Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 247-262.DOI: 10.13745/j.esf.sf.2023.2.21
Previous Articles Next Articles
Received:
2023-01-12
Revised:
2023-02-15
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
MA Anlai, QI Lixin. Geochemical characteristics and phase behavior of the Ordovician ultra-deep reservoir fluid, No.4 fault, northern Shuntuoguole, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 247-262.
井号 | 井深/m | 层位 | 密度/ (g·cm-3) | 黏度/ (mPa·s) | 蜡含量/ % | 硫含量/ % | 凝固点/ ℃ | GOR/ (m3·m-3) | 油气藏 温度/℃ | δ13C全油/ ‰ |
---|---|---|---|---|---|---|---|---|---|---|
MS3a | O2yi | 0.796 0 | 358 | |||||||
MS1* | 7 509.50~7 665.62 | O2yj | 0.793 6 | 1.358 9 | 12.3 | 0.13 | 536 | 162 | ||
SB44X | 7 493.49~7 882.55 | O2yj+O1-2y | 0.790 2 | 2.037 | 3.60 | 0.039 | -12 | 795 | 165 | -31.7 |
SB41X | 7 529.70~7 632.84 | O2yj | 0.784 3 | 1.90 | 7.64 | 0.075 3 | -2 | -31.5 | ||
SB41X-C | 7 531.00~7 984.10 | O2yj+O1-2y | 0.759 2 | 1.34 | 1.74 | 0.374 | -24 | 2 888 | 168 | -30.2 |
SB4 | 7 777.00~7 950.00 | O2yj | 0.825 4 | 3.40 | 2.08 | 0.413 | -10 | 3 200 | -29.4 | |
SB42X | 7 422.00~7 635.00 | O3q+O2yj+O1-2y | 0.772 7 | 1.43 | 8.66 | 0.176 | -12 | 2 394 | 157 | -31.3 |
Table 1 Physical properties and 13C composition of crude oil samples from wells, F4, northern Shuntuoguole
井号 | 井深/m | 层位 | 密度/ (g·cm-3) | 黏度/ (mPa·s) | 蜡含量/ % | 硫含量/ % | 凝固点/ ℃ | GOR/ (m3·m-3) | 油气藏 温度/℃ | δ13C全油/ ‰ |
---|---|---|---|---|---|---|---|---|---|---|
MS3a | O2yi | 0.796 0 | 358 | |||||||
MS1* | 7 509.50~7 665.62 | O2yj | 0.793 6 | 1.358 9 | 12.3 | 0.13 | 536 | 162 | ||
SB44X | 7 493.49~7 882.55 | O2yj+O1-2y | 0.790 2 | 2.037 | 3.60 | 0.039 | -12 | 795 | 165 | -31.7 |
SB41X | 7 529.70~7 632.84 | O2yj | 0.784 3 | 1.90 | 7.64 | 0.075 3 | -2 | -31.5 | ||
SB41X-C | 7 531.00~7 984.10 | O2yj+O1-2y | 0.759 2 | 1.34 | 1.74 | 0.374 | -24 | 2 888 | 168 | -30.2 |
SB4 | 7 777.00~7 950.00 | O2yj | 0.825 4 | 3.40 | 2.08 | 0.413 | -10 | 3 200 | -29.4 | |
SB42X | 7 422.00~7 635.00 | O3q+O2yj+O1-2y | 0.772 7 | 1.43 | 8.66 | 0.176 | -12 | 2 394 | 157 | -31.3 |
井号 | 生产井段深度/m | 层位 | 油气藏 压力/ MPa | 油气藏 温度/ ℃ | 生产气 油比/ (m3·m-3) | 露点 压力/ MPa | 地露 压差/ MPa | 临界 压力pc/ MPa | 临界 温度/ ℃ | 临界蒸发 压力pm/ MPa | 临界凝析 温度Tm/ ℃ | 凝析油 含量/ (g·m-3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MS3* | O2yj | 84.05 | 150.3 | 29.46 | 310.5 | 36.59 | 415 | |||||
