Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (1): 384-399.DOI: 10.13745/j.esf.sf.2024.1.24
Previous Articles Next Articles
GUO Huaming1,2(), YIN Jiahong2, YAN Song2, LIU Chao2
Received:
2023-12-12
Revised:
2024-01-05
Online:
2024-01-25
Published:
2024-01-25
CLC Number:
GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi[J]. Earth Science Frontiers, 2024, 31(1): 384-399.
样品 类型 | 统计 指标 | pH | Eh/ mV | DO/ (mg·L-1) | TDS/ (mg·L-1) | ρA/(mg·L-1) | ρB/(μg·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | Cl- | N | Cr | Mn | Fe | |||||||||||||
潜水 | 平均值 | 7.77 | 332 | 3.20 | 625 | 0.03 | 0.10 | 33.1 | 56.7 | 132 | 4.34 | 68.8 | 144 | 0.55 | 367 | 20.0 | 54.2 | 8.43 | 13.0 | ||
中值 | 7.82 | 335 | 3.41 | 479 | 0.01 | bdl | 25.8 | 44.1 | 109 | 2.30 | 19.9 | 35.9 | bdl | 339 | 13.8 | 40.1 | 2.56 | 6.53 | |||
最小值 | 7.25 | 297 | 1.40 | 287 | bdl | bdl | 11.3 | 7.79 | 21.0 | 1.25 | 5.21 | 4.66 | bdl | 219 | 0.35 | 6.37 | 0.21 | 0.45 | |||
最大值 | 8.14 | 361 | 4.75 | 2 009 | 0.29 | 1.36 | 145 | 183 | 419 | 23.1 | 510 | 1 208 | 8.28 | 708 | 125 | 180 | 77.2 | 72.8 | |||
承压水 | 平均值 | 7.72 | 341 | 4.06 | 1 136 | 0.02 | 0.01 | 46.0 | 98.7 | 281 | 3.71 | 243 | 431 | 1.62 | 381 | 24.3 | 138 | 10.4 | 17.9 | ||
中值 | 7.69 | 346 | 4.29 | 988 | 0.01 | bdl | 36.2 | 75.9 | 259 | 2.08 | 164 | 317 | bdl | 379 | 21.2 | 137 | 4.48 | 11.5 | |||
最小值 | 7.03 | 298 | 0.32 | 382 | bdl | bdl | 4.37 | 8.85 | 106 | 0.77 | 12.6 | 58.2 | bdl | 147 | 4.90 | 4.69 | 0.23 | 2.19 | |||
最大值 | 8.54 | 371 | 6.03 | 2 862 | 0.27 | 0.20 | 153 | 384 | 621 | 24.3 | 1 467 | 1 308 | 37.3 | 627 | 85.3 | 355 | 147 | 110 | |||
地表水 | 平均值 | 8.69 | 320 | 5.94 | 1 969 | 0.04 | 0.05 | 39.1 | 175 | 527 | 10.4 | 654 | 787 | 42.1 | 400 | 2.25 | 13.1 | 5.47 | 29.5 | ||
中值 | 8.68 | 326 | 6.22 | 1 420 | 0.01 | 0.03 | 32.2 | 141 | 374 | 8.98 | 357 | 554 | 37.3 | 330 | 0.64 | 8.26 | 6.05 | 29.9 | |||
最小值 | 7.95 | 262 | 3.91 | 440 | bdl | bdl | 19.9 | 56.0 | 205 | 3.78 | 192 | 243 | 16.6 | 202 | bdl | 2.74 | 0.46 | 3.09 | |||
最大值 | 9.24 | 355 | 6.91 | 4 058 | 0.19 | 0.11 | 68.8 | 384 | 1 073 | 25.0 | 1 764 | 1 783 | 70.4 | 957 | 9.72 | 41.6 | 10.2 | 57.8 | |||
