Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (1): 112-122.DOI: 10.13745/j.esf.2020.1.13
Previous Articles Next Articles
TIAN Jiao1,2,3(), PANG Zhonghe1,2,3,*(
), ZHANG Rui4
Received:
2019-03-29
Revised:
2019-08-30
Online:
2020-01-20
Published:
2020-01-20
Contact:
PANG Zhonghe
CLC Number:
TIAN Jiao, PANG Zhonghe, ZHANG Rui. The application of FixAl and isotopic methods in the study of flowback fluids from Enhanced Geothermal Systems (EGS)[J]. Earth Science Frontiers, 2020, 27(1): 112-122.
项目 | 国家 | 试验 年份 | 井深/m | 注-采井 间距/m | 储层 温度/℃ | 返排液 温度/℃ | 返排液 pH | 注水流速 /(L·s-1) | 储层 岩性 | 质量浓度/(mg·L-1) | 参考文献 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | Na | K | Ca | Mg | Cl | SO4 | HCO3 | F | SiO2 | Fe | Al | |||||||||||||||||||||||
Soultz-sous- Forêts | 法国 | 1997 | 3 876 | 450 | 160 | 142 | 4.8 | 25 | 富黑云母及 角闪石花岗岩 | 90 690.25 | 24 472 | 3 377.4 | 6 880 | 139.44 | 55 522 | 225.6 | 147.62 | 4 | 139.8 | 30.1 | na | [11] | ||||||||||||
Bad Urach | 德国 | 1978 | 3 325 | na | 143 | 143 | 4.2 | na | 花岗片麻岩 | 2 144.2 | 558.9 | 159.5 | 150 | 0.4 | 1 275.4 | na | na | na | 156.6 | 110.9 | 0.6 | [12] | ||||||||||||
Fenton Hill | 美国 | 1992 | 4 010 | 310 | 327 | 182 | 7 | 5.5~6.5 | 黑云母花 岗闪长岩 | 2 632.65 | 899.3 | 88.9 | 18 | 0.1 | 955 | 377.3 | 588.1 | 17 | 423.6 | 0.800 8 | 1.2 | [13] | ||||||||||||
Hijiori | 日本 | 2002 | 1 800~ 2 200 | 130 | 260 | 170 | 9.03 | 16.67 | 石英闪长岩 | 1 092.9 | 373.9 | 54.6 | 8.3 | 0.1 | 391.4 | 202.1 | 125 | na | 370.5 | na | na | [14] | ||||||||||||
Ogachi | 日本 | 1993 | 1 100 | 80 | 170~230 | 108 | na | 12.5~20 | 花岗闪长岩 | 804.5 | 299 | 17.6 | 4 | 0 | 49.7 | 153.6 | 561.2 | 6.7 | 162 | na | na | [15] | ||||||||||||
Rosemanowes | 英国 | 1988 | 2 780 | 250 | 99.8 | 99.8 | 8.8 | 21.6 | 花岗岩 | 302.34 | 100.7 | 3.4 | 13.76 | 0.08 | 73.1 | 74.4 | 73.8 | 11.4 | 65.4 | 0.02 | 0.2 | [16] | ||||||||||||
Habanero Cooper Basin | 澳大 利亚 | 2008 | 4 421 | 560 | 250 | 200 | 7.6 | 14 | 花岗岩 | 12 750.4 | 4 942.9 | 643.5 | 25.45 | 0.45 | 8 235 | 36 | na | 17 | 153 | na | na | [16-18] |
Table 1 Compilation of selected physico-chemical data from seven EGS projects around the world
项目 | 国家 | 试验 年份 | 井深/m | 注-采井 间距/m | 储层 温度/℃ | 返排液 温度/℃ | 返排液 pH | 注水流速 /(L·s-1) | 储层 岩性 | 质量浓度/(mg·L-1) | 参考文献 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TDS | Na | K | Ca | Mg | Cl | SO4 | HCO3 | F | SiO2 | Fe | Al | |||||||||||||||||||||||
Soultz-sous- Forêts | 法国 | 1997 | 3 876 | 450 | 160 | 142 | 4.8 | 25 | 富黑云母及 角闪石花岗岩 | 90 690.25 | 24 472 | 3 377.4 | 6 880 | 139.44 | 55 522 | 225.6 | 147.62 | 4 | 139.8 | 30.1 | na | [11] | ||||||||||||