SB41X-C | 7 531.00~7 984.10 | O2yj+O1-2y | 92.51 | 168.1 | 2 670 | 37.54 | 54.97 | 22.04 | -42.2 | 40.15 | 319.5 | 230.33 |
SB42X | 7 462.00~7 635.00 | O3q+O2yj+O1-2y | 86.85 | 158.81 | 2 568 | 46.58 | 40.27 | 38.52 | -7.4 | 48.07 | 376.7 | 245.15 |
SB4-1H | 7 397.00~7 935.5 | O2yj+O1-2y | 86.18 | 163.81 | 1 616 | 43.64 | 42.54 | 13.72 | -110.35 | 45.336 | 335.89 | 306.75 |
Table 2 pVT data for Ordovician reservoirs, F4
井号 | 生产井段深度/m | 层位 | 油气藏 压力/ MPa | 油气藏 温度/ ℃ | 生产气 油比/ (m3·m-3) | 露点 压力/ MPa | 地露 压差/ MPa | 临界 压力pc/ MPa | 临界 温度/ ℃ | 临界蒸发 压力pm/ MPa | 临界凝析 温度Tm/ ℃ | 凝析油 含量/ (g·m-3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MS3* | O2yj | 84.05 | 150.3 | 29.46 | 310.5 | 36.59 | 415 | |||||
SB41X-C | 7 531.00~7 984.10 | O2yj+O1-2y | 92.51 | 168.1 | 2 670 | 37.54 | 54.97 | 22.04 | -42.2 | 40.15 | 319.5 | 230.33 |
SB42X | 7 462.00~7 635.00 | O3q+O2yj+O1-2y | 86.85 | 158.81 | 2 568 | 46.58 | 40.27 | 38.52 | -7.4 | 48.07 | 376.7 | 245.15 |
SB4-1H | 7 397.00~7 935.5 | O2yj+O1-2y | 86.18 | 163.81 | 1 616 | 43.64 | 42.54 | 13.72 | -110.35 | 45.336 | 335.89 | 306.75 |
井号 | 层位 | Pr/Ph | Pr/nC17 | Ph/nC18 | n | (nC21+nC22)/ (nC28+nC29) | >nC11含量/ (mg·g-1) |
---|---|---|---|---|---|---|---|
MS3 | O2yj | 0.91 | 0.32 | 0.41 | 4.96 | 2.64 | 97.45 |
MS1 | O2yj | 1.01 | 0.34 | 0.40 | 4.82 | 2.66 | 99.91 |
SB44X | O2yj+O1-2y | 1.08 | 0.25 | 0.27 | 5.69 | 3.38 | 97.64 |
SB41X | O2yj | 1.25 | 0.28 | 0.27 | 4.82 | 2.97 | 133.44 |
SB41X-C | O2yj+O1-2y | 1.23 | 0.19 | 0.20 | 9.15 | 4.02 | 92.64 |
SB4 | O2yj | 1.63 | 0.17 | 0.12 | 8.19 | 3.87 | 119.98 |
SB4 | O2yj | 1.40 | 0.14 | 0.13 | 12.77 | 5.56 | 120.29 |
SB42X | O3q+O2yj+O1-2y | 1.20 | 0.31 | 0.32 | 7.07 | 3.29 | 83.49 |
Table 3 Whole-oil n-alkane (n>11) parameters and contents in the studied oil samples, F4
井号 | 层位 | Pr/Ph | Pr/nC17 | Ph/nC18 | n | (nC21+nC22)/ (nC28+nC29) | >nC11含量/ (mg·g-1) |
---|---|---|---|---|---|---|---|
MS3 | O2yj | 0.91 | 0.32 | 0.41 | 4.96 | 2.64 | 97.45 |
MS1 | O2yj | 1.01 | 0.34 | 0.40 | 4.82 | 2.66 | 99.91 |
SB44X | O2yj+O1-2y | 1.08 | 0.25 | 0.27 | 5.69 | 3.38 | 97.64 |
SB41X | O2yj | 1.25 | 0.28 | 0.27 | 4.82 | 2.97 | 133.44 |