总计 | 平均值 | 7.83 | 336 | 4.05 | 1 102 | 0.02 | 0.04 | 42.1 | 96.8 | 272 | 4.58 | 245 | 400 | 6.22 | 380 | 20.9 | 105 | 9.41 | 17.8 | ||
中值 | 7.79 | 342 | 4.22 | 945 | 0.01 | bdl | 33.1 | 67.5 | 252 | 2.20 | 151 | 268 | bdl | 375 | 18.5 | 102 | 4.04 | 11.0 | |||
最小值 | 7.03 | 262 | 0.32 | 287 | bdl | bdl | 4.37 | 7.79 | 21.0 | 0.77 | 5.21 | 4.66 | bdl | 147 | bdl | 2.74 | 0.21 | 0.45 | |||
最大值 | 9.24 | 371 | 6.91 | 4 058 | 0.29 | 1.36 | 153 | 384 | 1 073 | 25.0 | 1 764 | 1 783 | 70.4 | 957 | 125 | 355 | 147 | 110 |
Table 1 Statistical table for main physical and chemical parameters for the studied water systems
样品 类型 | 统计 指标 | pH | Eh/ mV | DO/ (mg·L-1) | TDS/ (mg·L-1) | ρA/(mg·L-1) | ρB/(μg·L-1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | Cl- | N | Cr | Mn | Fe | |||||||||||||
潜水 | 平均值 | 7.77 | 332 | 3.20 | 625 | 0.03 | 0.10 | 33.1 | 56.7 | 132 | 4.34 | 68.8 | 144 | 0.55 | 367 | 20.0 | 54.2 | 8.43 | 13.0 | ||
中值 | 7.82 | 335 | 3.41 | 479 | 0.01 | bdl | 25.8 | 44.1 | 109 | 2.30 | 19.9 | 35.9 | bdl | 339 | 13.8 | 40.1 | 2.56 | 6.53 | |||
最小值 | 7.25 | 297 | 1.40 | 287 | bdl | bdl | 11.3 | 7.79 | 21.0 | 1.25 | 5.21 | 4.66 | bdl | 219 | 0.35 | 6.37 | 0.21 | 0.45 | |||
最大值 | 8.14 | 361 | 4.75 | 2 009 | 0.29 | 1.36 | 145 | 183 | 419 | 23.1 | 510 | 1 208 | 8.28 | 708 | 125 | 180 | 77.2 | 72.8 | |||
承压水 | 平均值 | 7.72 | 341 | 4.06 | 1 136 | 0.02 | 0.01 | 46.0 | 98.7 | 281 | 3.71 | 243 | 431 | 1.62 | 381 | 24.3 | 138 | 10.4 | 17.9 | ||
中值 | 7.69 | 346 | 4.29 | 988 | 0.01 | bdl | 36.2 | 75.9 | 259 | 2.08 | 164 | 317 | bdl | 379 | 21.2 | 137 | 4.48 | 11.5 | |||
最小值 | 7.03 | 298 | 0.32 | 382 | bdl | bdl | 4.37 | 8.85 | 106 | 0.77 | 12.6 | 58.2 | bdl | 147 | 4.90 | 4.69 | 0.23 | 2.19 | |||
最大值 | 8.54 | 371 | 6.03 | 2 862 | 0.27 | 0.20 | 153 | 384 | 621 | 24.3 | 1 467 | 1 308 | 37.3 | 627 | 85.3 | 355 | 147 | 110 | |||
地表水 | 平均值 | 8.69 | 320 | 5.94 | 1 969 | 0.04 | 0.05 | 39.1 | 175 | 527 | 10.4 | 654 | 787 | 42.1 | 400 | 2.25 | 13.1 | 5.47 | 29.5 | ||
中值 | 8.68 | 326 | 6.22 | 1 420 | 0.01 | 0.03 | 32.2 | 141 | 374 | 8.98 | 357 | 554 | 37.3 | 330 | 0.64 | 8.26 | 6.05 | 29.9 | |||