Bad Urach | 德国 | 1978 | 3 325 | na | 143 | 143 | 4.2 | na | 花岗片麻岩 | 2 144.2 | 558.9 | 159.5 | 150 | 0.4 | 1 275.4 | na | na | na | 156.6 | 110.9 | 0.6 | [12] | ||||||||||||
Fenton Hill | 美国 | 1992 | 4 010 | 310 | 327 | 182 | 7 | 5.5~6.5 | 黑云母花 岗闪长岩 | 2 632.65 | 899.3 | 88.9 | 18 | 0.1 | 955 | 377.3 | 588.1 | 17 | 423.6 | 0.800 8 | 1.2 | [13] | ||||||||||||
Hijiori | 日本 | 2002 | 1 800~ 2 200 | 130 | 260 | 170 | 9.03 | 16.67 | 石英闪长岩 | 1 092.9 | 373.9 | 54.6 | 8.3 | 0.1 | 391.4 | 202.1 | 125 | na | 370.5 | na | na | [14] | ||||||||||||
Ogachi | 日本 | 1993 | 1 100 | 80 | 170~230 | 108 | na | 12.5~20 | 花岗闪长岩 | 804.5 | 299 | 17.6 | 4 | 0 | 49.7 | 153.6 | 561.2 | 6.7 | 162 | na | na | [15] | ||||||||||||
Rosemanowes | 英国 | 1988 | 2 780 | 250 | 99.8 | 99.8 | 8.8 | 21.6 | 花岗岩 | 302.34 | 100.7 | 3.4 | 13.76 | 0.08 | 73.1 | 74.4 | 73.8 | 11.4 | 65.4 | 0.02 | 0.2 | [16] | ||||||||||||
Habanero Cooper Basin | 澳大 利亚 | 2008 | 4 421 | 560 | 250 | 200 | 7.6 | 14 | 花岗岩 | 12 750.4 | 4 942.9 | 643.5 | 25.45 | 0.45 | 8 235 | 36 | na | 17 | 153 | na | na | [16-18] |
矿物 | lg(Q/K) | ||||||
---|---|---|---|---|---|---|---|
Soultz-sous-Forêts | Bad Urach | Fenton Hill | Hijiori | Ogachi | Rosemanowes | Habanero Cooper Basin | |
方解石 | -2.027 8 | -90.393 0 | 0.827 8 | 1.467 9 | 1.130 3 | 1.163 5 | -98.693 0 |
白云石 | -4.530 0 | -182.145 7 | 0.476 8 | 2.101 5 | -51.484 8 | 1.109 6 | -197.817 4 |
二氧化硅 | -0.624 1 | -0.660 4 | -0.288 2 | -0.809 4 | -0.812 4 | -1.011 8 | -0.834 3 |
Table 2 lg(Q/K) values of precipitable minerals at the wellhead temperature
矿物 | lg(Q/K) | ||||||
---|---|---|---|---|---|---|---|
Soultz-sous-Forêts | Bad Urach | Fenton Hill | Hijiori | Ogachi | Rosemanowes | Habanero Cooper Basin | |
方解石 | -2.027 8 | -90.393 0 | 0.827 8 | 1.467 9 | 1.130 3 | 1.163 5 | -98.693 0 |
白云石 | -4.530 0 | -182.145 7 | 0.476 8 | 2.101 5 | -51.484 8 | 1.109 6 | -197.817 4 |
二氧化硅 | -0.624 1 | -0.660 4 | -0.288 2 | -0.809 4 | -0.812 4 | -1.011 8 | -0.834 3 |
Fig.6 Models of stable isotopes in 13 processes (a) and plots of δD-δ18O for injected water and flowback fluid samples in different stages of the circulation test in Fenton Hill EGS (b)
[1] | 国家能源局. 地热能术语: NB/T 10097—2018 [S]. 北京: 中国石化出版社, 2018: 1-24. |
[2] | SCHULTE T, ZIMMERMANN G, VUATAZ F, et al. Enhancing geothermal reservoirs[J]. Geothermal Energy Systems: Exploration, Development, and Utilization, 2010: 173-243. |
[3] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31. |
[4] |
ZHANG C, JIANG G Z, SHI Y, et al. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan Plateau[J]. Geothermics, 2018, 72:182-192.
