Earth Science Frontiers ›› 2024, Vol. 31 ›› Issue (2): 423-434.DOI: 10.13745/j.esf.sf
Previous Articles Next Articles
CHEN Hongwei1,2,3(), YANG Yao1, HUANG He1,2,3, ZHOU Hui4, PENG Xiangxun1,2,3, YU Shasha4, YU Weihou4, LI Zhengzui4, WANG Zhaoguo1
Received:
2023-03-03
Revised:
2023-03-21
Online:
2024-03-25
Published:
2024-04-18
CLC Number:
CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing[J]. Earth Science Frontiers, 2024, 31(2): 423-434.
相对敏感度范围 | 敏感度等级 | 敏感性特征 |
---|---|---|
Ⅰ | 不敏感 | |
0.05≤ | Ⅱ | 弱敏感 |
0.20≤ | Ⅲ | 一般敏感 |
0.50≤ | Ⅳ | 比较敏感 |
Ⅴ | 非常敏感 |
Table 1 Relative sensitivity classification
相对敏感度范围 | 敏感度等级 | 敏感性特征 |
---|---|---|
Ⅰ | 不敏感 | |
0.05≤ | Ⅱ | 弱敏感 |
0.20≤ | Ⅲ | 一般敏感 |
0.50≤ | Ⅳ | 比较敏感 |
Ⅴ | 非常敏感 |
参数 | 相对敏感度 | 敏感分级 | 敏感性特征 |
---|---|---|---|
湖水222Rn浓度Cw | 1.37 | Ⅴ | 非常敏感 |
空气222Rn浓度Ca | 0.02 | Ⅰ | 不敏感 |
地下水222Rn浓度Cg | 1.11 | Ⅴ | 非常敏感 |
湖水温度T | 0.01 | Ⅰ | 不敏感 |
空气温度Ta | 0.26 | Ⅲ | 一般敏感 |
平衡试验后上覆水222Rn浓度C0 | 0.13 | Ⅱ | 弱敏感 |
孔隙度n | 0.05 | Ⅱ | 弱敏感 |
湘江222Rn浓度 | 0.21 | Ⅲ | 一般敏感 |
资水222Rn浓度 | 0.09 | Ⅱ | 弱敏感 |
沅江222Rn浓度 | 0.08 | Ⅱ | 弱敏感 |
澧水222Rn浓度 | 0.03 | Ⅰ | 不敏感 |
松滋河222Rn浓度 | 0.01 | Ⅰ | 不敏感 |
城陵矶222Rn浓度 | 0.35 | Ⅲ | 一般敏感 |
湘江流量 | 0.21 | Ⅲ | 一般敏感 |
资江流量 | 0.08 | Ⅱ | 弱敏感 |
沅江流量 | 0.08 | Ⅱ | 弱敏感 |
澧水流量 | 0.02 | Ⅰ | 不敏感 |
松滋河流量 | 0.01 | Ⅰ | 不敏感 |
城陵矶流量 | 0.35 | Ⅲ | 一般敏感 |
湖泊面积 | 1.16 | Ⅴ | 非常敏感 |
风速 | 1.49 | Ⅴ | 非常敏感 |
湖水深度 | 0.32 | Ⅲ | 一般敏感 |
Table 3 Sensitivity analysis and calculation results of radon box model parameters
参数 | 相对敏感度 | 敏感分级 | 敏感性特征 |
---|---|---|---|
湖水222Rn浓度Cw | 1.37 | Ⅴ | 非常敏感 |
空气222Rn浓度Ca | 0.02 | Ⅰ | 不敏感 |
地下水222Rn浓度Cg | 1.11 | Ⅴ | 非常敏感 |
湖水温度T | 0.01 | Ⅰ | 不敏感 |
空气温度Ta | 0.26 | Ⅲ | 一般敏感 |
平衡试验后上覆水222Rn浓度C0 | 0.13 | Ⅱ | 弱敏感 |
孔隙度n | 0.05 | Ⅱ | 弱敏感 |
湘江222Rn浓度 | 0.21 | Ⅲ | 一般敏感 |
资水222Rn浓度 | 0.09 | Ⅱ | 弱敏感 |
沅江222Rn浓度 | 0.08 | Ⅱ | 弱敏感 |
澧水222Rn浓度 | 0.03 | Ⅰ | 不敏感 |
松滋河222Rn浓度 | 0.01 | Ⅰ | 不敏感 |
城陵矶222Rn浓度 | 0.35 | Ⅲ | 一般敏感 |
湘江流量 | 0.21 | Ⅲ | 一般敏感 |
资江流量 | 0.08 | Ⅱ | 弱敏感 |
沅江流量 | 0.08 | Ⅱ | 弱敏感 |
澧水流量 | 0.02 | Ⅰ | 不敏感 |
松滋河流量 | 0.01 | Ⅰ | 不敏感 |
城陵矶流量 | 0.35 | Ⅲ | 一般敏感 |
湖泊面积 | 1.16 | Ⅴ | 非常敏感 |
风速 | 1.49 | Ⅴ | 非常敏感 |
湖水深度 | 0.32 | Ⅲ | 一般敏感 |
[1] | LI Y L, ZHANG Q, CAI Y J, et al. Hydrodynamic investigation of surface hydrological connectivity and its effects on the water quality of seasonal lakes: insights from a complex floodplain setting (Poyang Lake, China)[J]. Science of the Total Environment, 2019, 660: 245-259. |