SB41X-C | O2yj+O1-2y | 1.23 | 0.19 | 0.20 | 9.15 | 4.02 | 92.64 |
SB4 | O2yj | 1.63 | 0.17 | 0.12 | 8.19 | 3.87 | 119.98 |
SB4 | O2yj | 1.40 | 0.14 | 0.13 | 12.77 | 5.56 | 120.29 |
SB42X | O3q+O2yj+O1-2y | 1.20 | 0.31 | 0.32 | 7.07 | 3.29 | 83.49 |
井号 | H/% | I | MPI1 | MPI2 | F1 | Rc1/% | Rc2/% | Rc3/% | MDR | Rc4/% | MAI/% | MDI/% | Rc5/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS3 | 38.21 | 2.47 | 1.31 | 1.57 | 0.64 | 1.18 | 1.52 | 1.27 | 31.84 | 1.81 | 74.08 | 43.57 | 1.50 |
MS1 | 38.81 | 2.53 | 1.29 | 1.54 | 0.63 | 1.17 | 1.53 | 1.26 | 37.22 | 1.85 | 74.66 | 42.87 | 1.48 |
SB44X | 37.21 | 2.89 | 1.23 | 1.44 | 0.62 | 1.14 | 1.56 | 1.23 | 13.04 | 1.58 | 75.88 | 43.32 | 1.50 |
SB41X | 44.61 | 3.15 | 0.82 | 0.89 | 0.48 | 0.89 | 1.81 | 0.91 | 2.22 | 1.11 | 73.16 | 45.68 | 1.55 |
SB41X-C | 41.20 | 3.31 | 0.92 | 0.91 | 0.61 | 0.95 | 1.75 | 1.20 | 4.71 | 1.31 | 79.28 | 44.53 | 1.53 |
SB4 | 42.63 | 3.06 | 1.18 | 1.25 | 0.67 | 1.11 | 1.59 | 1.33 | 9.87 | 1.51 | 77.55 | 45.43 | 1.55 |
SB4 | 46.48 | 2.91 | 0.99 | 0.99 | 0.68 | 0.99 | 1.71 | 1.35 | 3.14 | 1.20 | 80.03 | 46.61 | 1.58 |
SB42X | 42.20 | 2.76 | 0.98 | 1.05 | 0.59 | 0.99 | 1.71 | 1.16 | 3.22 | 1.21 | 77.47 | 47.08 | 1.59 |
Table 4 Maturity parameters for the studied oil samples from F4
井号 | H/% | I | MPI1 | MPI2 | F1 | Rc1/% | Rc2/% | Rc3/% | MDR | Rc4/% | MAI/% | MDI/% | Rc5/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS3 | 38.21 | 2.47 | 1.31 | 1.57 | 0.64 | 1.18 | 1.52 | 1.27 | 31.84 | 1.81 | 74.08 | 43.57 | 1.50 |
MS1 | 38.81 | 2.53 | 1.29 | 1.54 | 0.63 | 1.17 | 1.53 | 1.26 | 37.22 | 1.85 | 74.66 | 42.87 | 1.48 |
SB44X | 37.21 | 2.89 | 1.23 | 1.44 | 0.62 | 1.14 | 1.56 | 1.23 | 13.04 | 1.58 | 75.88 | 43.32 | 1.50 |
SB41X | 44.61 | 3.15 | 0.82 | 0.89 | 0.48 | 0.89 | 1.81 | 0.91 | 2.22 | 1.11 | 73.16 | 45.68 | 1.55 |
SB41X-C | 41.20 | 3.31 | 0.92 | 0.91 | 0.61 | 0.95 | 1.75 | 1.20 | 4.71 | 1.31 | 79.28 | 44.53 | 1.53 |
SB4 | 42.63 | 3.06 | 1.18 | 1.25 | 0.67 | 1.11 | 1.59 | 1.33 | 9.87 | 1.51 | 77.55 | 45.43 | 1.55 |
SB4 | 46.48 | 2.91 | 0.99 | 0.99 | 0.68 | 0.99 | 1.71 | 1.35 | 3.14 | 1.20 | 80.03 | 46.61 | 1.58 |
SB42X | 42.20 | 2.76 | 0.98 | 1.05 | 0.59 | 0.99 | 1.71 | 1.16 | 3.22 | 1.21 | 77.47 | 47.08 | 1.59 |
