Cretaceous ore-bearing sandstones and its relationship with uranium mineralization in the northern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(4): 281-296. |
[7] | ZHANG Jiazhi, JIANG Zaixing, XU Jie, WEI Siyuan, SONG Lizhou, LIU Tong, SHEN Zhihan, JIANG Xiaolong, LI Yongfei, ZHANG Xi. Volcanic sedimentation of Cretaceous Jiufotang Formation in the Chaoyang Basin and its impact on organic matter enrichment [J]. Earth Science Frontiers, 2024, 31(3): 284-297. |
[8] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[9] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[10] | LI Haidong, TIAN Shihong, LIU Bin, HU Peng, WU Jianyong, CHEN Zhengle. In-situ microchronology and elemental analysis of pitchblende in the Pajiang uranium deposit, northern Guangdong: Implications for uranium mineralization [J]. Earth Science Frontiers, 2024, 31(2): 270-283. |
[11] | LIU Chao, FU Xiaofei, LI Yangcheng, WANG Haixue, SUN Bing, HAO Yan, HU Huiting, YANG Zicheng, LI Yilin, GU Shefeng, ZHOU Aihong, MA Chenglong. Can hydrocarbon source rock be uranium source rock?—a review and prospectives [J]. Earth Science Frontiers, 2024, 31(2): 284-298. |
[12] | YANG Yiqing, TAO Shizhen, CHEN Yue. Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States [J]. Earth Science Frontiers, 2024, 31(1): 327-339. |
[13] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
[14] | ZHANG Liyu, CHEN Qianglu, LI Maowen, YUAN Kun, MA Xiaoxiao, XI Binbin, YUE Yong, HUANG Taiyu. Comparative study on the organic enrichment mechanisms between western Hubei and northeastern Guizhou during the Early Cambrian [J]. Earth Science Frontiers, 2023, 30(6): 181-198. |
[15] | WU Chenjun, LIU Xinshe, WEN Zhigang, TUO Jincai. Mechanism of organic matter enrichment and organic pore development in the Lower Cambrian Niutitang shales in northern Guizhou [J]. Earth Science Frontiers, 2023, 30(3): 101-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||