[2] | 梁亚琳, 黎昔春, 郑颖. 洞庭湖径流变化特性研究[J]. 中国农村水利水电, 2015(5): 67-71. |
[3] | 詹泸成, 陈建生, 张时音. 洞庭湖湖区降水-地表水-地下水同位素特征[J]. 水科学进展, 2014, 25(3): 327-335. |
[4] | 孙晓梁, 杜尧, 邓娅敏, 等. 1996—2017年枯水期地下水排泄对洞庭湖水量均衡的贡献及其时间变异性[J]. 地球科学, 2021, 46(7): 2555-2564. |
[5] | 曹玲玲, 王宗礼, 刘耀炜. 氡迁移机理研究进展概述[J]. 地震研究, 2005, 28(3): 302-306. |
[6] | CORBETT D R, BURNETT W C, CABLE P H, et al. A multiple approach to the determination of radon fluxes from sediments[J]. Journal of Radioanalytical and Nuclear Chemistry, 1998, 236(1): 247-253. |
[7] | 郭占荣, 李开培, 袁晓婕, 等. 用氡-222评价五缘湾的地下水输入[J]. 水科学进展, 2012, 23(2): 263-270. |
[8] | 孙小龙, 王广才, 邵志刚, 等. 海原断裂带土壤气与地下水地球化学特征研究[J]. 地学前缘, 2016, 23(3): 140-150. |
[9] | 戴波, 赵启光, 张敏, 等. 郯庐断裂带宿迁段合欢路土壤氡分布特征与迁移特征的数值模拟[J]. 震灾防御技术, 2021, 16(1): 220-228. |
[10] | 王雨山, 程旭学, 张梦南, 等. 基于222Rn的马莲河下游地下水补给河水空间差异特征研究[J]. 水文地质工程地质, 2018, 45(5): 34-40. |
[11] | GLASER C, SCHWIENTEK M, JUNGINGER T, et al. Comparison of environmental tracers including organic micropollutants as groundwater exfiltration indicators into a small river of a karstic catchment[J]. Hydrological Processes, 2020, 34(24): 4712-4726. |
[12] | STRYDOM T, NEL J M, NEL M, et al. The use of Radon (222Rn) isotopes to detect groundwater discharge in streams draining Table Mountain Group (TMG) aquifers[J]. Water SA, 2021, 47(2): 194-199. |
[13] | 何炳毅, 杨英魁, 孔凡翠, 等. 青海湖布哈河流域枯水期氢氧同位素和氡同位素分布特征及其意义[J]. 地质学报, 2022, 96: 1-15. |
[14] | 郭巧娜, 赵岳, 周志芳, 等. 人类活动影响下的龙口海岸带海底地下水排泄通量研究[J]. 地学前缘, 2022, 29(4): 468-479. |
[15] | 廖福, 罗新, 谢月清, 等. 氡(222Rn)在地下水-地表水相互作用中的应用研究进展[J]. 地学前缘, 2022, 29(3): 76-87. |
[16] | 危润初, 唐仕明, 吴长山, 等. 洞庭湖区浅层地下水氧化还原分带规律[J]. 中国环境科学, 2020, 40(4): 1715-1722. |
[17] | 黄艳雯, 杜尧, 徐宇, 等. 洞庭湖平原西部地区浅层承压水中铵氮的来源与富集机理[J]. 地质科技通报, 2020, 39(6): 165-174. |
[18] | LIAO F, WANG G C, SHI Z M, et al. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: approaches using stable isotopes (δD and δ18O) and radon[J]. Hydrogeology Journal, 2018, 26(5): 1625-1638. |
[19] | LUO X, JIAO J J, WANG X S, et al. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: implication of water balance in the Badain Jaran Desert, China[J]. Journal of Hydrology, 2016, 534: 87-103. |
[20] | COLUCCIO K M, SANTOS I R, JEFFREY L C, et al. Groundwater discharge rates and uncertainties in a coastal lagoon using a radon mass balance[J]. Journal of Hydrology, 2021, 598: 126436. |