井号 | 层位 | C1 含量/% | C2 含量/% | C3 含量/% | iC4 含量/% | nC4 含量/% | iC5 含量/% | nC5 含量/% | n 含量/% | CO2 含量/% | N2 含量/% | H2S质量浓度/ (mg·m-3) | 干燥 系数 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS1* | O2yj | 82.41 | 5.89 | 3.77 | 4 767 | 0.890 | |||||||
SB44X | O2yj+O1-2y | 82.33 | 5.20 | 2.18 | 0.61 | 0.92 | 0.31 | 0.30 | 0.09 | 4.25 | 3.57 | 19 526(6) | 0.896 |
SB43X | O2yj+O1-2y | 83.22 | 4.48 | 1.71 | 0.64 | 0.77 | 0.31 | 0.32 | 0.11 | 5.33 | 2.72 | 6 262(6) | 0.910 |
SB4-9H | O1-2y | 83.45 | 4.20 | 1.23 | 0.28 | 0.33 | 0.08 | 0.07 | 0.005 | 5.92 | 3.25 | 16 157(9) | 0.931 |
SB4-4H | O1-2y | 80.22 | 3.73 | 1.39 | 0.56 | 0.62 | 0.27 | 0.23 | 0.07 | 10.34 | 2.25 | 23 88(1) | 0.922 |
SB41X-C | O2yj+O1-2y | 79.67 | 3.79 | 1.11 | 0.34 | 0.40 | 0.19 | 0.15 | 0.09 | 11.69 | 2.45 | 8 255(9) | 0.930 |
SB4-2H | O2yj+O1-2y | 83.15 | 2.77 | 0.80 | 0.41 | 0.38 | 0.19 | 0.15 | 0.02 | 9.65 | 2.12 | 19 272(10) | 0.946 |
SB4-7H | O1-2y | 83.70 | 3.04 | 0.77 | 0.24 | 0.22 | 0.07 | 0.045 | 0.085 | 9.71 | 2.11 | 19 998(7) | 0.950 |
SB4 | O2yj | 81.13 | 1.59 | 0.51 | 0.16 | 0.26 | 0.14 | 0.14 | 0.15 | 8.52 | 7.39 | 69 853(6) | 0.965 |
SB42X | O3q+O2yj+O1-2y | 82.74 | 2.75 | 0.90 | 0.33 | 0.40 | 0.17 | 0.16 | 0.04 | 9.24 | 3.03 | 27 085(6) | 0.946 |
SB4-3H | O2yj+O1-2y | 83.23 | 2.49 | 0.62 | 0.15 | 0.21 | 0.07 | 0.06 | 0.02 | 9.82 | 3.10 | 0.958 | |
SB4-1H | O2yj+O1-2y | 81.44 | 2.23 | 0.69 | 0.32 | 0.27 | 0.09 | 0.09 | 0.00 | 11.25 | 3.22 | 22 506(3) | 0.957 |
Table 5 Alkane composition and dryness coefficient of the studied natural gas samples from F4
井号 | 层位 | C1 含量/% | C2 含量/% | C3 含量/% | iC4 含量/% | nC4 含量/% | iC5 含量/% | nC5 含量/% | n 含量/% | CO2 含量/% | N2 含量/% | H2S质量浓度/ (mg·m-3) | 干燥 系数 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS1* | O2yj | 82.41 | 5.89 | 3.77 | 4 767 | 0.890 | |||||||
SB44X | O2yj+O1-2y | 82.33 | 5.20 | 2.18 | 0.61 | 0.92 | 0.31 | 0.30 | 0.09 | 4.25 | 3.57 | 19 526(6) | 0.896 |
SB43X | O2yj+O1-2y | 83.22 | 4.48 | 1.71 | 0.64 | 0.77 | 0.31 | 0.32 | 0.11 | 5.33 | 2.72 | 6 262(6) | 0.910 |
SB4-9H | O1-2y | 83.45 | 4.20 | 1.23 | 0.28 | 0.33 | 0.08 | 0.07 | 0.005 | 5.92 | 3.25 | 16 157(9) | 0.931 |
SB4-4H | O1-2y | 80.22 | 3.73 | 1.39 | 0.56 | 0.62 | 0.27 | 0.23 | 0.07 | 10.34 | 2.25 | 23 88(1) | 0.922 |