最小值 | 7.95 | 262 | 3.91 | 440 | bdl | bdl | 19.9 | 56.0 | 205 | 3.78 | 192 | 243 | 16.6 | 202 | bdl | 2.74 | 0.46 | 3.09 | |||
最大值 | 9.24 | 355 | 6.91 | 4 058 | 0.19 | 0.11 | 68.8 | 384 | 1 073 | 25.0 | 1 764 | 1 783 | 70.4 | 957 | 9.72 | 41.6 | 10.2 | 57.8 | |||
总计 | 平均值 | 7.83 | 336 | 4.05 | 1 102 | 0.02 | 0.04 | 42.1 | 96.8 | 272 | 4.58 | 245 | 400 | 6.22 | 380 | 20.9 | 105 | 9.41 | 17.8 | ||
中值 | 7.79 | 342 | 4.22 | 945 | 0.01 | bdl | 33.1 | 67.5 | 252 | 2.20 | 151 | 268 | bdl | 375 | 18.5 | 102 | 4.04 | 11.0 | |||
最小值 | 7.03 | 262 | 0.32 | 287 | bdl | bdl | 4.37 | 7.79 | 21.0 | 0.77 | 5.21 | 4.66 | bdl | 147 | bdl | 2.74 | 0.21 | 0.45 | |||
最大值 | 9.24 | 371 | 6.91 | 4 058 | 0.29 | 1.36 | 153 | 384 | 1 073 | 25.0 | 1 764 | 1 783 | 70.4 | 957 | 125 | 355 | 147 | 110 |
Fig.3 Vertical distribution of Cr (a) and Mn (b) concentrations in groundwater in the study area. Red dashed line represents the total dissolved Cr concentration limit of 50 μg/L by China drinking quality standard.
Fig.4 Water chemistry. (a) Vertical variation of NO 3 --N concentration with depth. (b) Box plot showing the range of NO 3 --N concentrations in the studied water systems. Red dashed line represents the NO 3 --N concentration limit (20 mg/L) by China drinking quality standard.
Fig.5 Identification of groundwater recharge source in the study area by bivariate analysis. Solid line: global atmospheric waterline (GMWL); black dashed line: local atmospheric precipitation line.
岩性 | 个数 | MgO 含量/% | Al2O3 含量/% | SiO2 含量/% | K2O 含量/% | CaO 含量/% | Cr含量/ (mg·kg-1) | Mn含量/ (mg·kg-1) | Fe含量/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
浮土 | 5 | 1.5 | 6.1 | 45.3 | 1.9 | 7.7 | 84.6 | 503 | 24.6 |
黏土 | 5 | 2.1 | 8.2 | 42.0 | 2.6 | 8.7 | 178 | 619 | 37.8 |
泥岩 | 4 | 2.1 | 8.8 | 42.8 | 3.8 | 3.6 | 100 | 401 | 36.0 |
砂岩 | 12 | 2.3 | 7.3 | 51.1 | 2.3 | 5.0 | 113 | 460 | 24.3 |
粉砂岩 | 1 | 2.0 | 7.9 | 45.7 | 2.9 | 6.2 | 154 | 550 | 30.2 |
砂岩夹泥岩 | 6 | 3.2 | 9.4 | 43.7 | 3.3 | 2.6 | 109 | 459 | 49.9 |
泥岩夹砂岩 | 1 | 3.6 | 9.2 | 43.4 | 2.7 | 2.9 | 92.0 | 429 | 31.4 |
粉砂岩夹泥岩 | 1 | 3.6 | 10.6 | 47.9 | 4.1 | 2.8 | 127 | 444 | 55.9 |
粉砂质泥岩 | 1 | 4.0 | 11.3 | 43.1 | 3.8 | 1.2 | 103 | 401 | 57.1 |