DOI URL |
[5] | TESTER J W, ANDERSON B, BATCHELOR A, et al. The future of geothermal energy: impact of enhanced geothermal systems (egs) on the united states in the 21st century [R]. Cambridge: Massachusetts Institute of Technolgy, 2006: 209. |
[6] | HORNE R N. What does the future hold for geothermal energy?[C]. New Zealand Geothermal Workshop, Stanford University, CA, USA, 2011. |
[7] |
BREEDE K, DZEBISASHVILI K, LIU X L, et al. A systematic review of enhanced (or engineered) geothermal systems: past, present and future[J]. Geothermal Energy, 2013, 1(1):4.
DOI URL |
[8] |
GAUCHER E, SCHOENBALL M, HEIDBACH O, et al. Induced seismicity in geothermal reservoirs: a review of forecasting approaches[J]. Renewable and Sustainable Energy Reviews, 2015, 52:1473-1490.
DOI URL |
[9] |
BROWND W, DUCHANE D V. Scientific progress on the Fenton Hill HDR Project since 1983[J]. Geothermics, 1999, 28(4/5):591-601.
DOI URL |
[10] | POTTER R, ROBINSON E, SMITH M. Method of extracting heat from dry geothermal reservoirs [R]. Washington DC: Office of Scientific and Technical Information (OSTI), U.S. Patent and Trademark Offic, 1974. |
[11] | DURST P, VUATAZ F D. Fluid-rock interactions in hot dry rock reservoirs. A review of the HDR sites and detailed investigations of the Soultz-sous-Forets system [C]//Proceedings World Geothermal Congress. Kyushu-Tohoku, Japan, 2000. |
[12] | ALTHAUS E. Geochemical problems in fluid-rock interaction[J]. The Urach Geothermal Project, 1982, 12:123-133. |
[13] | DUCHANE D V, WINCHESTER W W. Hot dry rock energy progress report fiscal year 1992 [R]. Washington DC: Office of Scientific and Technical Information (OSTI), U.S. Patent and Trademark Office, 1993. |
[14] | YANAGISAWA N. Ca and CO2 transport and scaling in the Hijiori HDR system, Japan [C]//Proceedings World Geothermal Congress. Kyushu-Tohoku, Japan, 2010. |
[15] | KIHO K, MAMBO V. Reservoir characterization by geochemical method at the Ogachi HDR site, Japan [C]//Proceedings of World Geothermal Congress. 1995: 2707-2711. |
[16] | YANAGISAWA N, NGOTHAI Y, ROSE P, et al. Geochemical behavior of EGS reservoir during first circulation test at Habanero site, Cooper basin, Australia[J]. Journal of the Geothermal Research Society of Japan, 2011, 33(3):125-130. |
[17] | KUNCORO G, NGOTHAI Y, O’NEILL B, et al. Preliminary kinetic study on rock-fluid interaction of the enhanced geothermal systems in Cooper basin, South Australia[C]. New Zealand geothermal workshop. 2011. |
[18] | KUNCORO G B. Fluid-rock interaction studies on an enhanced geothermal system in the Cooper basin, South Australia[D]. Adelaide: The University of Adelaide, 2015. |
[19] |
PANGZ H, REED M. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6):1083-1091.
DOI URL |
[20] |
PANGZ H, KONG Y L, LI J, et al. An isotopic geoindicator in the hydrological cycle[J]. Procedia Earth and Planetary Science, 2017, 17:534-537.
DOI URL |
[21] | BAUMGARTNER J, JUNG R, GERARD A, et al. The European HDR project at Soultz-sous-Forets: stimulation of the second deep well and first circulation experiments [R]. Brussels: European Commission, 1996. |
[22] | 郭剑, 陈继良, 曹文炅, 等. 增强型地热系统研究综述[J]. 电力建设, 2014, 35(4):10-24. |
[23] | BARIA R, MICHELET S, BAUMGARTNER J, et al. Microseismic monitoring of the world’s largest potential HDR reservoir [C]//Proceedings of the twenty-ninth workshop on geothermal reservoir engineering. Palo Alto: Stanford University, 2004. |
[24] | RICHARDS H G, SAVAGE D, ANDREWS J N. Granite-water reactions in an experimental hot dry rock geothermal reservoir, Rosemanowes test site, Cornwall, UK[J]. Applied Geochemistry, 1992, 7(3):193-222. |
[25] | BEALL J, WRIGHT M, HULEN J. Pre- and post-development influences on fieldwide geysers NCG concentrations[J]. Geothermal Resources Council Transaction, 2007, 31:427-434. |
[26] |
GARCIA J, HARTLINE C, WALTERS M, et al. The Northwest Geysers EGS demonstration project, California[J]. Geothermics, 2016, 63:97-119.