SB41X-C | O2yj+O1-2y | 79.67 | 3.79 | 1.11 | 0.34 | 0.40 | 0.19 | 0.15 | 0.09 | 11.69 | 2.45 | 8 255(9) | 0.930 |
SB4-2H | O2yj+O1-2y | 83.15 | 2.77 | 0.80 | 0.41 | 0.38 | 0.19 | 0.15 | 0.02 | 9.65 | 2.12 | 19 272(10) | 0.946 |
SB4-7H | O1-2y | 83.70 | 3.04 | 0.77 | 0.24 | 0.22 | 0.07 | 0.045 | 0.085 | 9.71 | 2.11 | 19 998(7) | 0.950 |
SB4 | O2yj | 81.13 | 1.59 | 0.51 | 0.16 | 0.26 | 0.14 | 0.14 | 0.15 | 8.52 | 7.39 | 69 853(6) | 0.965 |
SB42X | O3q+O2yj+O1-2y | 82.74 | 2.75 | 0.90 | 0.33 | 0.40 | 0.17 | 0.16 | 0.04 | 9.24 | 3.03 | 27 085(6) | 0.946 |
SB4-3H | O2yj+O1-2y | 83.23 | 2.49 | 0.62 | 0.15 | 0.21 | 0.07 | 0.06 | 0.02 | 9.82 | 3.10 | 0.958 | |
SB4-1H | O2yj+O1-2y | 81.44 | 2.23 | 0.69 | 0.32 | 0.27 | 0.09 | 0.09 | 0.00 | 11.25 | 3.22 | 22 506(3) | 0.957 |
[1] | 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. |
[2] |
漆立新. 塔里木盆地顺北超深断溶体油藏特征与启示[J]. 中国石油勘探, 2020, 25(1): 102-111.
DOI |
[3] |
田军, 杨海军, 朱永峰, 等. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J]. 石油学报, 2021, 42(8): 971-985.
DOI |
[4] | 王清华, 杨海军, 汪如军, 等. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J]. 中国石油勘探, 2021, 26(4): 58-71. |
[5] |
马永生, 蔡勋育, 云露, 等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022, 49(1): 1-17.
DOI |
[6] | 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J]. 中国石油勘探, 2016, 21(3): 38-51. |
[7] | 顾忆, 万旸璐, 黄继文, 等. “大埋深、高压力”条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质, 2019, 41(2): 157-164. |
[8] | 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. |
[9] | 云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142. |
[10] |
杨海军, 邓兴梁, 张银涛, 等. 塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J]. 中国石油勘探, 2020, 25(3): 13-23.
DOI |
[11] |
WU L Y, JIN Z J, LIU K Y, et al. Evolution of a deeply-buried oil reservoir in the North Shuntuoguole Low Uplift, Tarim Basin, western China: insights from molecular geochemistry and Re-Os geochronology[J]. Marine and Petroleum Geology, 2021, 134: 105365.
DOI URL |
[12] |
YANG P, LIU K Y, LIU J L, et al. Petroleum charge history of deeply buried carbonate reservoirs in the Shuntuoguole Low Uplift, Tarim Basin, West China[J]. Marine and Petroleum Geology, 2021, 128: 105063.
DOI URL |
[13] |
杨率, 邬光辉, 朱永峰, 等. 塔里木盆地北部地区超深断控油藏关键成藏期[J]. 石油勘探与开发, 2022, 49(2): 249-261.