泥质砂岩 | 2 | 2.9 | 8.2 | 43.4 | 3.0 | 6.4 | 43.0 | 911 | 26.7 |
泥质粉砂岩 | 2 | 2.2 | 7.3 | 42.5 | 3.1 | 8.6 | 117 | 755 | 29.1 |
Table 2 Major element composition of and Cr, Mn, Fe average contents in sediments of different lithologies
岩性 | 个数 | MgO 含量/% | Al2O3 含量/% | SiO2 含量/% | K2O 含量/% | CaO 含量/% | Cr含量/ (mg·kg-1) | Mn含量/ (mg·kg-1) | Fe含量/ (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|
浮土 | 5 | 1.5 | 6.1 | 45.3 | 1.9 | 7.7 | 84.6 | 503 | 24.6 |
黏土 | 5 | 2.1 | 8.2 | 42.0 | 2.6 | 8.7 | 178 | 619 | 37.8 |
泥岩 | 4 | 2.1 | 8.8 | 42.8 | 3.8 | 3.6 | 100 | 401 | 36.0 |
砂岩 | 12 | 2.3 | 7.3 | 51.1 | 2.3 | 5.0 | 113 | 460 | 24.3 |
粉砂岩 | 1 | 2.0 | 7.9 | 45.7 | 2.9 | 6.2 | 154 | 550 | 30.2 |
砂岩夹泥岩 | 6 | 3.2 | 9.4 | 43.7 | 3.3 | 2.6 | 109 | 459 | 49.9 |
泥岩夹砂岩 | 1 | 3.6 | 9.2 | 43.4 | 2.7 | 2.9 | 92.0 | 429 | 31.4 |
粉砂岩夹泥岩 | 1 | 3.6 | 10.6 | 47.9 | 4.1 | 2.8 | 127 | 444 | 55.9 |
粉砂质泥岩 | 1 | 4.0 | 11.3 | 43.1 | 3.8 | 1.2 | 103 | 401 | 57.1 |
泥质砂岩 | 2 | 2.9 | 8.2 | 43.4 | 3.0 | 6.4 | 43.0 | 911 | 26.7 |
泥质粉砂岩 | 2 | 2.2 | 7.3 | 42.5 | 3.1 | 8.6 | 117 | 755 | 29.1 |
样品类型 | 特征值 | pH | EC/(μS·cm-1) |
---|---|---|---|
全部样品 | 平均值 | 7.90 | 1 267 |
最小值 | 7.40 | 750 | |
最大值 | 8.60 | 1 860 | |
中值 | 7.78 | 1 280 | |
潜水含水层样品 | 平均值 | 7.52 | 1 014 |
最小值 | 7.40 | 750 | |
最大值 | 7.65 | 1 470 | |
中值 | 7.51 | 1 005 | |
承压含水层样品 | 平均值 | 8.04 | 1 362 |
最小值 | 7.48 | 870 | |
最大值 | 8.60 | 1 860 | |
中值 | 8.07 | 1 385 |
Table 3 Statistical table for pH and EC values of sediments in unconfined and confined aquifers
样品类型 | 特征值 | pH | EC/(μS·cm-1) |
---|---|---|---|
全部样品 | 平均值 | 7.90 | 1 267 |
最小值 | 7.40 | 750 | |
最大值 | 8.60 | 1 860 | |
中值 | 7.78 | 1 280 | |
潜水含水层样品 | 平均值 | 7.52 | 1 014 |
最小值 | 7.40 | 750 | |
最大值 | 7.65 | 1 470 | |
中值 | 7.51 | 1 005 | |
承压含水层样品 | 平均值 | 8.04 | 1 362 |
最小值 | 7.48 | 870 | |
最大值 | 8.60 | 1 860 | |
中值 | 8.07 | 1 385 |
样品类型 | 统计指标 | wB/(mg·kg-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Mg2+ | Ca2+ | Na+ | F- | Cl- | C | |||||
所有样品 | 平均值 | 59.9 | 13.8 | 25.6 | 201 | 8.3 | 54.6 | 4.9 | 71.9 | 517 | 29.4 |
最小值 | 16.1 | 2.5 | 10.9 | 62.4 | 3.2 | 14.3 | bdl | 25.5 | 305 | bdl | |