[21] | SCHULZ H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]// SCHULZH D, ZABELM. Marine geochemistry. Berlin, Heidelberg:Springer, 2006: 73-124. |
[22] | BURNETT W C, DULAIOVA H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1/2): 21-35. |
[23] | MACINTYRE S, WANNINKHOF R, CHANTON J P. Trace gas exchange across the air-water interface in freshwater and coastal marine environments[M]// MASATSONP A, HARRISSR C. Biogenic trace gases:measuring emissions from soil and water. Oxford: Blackwell Science Ltd, 1995: 52-77. |
[24] | DIMOVA N T, BURNETT W C, CHANTON J P, et al. Application of radon-222 to investigate groundwater discharge into small shallow lakes[J]. Journal of Hydrology, 2013, 486: 112-122. |
[25] | 田雨, 雷晓辉, 蒋云钟, 等. 水文模型参数敏感性分析方法研究评述[J]. 水文, 2010, 30(4): 9-12, 62. |
[26] | 李燕, 李兆富, 席庆. HSPF径流模拟参数敏感性分析与模型适用性研究[J]. 环境科学, 2013, 34(6): 2139-2145. |
[27] | 连生土, 肖江. 洞庭湖浅层地下水环境背景值的研究[J]. 福建建筑, 2010(10): 61-63. |
[1] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[2] | WU Hao, YANG Chen, WU Yanwang, LI Cai, LIU Fei, LIN Zhaoxu. Petrogenesis of Late Cretaceous magmatic rocks in the Zhongcang area of northern Tibet and their implications for early uplift of the plateau [J]. Earth Science Frontiers, 2024, 31(6): 261-281. |
[3] | HU Han, ZHANG Lifei, PENG Weigang, LAN Chunyuan, LIU Zhicheng. Formation of graphite in ultrahigh-pressure pelitic schists from the southwestern Tianshan: Implications for carbon migration and sequestration in subduction zones [J]. Earth Science Frontiers, 2024, 31(6): 282-303. |
[4] | CAO Jianhua, YANG Hui, HUANG Fen, ZHANG Chunlai, ZHANG Liankai, ZHU Tongbin, ZHOU Mengxia, YUAN Daoxian. The principle, process, and measurement of karst carbon sink [J]. Earth Science Frontiers, 2024, 31(5): 358-376. |
[5] | YUAN Yaqiong, SUN Ping’an, YU Shi, HE Shiyi. Fractionation of stable isotopes and the carbon-water cycle in Yangtze River [J]. Earth Science Frontiers, 2024, 31(5): 409-420. |
[6] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[7] | JIA Guodong, XU Sheng, LIU Congqiang. Uranium series disequilibrium constraints on the formation and evolution of granite regolith in Longnan, Jiangxi Province [J]. Earth Science Frontiers, 2024, 31(4): 366-379. |
[8] | LIU Wei, ZHANG Hongrui, LUO Dike, JIA Pengfei, JIN Lijie, ZHOU Yonggang, LIANG Yunhan, WANG Zisheng, LI Chunjia. Petrogenesis of Paleoproterozoic granites in the Dondo area, northern Angola block: Geological response to the assembly of Columbia Supercontinent [J]. Earth Science Frontiers, 2024, 31(4): 237-257. |