DOI |
[14] |
杨鹏, 刘可禹, LI Z, 等. 塔里木盆地跃参地区YJ1X井超深层油藏演化[J]. 石油勘探与开发, 2022, 49(2): 262-273.
DOI |
[15] |
张水昌, 苏劲, 张斌, 等. 塔里木盆地深层海相轻质油/凝析油的成因机制与控制因素[J]. 石油学报, 2021, 42(12): 1566-1580.
DOI |
[16] | 张水昌, 朱光有, 杨海军, 等. 塔里木盆地北部奥陶系油气相态及其成因分析[J]. 岩石学报, 2011, 27(8): 2447-2460. |
[17] |
ZHU G Y, ZHANG Z Y, ZHOU X X, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 102930.
DOI URL |
[18] | 马安来, 金之钧, 李慧莉, 等. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存[J]. 地球科学, 2020, 45(5): 1737-1753. |
[19] | 马安来, 何治亮, 云露, 等. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因[J]. 天然气地球科学, 2021, 32(7): 1047-1060. |
[20] | 赵星星, 李斌, 邬光辉, 等. 塔里木盆地塔中Ⅲ区奥陶系多相态油气藏成因及富集模式[J]. 天然气地球科学, 2022, 33(1): 36-48. |
[21] | 马安来, 林会喜, 云露, 等. 塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义[J]. 天然气地球科学, 2021, 32(3): 334-346. |
[22] |
马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 42-53.
DOI |
[23] | PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide(Volume 2): biomarkers and isotopes in petroleum exploration and earth history[M]. Cambridge: Cambridge University Press, 2005. |
[24] |
CONNAN J, CASON A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44(1): 1-23.
DOI URL |
[25] |
HUGHES W B, HOLBA A G, DZOU I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598.
DOI URL |
[26] |
LI S M, AMRANI A, PANG X Q, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J]. Organic Geochemistry, 2015, 78: 1-22.
DOI URL |
[27] |
LIN R Z, WANG P R. PAH in fossil fuels and their geochemical significance[J]. Journal of Southeast Asian Earth Sciences, 1991, 5(1/2/3/4): 257-262.
DOI URL |
[28] |
THOMPSON K F M. Classification and thermal history of petroleum based on light hydrocarbons[J]. Geochimica et Cosmochimica Acta, 1983, 47(2): 303-316.
DOI URL |
[29] | WALTERS C C, ISAKSEN G H, PETERS K E. Applications of light hydrocarbon molecular and isotopic compositions in oil and gas exploration[M]//HSU C S. Analytical advances for hydrocarbon research. Boston: Springer, 2003: 247-266. |
[30] |
RADKE M, WELTE D H, WILLSCH H. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter[J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10.
DOI URL |
[31] |
KVALHEIM O M, CHRISTY A A, TELNæS N, et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888.
DOI URL |
[32] |
CHAKHMAKHCHEV A, SUZUKI M, TAKAYAMA K. Distribution of alkylated dibenzothiophenes in petroleum as a tool for maturity assessments[J]. Organic Geochemistry, 1997, 26(7/8): 483-489.
DOI URL |
[33] |
CHEN J H, FU J M, SHENG G Y, et al. Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oils[J]. Organic Geochemistry, 1996, 25(3/4): 179-190.
DOI URL |
[34] |
彭平安, 贾承造. 深层烃源演化与原生轻质油/凝析油气资源潜力[J]. 石油学报, 2021, 42(12): 1543-1555.
DOI |
[35] | 李剑, 李志生, 王晓波, 等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发, 2017, 44(4): 503-512. |
[36] | TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. Berlin, Heidelberg: Springer, 1984. |
[37] |
李峰, 朱光有, 吕修祥, 等. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定[J]. 石油学报, 2021, 42(11): 1417-1436.
DOI |
[38] |
李建忠, 陶小晚, 白斌, 等. 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发, 2021, 48(1): 52-67.
DOI |
[39] |
ZHU G Y, MILKOV A V, LI J F, et al. Deepest oil in Asia: characteristics of petroleum system in the Tarim Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 199: 108246.