最大值 | 127 | 48.0 | 44.1 | 330 | 16.5 | 160 | 17.4 | 155 | 702 | 114 | |
中值 | 55.4 | 10.0 | 23.3 | 228 | 7.4 | 43.0 | 4.4 | 54.3 | 519 | bdl | |
潜水含水层 | 平均值 | 70.7 | 26.5 | 38.0 | 94.1 | 7.4 | 41.0 | 4.2 | 39.8 | 502 | bdl |
最小值 | 24.5 | 14.7 | 31.7 | 62.4 | 4.2 | 14.3 | bdl | 25.7 | 397 | bdl | |
最大值 | 116 | 48.0 | 44.1 | 125 | 10.8 | 111 | 17.4 | 56.9 | 610 | bdl | |
中值 | 66.8 | 26.1 | 37.2 | 98.4 | 7.4 | 22.0 | 3.9 | 35.2 | 503 | bdl | |
承压含水层 | 平均值 | 55.7 | 8.9 | 20.8 | 242 | 8.6 | 59.8 | 5.2 | 84.1 | 523 | 40.6 |
最小值 | 16.1 | 2.5 | 10.9 | 131 | 3.2 | 17.8 | bdl | 25.5 | 305 | bdl | |
最大值 | 127 | 27.4 | 34.1 | 330 | 16.5 | 160 | 12.0 | 155 | 702 | 114 | |
中值 | 52.1 | 6.3 | 21.9 | 243 | 8.1 | 45.4 | 4.4 | 89.8 | 519 | 48.0 |
Table 4 Statistical table for water-soluble ionic species in sediments in unconfined and confined aquifers
样品类型 | 统计指标 | wB/(mg·kg-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Mg2+ | Ca2+ | Na+ | F- | Cl- | C | |||||
所有样品 | 平均值 | 59.9 | 13.8 | 25.6 | 201 | 8.3 | 54.6 | 4.9 | 71.9 | 517 | 29.4 |
最小值 | 16.1 | 2.5 | 10.9 | 62.4 | 3.2 | 14.3 | bdl | 25.5 | 305 | bdl | |
最大值 | 127 | 48.0 | 44.1 | 330 | 16.5 | 160 | 17.4 | 155 | 702 | 114 | |
中值 | 55.4 | 10.0 | 23.3 | 228 | 7.4 | 43.0 | 4.4 | 54.3 | 519 | bdl | |
潜水含水层 | 平均值 | 70.7 | 26.5 | 38.0 | 94.1 | 7.4 | 41.0 | 4.2 | 39.8 | 502 | bdl |
最小值 | 24.5 | 14.7 | 31.7 | 62.4 | 4.2 | 14.3 | bdl | 25.7 | 397 | bdl | |
最大值 | 116 | 48.0 | 44.1 | 125 | 10.8 | 111 | 17.4 | 56.9 | 610 | bdl | |
中值 | 66.8 | 26.1 | 37.2 | 98.4 | 7.4 | 22.0 | 3.9 | 35.2 | 503 | bdl | |
承压含水层 | 平均值 | 55.7 | 8.9 | 20.8 | 242 | 8.6 | 59.8 | 5.2 | 84.1 | 523 | 40.6 |
最小值 | 16.1 | 2.5 | 10.9 | 131 | 3.2 | 17.8 | bdl | 25.5 | 305 | bdl | |
最大值 | 127 | 27.4 | 34.1 | 330 | 16.5 | 160 | 12.0 | 155 | 702 | 114 | |
中值 | 52.1 | 6.3 | 21.9 | 243 | 8.1 | 45.4 | 4.4 | 89.8 | 519 | 48.0 |
[1] | 张洪, 王五一, 李海蓉, 等. 地下水硝酸盐污染的研究进展[J]. 水资源保护, 2008, 24(6): 7-11, 67. |
[2] |
LINGLE D A, KEHEW A E, KRISHNAMURTHY R V. Use of nitrogen isotopes and other geochemical tools to evaluate the source of ammonium in a confined glacial drift aquifer, Ottawa County, Michigan, USA[J]. Applied Geochemistry, 2017, 78(1): 334-342.