[9] | TONG Kui, LI Zhiwu, LIU Shugen, I.Tonguç UYSAL, SHI Zejin, LI Jinxi, Andrew TODD, WU Wenhui, WANG Zijian, LIU Shengwu, LI Ke, HUA Tian. Middle Eocene thrusting deformation along the Anninghe fault and its regional tectonic implication: Insight from K-Ar dating of authigenic illite-bearing fault gouge [J]. Earth Science Frontiers, 2024, 31(4): 297-313. |
[10] | LI Fanglan, LIU Xuelong, ZHOU Yunman, ZHAO Chengfeng, LI Shoukui, WANG Jiyuan, LU Bode, LI Qingrui, ZHANG Weiwen, WANG Hai, CAO Zhenliang, ZHOU Jiehu. Geochronology and geochemical characteristics of the Douya iron-copper polymetallic deposit in the Baoshan block, western Yunnan [J]. Earth Science Frontiers, 2024, 31(3): 113-132. |
[11] | YIN Qingqing, TANG Juxing, XIANG Xinkui, ZHAO Xiaoyan, WANG Fangyue, XU Yumin, GUO Hu, YU Zhendong, XIE Jinling, DAI Jingjing, PENG Bo. Petrogenesis of reductive S-type granites in the Pengshan district, northern Jiangxi Province, and their implications for tin enrichment: Insights from zircon trace elements [J]. Earth Science Frontiers, 2024, 31(3): 133-149. |
[12] | ZI Yanmei, TIAN Shihong, CHEN Xinyang, HOU Zengqian, YANG Zhiming, GONG Yingli, TANG Qingyu. Potassium and magnesium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks and its indicative significance: A case study of the Qulong porphyry copper deposit, southern Tibet [J]. Earth Science Frontiers, 2024, 31(3): 150-169. |
[13] | ZHI Qian, REN Rui, DUAN Fenghao, HUANG Jiaxuan, ZHU Zhao, ZHANG Xinyuan, LI Yongjun. Genetic mechanism of Late Carboniferous intermediate-acid volcanic rocks in southern West Junggar and its constraints on the closure of the Junggar Ocean [J]. Earth Science Frontiers, 2024, 31(3): 40-58. |
[14] | LIU Chiheng, LI Ziying, HE Feng, ZHANG Zilong, LI Zhencheng, LING Mingxing, LIU Ruiping. Quantitative analysis of provenance in the Lower Cretaceous of the northwestern Ordos Basin [J]. Earth Science Frontiers, 2024, 31(3): 80-99. |
[15] | LI Haidong, TIAN Shihong, LIU Bin, HU Peng, WU Jianyong, CHEN Zhengle. In-situ microchronology and elemental analysis of pitchblende in the Pajiang uranium deposit, northern Guangdong: Implications for uranium mineralization [J]. Earth Science Frontiers, 2024, 31(2): 270-283. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||