DOI URL |
[27] | BAUMGARTNER J, GERARD A, BARIA R, et al. Circulating the HDR reservoir at Soultz: maintaining production and injection flow in complete balance [C]//Proceedings of the twenty-third workshop on geothermal reservoir engineering. Palo Alto: Stanford University, 1998. |
[28] | BROWN D W. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water [C]//Proceedings of the twenty-fifth workshop on geothermal reservoir engineering. Palo Alto: Stanford University, 2000: 233-238. |
[29] | UEDA A, KATO K, OHSUMI T, et al. Experimental and theoretical studies on CO2 sequestration into geothermal fields[C]. World Geothermal Congress, Antalya, Turkey, 2005. |
[30] |
PRUESS K. Enhanced Geothermal Systems(EGS) Using CO2 as working fluid: a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4):351-367.
DOI URL |
[31] | PRUESS K. Enhanced geothermal systems (EGS) comparing water with CO2 as heat transmission fluids [R]. Berkeley, CA, U.S.: Lawrence Berkeley National Laboratory, 2007. |
[32] | XU T, PRUESS K. Reactive transport modeling to study fluid-rock interactions in enhanced geothermal systems (EGS) with CO2 as working fluid [C]//Proceedings of World Geothermal Congress. Bali, Indonesia, 2010: 25-29. |
[33] | REMOROZA A, DOROODCHI E, MOGHTADERI B. CO2-EGS in hot dry rock: preliminary results from CO2-rock interaction experiments [C]//Proceedings of 37th workshop on geothermal reservoir engineering. Palo Alto: Stanford University, 2012. |
[34] | FOUILLAC C, SANJUAN B, GENTIER S, et al. Could sequestration of CO2 be combined with the development of enhanced geothermal systems[C]. Third annual conference on carbon capture and sequestration, Alexandria, VA. 2004. |
[35] |
REED M, SPYCHER N. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 1984, 48(7):1479-1492.
DOI URL |
[36] |
GRIGSBYC O, TESTER J W, TRUJILLO P E Jr, et al. Rock-water interactions in the Fenton Hill, New Mexico, Hot dry rock geothermal systems I. Fluid mixing and chemical geothermometry[J]. Geothermics, 1989, 18(5/6):629-656.
DOI URL |
[37] |
PAUWELS H. Geochemical results of a single-well hydraulic injection test in an experimental hot dry rock geothermal reservoir, Soultz-sous-Forêts, Alsace, France[J]. Applied Geochemistry, 1997, 12(5):661-673.
DOI URL |
[38] | KIHO K, MAMBO V. Fluid geochemistry of hydraulic fracturing at the Ogachi HDR site[J]. Geothermal Resources Council Transactions, 1994(18):453-453. |
[39] |
GRIGSBY C O, TESTER J W, TRUJILLO P E, et al. Rock-water interactions in hot dry rock geothermal systems: field investigations of in situ geochemical behavior[J]. Journal of Volcanology and Geothermal Research, 1983, 15(1/2/3):101-136.
DOI URL |
[40] |
BROMLEYL A, DIAMOND A E, SALAMI E, et al. Heat capacities and enthalpies of sea salt solutions to 200 deg[J]. Journal of Chemical & Engineering Data, 1970, 15(2):246-253.
DOI URL |
[41] | GRUNBERG L. Properties of sea water concentrates [C]//Proceedings of the third international symposium on fresh water from the Sea. Geneva, Switzerland, 1970 (1):31-39. |
[42] |
GUO Q H, LIU M L, LI J X, et al. Acid hot springs discharged from the Rehai hydrothermal system of the Tengchong Volcanic Area (China): formed via magmatic fluid absorption or geothermal steam heating?[J]. Bulletin of Volcanology, 2014, 76(10):868.
DOI URL |
[43] |
GUO Q H, NORDSTROM D K, MCCLESKEY R B. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems[J]. Journal of Volcanology and Geothermal Research, 2014, 288:94-104.
DOI URL |
[44] |
ELLIS A, GIGGENBACH W. Hydrogen sulphide ionization and sulphur hydrolysis in high temperature solution[J]. Geochimica et Cosmochimica Acta, 1971, 35(3):247-260.