DOI URL |
[3] |
KELLEY C J, KELLER C K, EVANS R D, et al. Nitrate-nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field[J]. Soil Biology & Biochemistry, 2013, 57: 731-738.
DOI URL |
[4] |
CAO S, FEI Y, TIAN X, et al. Determining the origin and fate of nitrate in the Nanyang Basin, Central China, using environmental isotopes and the Bayesian mixing model[J]. Environmental science and pollution research international, 2021, 28(35): 48343-48361.
DOI |
[5] |
CUI Y, WANG J, HAO S. Spatial variability of nitrate pollution and its sources in a hilly basin of the Yangtze River based on clustering[J]. Scientific Reports, 2021, 11(1): 1-10.
DOI |
[6] |
COYTE R M, MCKINLEY K L, JIANG S, et al. Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA[J]. Science of the Total Environment, 2020, 711: 135135.
DOI URL |
[7] | NRIAGU J O, NIEBOER E. Chromium in the natural and human environments[M]. New York: John Wiley & Sons, 1988. |
[8] |
XIE Y, HOLMGREN S, ANDREWS D M K, et al. Evaluating the impact of the U.S. National Toxicology Program: a case study on hexavalent chromium[J]. Environmental Health Perspectives, 2017, 125(2): 181-188.
DOI PMID |
[9] |
LILLI M A, MORAETIS D, NIKOLAIDIS N P, et al. Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin[J]. Journal of Hazardous Materials 2015, 281: 12-19.
DOI PMID |
[10] |
NAMGUNG S, KWON M J, QAFOKU N P, et al. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(II) oxidation[J]. Environmental Science & Technology, 2014, 48(18): 10760-10768.
DOI URL |
[11] |
MANNING A H, MILLS C T, MORRISON J M, et al. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA[J]. Applied Geochemistry, 2015, 62: 186-199.
DOI URL |
[12] |
PAPAZOTOS P, VASILEIOU E, PERRAKI M. The synergistic role of agricultural activities in groundwater quality in ultramafic environments: the case of the Psachna basin, central Euboea, Greece[J]. Environmental Monitoring and Assessment, 2019, 191(5): 317.
DOI PMID |
[13] |
KAZAKIS N, KANTIRANIS N, VOUDOURIS K S, et al. Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater[J]. Science of the Total Environment, 2015, 514: 224-238.
DOI URL |
[14] |
MILLS C T, MORRISON J M, GOLDHABER M B, et al. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento Valley, California: a potential source of geogenic Cr(VI) to groundwater[J]. Applied Geochemistry, 2011, 26(8): 1488-1501.
DOI URL |
[15] |
PAPAZOTOS P, VASILEIOU E, PERRAKI M. Elevated groundwater concentrations of arsenic and chromium in ultramafic environments controlled by seawater intrusion, the nitrogen cycle, and anthropogenic activities: the case of the Gerania Mountains, NE Peloponnese, Greece[J]. Applied Geochemistry, 2020, 121: 104697.
DOI URL |
[16] |
OBEIDAT M, AWAWDEH M, AL-KHARABSHEH N, et al. Source identification of nitrate in the upper aquifer system of the Wadi Shueib catchment area in Jordan based on stable isotope composition[J]. Journal of Arid Land, 2021, 13(4): 350-374.
DOI |
[17] |
SENN D B, HEMOND H F. Nitrate controls on iron and arsenic in an urban lake[J]. Science, 2002, 296(5577): 2373-2376.
PMID |
[18] |
COOPER G R C. Oxidation and toxicity of chromium in ultramafic soils in Zimbabwe[J]. Applied Geochemistry, 2002, 17(8): 981-986.
DOI URL |
[19] | 李欣艳, 陈凯, 葛佳亮, 等. 靖边县水源地区域地下水环境变化研究[J]. 水资源与水工程学报, 2020, 31(2): 36-41. |
[20] | 徐春英, 李玉中, 郝卫平, 等. 反硝化细菌法结合痕量气体分析仪/同位素比质谱仪分析水体硝酸盐氮同位素组成[J]. 分析化学, 2012, 40(9): 1360-1365. |
[21] |
郭华明, 高志鹏, 修伟. 地下水典型氧化还原敏感组分迁移转化的研究热点和趋势[J]. 地学前缘, 2022, 29(3): 64-75.
DOI |
[22] | 王泽文, 邱淑芳. 一类流域点污染源识别的稳定性与数值模拟[J]. 水动力学研究与进展A辑, 2008, 23(4): 364-371. |
[23] | 贺强, 孙从建, 吴丽娜, 等. 基于GNIP的黄土高原区大气降水同位素特征研究[J]. 水文, 2018, 38(1): 58-66. |
[24] |
CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
PMID |
[25] |
WANG Z, GUO H, XIU W, et al. High arsenic groundwater in the Guide basin, northwestern China: distribution and genesis mechanisms[J]. Science of the Total Environment, 2018, 640/641(1): 194-206.
DOI URL |
[26] |
GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
DOI PMID |
[27] | 王振. 青海贵德盆地高砷地下水分布和成因探究[D]. 北京: 中国地质大学(北京), 2019. |
[28] |
GAILLARDET J, DUPRE B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
DOI URL |
[29] | 朱欣然, 刘立, 贾士琚, 等. 鄂尔多斯盆地白垩系洛河组风成砂岩地球化学与物源区特征: 以靖边县龙洲乡露头为例[J]. 世界地质, 2018, 37(3): 702-711. |
[30] | 翁海成. 基于氮氧同位素的高砷地下水氮来源、 转化及富砷意义[D]. 北京: 中国地质大学(北京), 2019. |
[31] | 袁溶潇. 内蒙古河套盆地含水层沉积物可溶性组分与可溶性砷的分布规律研究[D]. 北京: 中国地质大学(北京), 2017. |
[32] | 谢延玲. 鄂尔多斯盆地中部靖边地区水化学成分演化规律研究[D]. 西安: 西北大学, 2008. |
[33] |
LOHSE K A, SANDERMAN J, AMUNDSON R. Identifying sources and processes influencing nitrogen export to a small stream using dual isotopes of nitrate[J]. Water Resources Research, 2013, 49(9): 5715-5731.
DOI URL |
[34] |
SUN L, LIANG X, JIN M, et al. Ammonium and nitrate sources and transformation mechanism in the Quaternary sediments of Jianghan Plain, China[J]. Science of the Total Environment, 2021, 774: 145131.
DOI URL |
[35] |
TORRES-MARTíNEZ J A, MORA A, MAHLKNECHT J, et al. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model[J]. Environmental Pollution, 2021, 269(602): 115445.
DOI URL |
[36] | KENDALL C, ELLIOTT E M, WANKEL S D. Tracing anthropogenic inputs of nitrogen to ecosystems[M]//MICHENER R, LAJTHA K. Stable isotopes in ecology and environmental science. Oxford: Blackwell Publishing Ltd, 2007: 375-449. |
[37] |
JüRGEN B, OTTO S, SUSANNE V, et al. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer[J]. Journal of Hydrology, 1990, 114(3/4): 413-424.
DOI URL |
[38] |
XUE D, BOTTE J, DE BAETS B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater[J]. Water Research, 2009, 43(5): 1159-1170.
DOI PMID |
[39] |
MA B, HUANG T, LI J, et al. Tracing nitrate source and transformation in a semiarid loess aquifer with the thick unsaturated zone[J]. Catena, 2021, 198: 105045.