DOI URL |
[45] | ZYVOLOSKI G, AAMODT R, AGUILAR R. Evaluation of the second hot dry rock geothermal energy reservoir: results of phase I, Run Segment 5 [R]. New Mexico, USA: Los Alamos National Laboratory, 1981. |
[46] |
PORTIER S, VUATAZ F D, NAMI P, et al. Chemical stimulation techniques for geothermal wells: experiments on the three-well EGS system at Soultz-sous-Forêts, France[J]. Geothermics, 2009, 38(4):349-359.
DOI URL |
[47] |
PORTIER S, VUATAZ F D. Developing the ability to model acid-rock interactions and mineral dissolution during the RMA stimulation test performed at the Soultz-sous-Forêts EGS Site, France[J]. Comptes Rendus Geoscience, 2010, 342(7/8):668-675.
DOI URL |
[48] | SANJUAN B, ROSE P, GERARD A, et al. Geochemical monitoring at Soultz-sous-Foręts (France) between October 2006 and March 2007, after the chemical stimulations (RMA, NTA and OCA) carried out in the wells GPK-4 and GPK-3[C]. EHDRA Scientific Conference. Paris, France, 2007. |
[1] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[2] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[3] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[4] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[5] | YANG Zhibo, JI Hancheng, BAO Zhidong, SHI Yanqing, ZHAO Yajing, XIANG Pengfei. Dolomite crystal structure and geochemical characteristics in response to depositional environment: An example of dolomite from the Late Ediacaran Dengying Formation of the Yangzi Plateau [J]. Earth Science Frontiers, 2024, 31(3): 68-79. |
[6] | ZHANG Baojian, LEI Yude, ZHAO Zhen, TANG Xianchun, LUO Yinfei, WANG Guiling, GAO Jun, ZHANG Dailei. Geodynamic processes and mechanisms of the formation of hot dry rock in the Gonghe Basin [J]. Earth Science Frontiers, 2023, 30(5): 384-401. |
[7] | MENG Kang, SHAO Deyong, ZHANG Liuliu, LI Liwu, ZHANG Yu, LUO Huan, SONG Hui, ZHANG Tongwei. Geochemical characteristics of residual gas released from crushed shale from the Shuijingtuo Formation in Yichang, western Hubei—indication for gas-bearing capacity of shale [J]. Earth Science Frontiers, 2023, 30(3): 14-27. |
[8] | DONG Xiaoyu, KONG Ruoyan, YAN Danping, QIU Liang, QIU Junting. Origin and gold mineralization significance of Late Triassic syn-tectonic dykes in the Qingchengzi area, Liaodong Peninsula [J]. Earth Science Frontiers, 2023, 30(2): 215-238. |
[9] | XING Shiping, WU Ping, HU Xueda, GUO Huaming, ZHAO Zhen, YUAN Youjing. Geochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua basin [J]. Earth Science Frontiers, 2023, 30(2): 526-538. |
[10] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[11] | WEN Dongguang, SONG Jian, DIAO Yujie, ZHANG Linyou, ZHANG Fucun, ZHANG Senqi, YE Chengming, ZHU Qingjun, SHI Yanxin, JIN Xianpeng, JIA Xiaofeng, LI Shengtao, LIU Donglin, WANG Xinfeng, YANG Li, MA Xin, WU Haidong, ZHAO Xueliang, HAO Wenjie. Opportunities and challenges in deep hydrogeological research [J]. Earth Science Frontiers, 2022, 29(3): 11-24. |
[12] | XING Shiping, GUO Huaming, WU Ping, HU Xueda, ZHAO Zhen, YUAN Youjing. Distribution and formation processes of high fluoride groundwater in different types of aquifers in the Hualong-Xunhua Basin [J]. Earth Science Frontiers, 2022, 29(3): 115-128. |
[13] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[14] | LIN Congye, SUN Zhanxue, GAO Bai, HUA Enxiang, ZHANG Haiyang, YANG Fen, GAO Yang, JIANG Wenbo, JIANG Xinyue. Hydrochemical characteristics and formation mechanism of groundwater in Lhasa area, China [J]. Earth Science Frontiers, 2021, 28(5): 49-58. |
[15] | ZHANG Jingtao, SHI Zheming, WANG Guangcai, JIANG Jun, YANG Bingchao. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area, Qaidam Basin [J]. Earth Science Frontiers, 2021, 28(4): 194-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||