DOI URL |
[40] | ZHOU X, JIANG Y. Application of nitrogen and oxygen isotopes to the study of groundwater nitrate contamination[J]. Acta Geoscientica Sinica, 2007, 28(4): 389-395. |
[41] | WANG D. Basis for use of nitrogen isotopes to identify nitrogen contamination of groundwater[J]. Acta Geoscientia Sinica, 1997, 18(2): 220-223. |
[42] | ZUO R, PAN M, LI J, et al. Biogeochemical transformation processes of iron, manganese, ammonium under coexisting conditions in groundwater based on experimental data[J]. Journal of Hydrology, 2021, 603(Part C): 127120. |
[43] | AN Q, JIN L, DENG S, et al. Removal of Mn(II) by a nitrifying bacterium Acinetobacter sp. AL-6: efficiency and mechanisms[J]. Environmental Science and Pollution Reaearch, 2021, 28(24): 31218-31229. |
[44] |
MCMAHON P B, BELITZ K, REDDY J E, et al. Elevated manganese concentrations in United States groundwater, role of land surface-soil-aquifer connections[J]. Environmental Science & Technology, 2019, 53(1): 29-38.
DOI URL |
[45] |
MILLS C T, GOLDHABER M B. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks[J]. Science of the Total Environment, 2012, 435/436: 363-373.
DOI URL |
[1] | XU Rongzhen, WEI Shibo, LI Chengye, CHENG Xuxue, ZHOU Xiangyu. Groundwater circulation in the Ejina Plain: Insights from hydrochemical and environmental isotope studies [J]. Earth Science Frontiers, 2023, 30(4): 440-450. |
[2] | ZHANG Guanglu, LIU Haiyan, GUO Huaming, SUN Zhanxue, WANG Zhen, WU Tonghang. Occurrences and health risks of high-nitrate groundwater in typical piedmont areas of the North China Plain [J]. Earth Science Frontiers, 2023, 30(4): 485-503. |
[3] | WANG Zhen, GUO Huaming, LIU Haiyan, XING Shiping. Geochemical characteristics of rare earth elements in high-fluoride groundwater in the Guide Basin and its implications [J]. Earth Science Frontiers, 2023, 30(3): 505-514. |
[4] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[5] | ZHANG Yuye, HE Jiangtao, DENG Lu, ZOU Hua, ZHANG Jingang, YANG Meiping. Effects of lomefloxacin and norfloxacin on the biological water denitrification process—an experimental study [J]. Earth Science Frontiers, 2022, 29(5): 497-507. |
[6] | LU Shuai, SU Xiaosi, FENG Xiaoyu, SUN Chao. Sources and influencing factors of arsenic in nearshore zone during river water infiltration [J]. Earth Science Frontiers, 2022, 29(4): 455-467. |
[7] | GUO Qiaona, ZHAO Yue, ZHOU Zhifang, LIN Jin, DAI Yunfeng, LI Mengjun. Submarine groundwater discharge in Longkou coastal zones under the influence of human activities [J]. Earth Science Frontiers, 2022, 29(4): 468-479. |
[8] | WANG Yanxin, LI Junxia, XIE Xianjun. Genesis and occurrence of high iodine groundwater [J]. Earth Science Frontiers, 2022, 29(3): 1-10. |
[9] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[10] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[11] | HOU Guohua, GAO Maosheng, YE Siyuan, ZHAO Guangming. Source of salt and the salinization process of shallow groundwater in the Yellow River Delta [J]. Earth Science Frontiers, 2022, 29(3): 145-154. |
[12] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[13] | LIANG Kaixuan, LIU Fei, ZHANG Li. Natural attenuation of perchlorate: A column experiment study [J]. Earth Science Frontiers, 2022, 29(3): 207-216. |
[14] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[15] | LIU Xuena, LI Haiming, LI Mengdi, ZHANG Weihua, XIAO Han. Pollution characteristics and biodegradation mechanism of petroleum hydrocarbons in gas station groundwater in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 227-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||