DOI URL |
[40] |
吴鲜, 李丹, 韩俊, 等. 塔里木盆地顺托果勒北部地区超深层现今地温场特征[J]. 石油学报, 2022, 43(1): 29-40.
DOI |
[41] |
LIU Y C, QIU N S, LI H L, et al. Terrestrial heat flow and crustal thermal structure in the northern slope of Tazhong uplift in Tarim Basin[J]. Geothermics, 2020, 83: 101709.
DOI URL |
[42] |
杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72.
DOI |
[43] | 杨海军, 于双, 张海祖, 等. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J]. 地球化学, 2020, 49(6): 666-682. |
[44] |
THOMPSON K F M. Gas-condensate migration and oil fractionation in deltaic systems[J]. Marine and Petroleum Geology, 1988, 5(3): 237-246.
DOI URL |
[45] |
ZHANG S C. The migration fractionation: an important mechanism in the formation of condensate and waxy oil[J]. Chinese Science Bulletin, 2000, 45(14): 1341-1344.
DOI URL |
[46] |
ZHANG S C, SU J, WANG X M, et al. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations[J]. Organic Geochemistry, 2011, 42(11): 1394-1410.
DOI URL |
[47] |
KISSIN Y. Catagenesis and composition of petroleum: origin of n-alkanes and isoalkanes in petroleum crudes[J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2445-2457.
DOI URL |
[48] |
CHENG B, LIU H, CAO Z C, et al. Origin of deep oil accumulations in carbonate reservoirs within the North Tarim Basin: insights from molecular and isotopic compositions[J]. Organic Geochemistry, 2020, 139: 103931.
DOI URL |
[49] |
DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(6731): 54-57.
DOI URL |
[50] |
CHAI Z, CHEN Z H, LIU H, et al. Light hydrocarbons and diamondoids of light oils in deep reservoirs of Shuntuoguole Low Uplift, Tarim Basin: implication for the evaluation on thermal maturity, secondary alteration and source characteristics[J]. Marine and Petroleum Geology, 2020, 117: 104388.
DOI URL |
[51] |
WANG Q, HAO F, CAO Z C, et al. Geochemistry and origin of the ultra-deep Ordovician oils in the Shunbei field, Tarim Basin, China: implications on alteration and mixing[J]. Marine and Petroleum Geology, 2021, 123: 104725.
DOI URL |
[52] |
WANG Q, HAO F, CAO Z C, et al. Heteroatom compounds in oils from the Shuntuoguole Low Uplift, Tarim Basin characterized by (+ESI) FT-ICR MS: implications for ultra-deep petroleum charges and alteration[J]. Marine and Petroleum Geology, 2021, 134: 105321.
DOI URL |
[53] |
ZHOU C X, YU S, HUANG W Y, et al. Oil maturities, mixing and charging episodes in the cratonic regions of the Tarim Basin, NW China: insight from biomarker and diamondoid concentrations and oil bulk properties[J]. Marine and Petroleum Geology, 2021, 126: 104903.
DOI URL |
[54] | CLAYPOOL G E, MANCINI E A. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama[J]. AAPG Bulletin, 1989, 73: 904-924. |
[55] |
CAI C F, AMRANI A, WORDEN R H, et al. Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Geochimica et Cosmochimica Acta, 2016, 182: 88-108.
DOI URL |
[1] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[2] | CHEN Rubiao, WANG Yuman, HUANG Zhengliang, LI Weiling, YAN Wei, LIANG Feng, GUO Wei. Fracture pore characteristics and gas accumulation model of marine shales in the northwestern Ordos Basin: A case study of the Ordovician Wulalike Formation [J]. Earth Science Frontiers, 2024, 31(5): 46-60. |
[3] | HAN Pengyuan, DING Wenlong, YANG Debin, DENG Guangxiao, WANG Zhen, MA Hailong, LÜ Jing, GENG Tian. Characteristics and main controlling factors of fracture development in the Ordovician carbonate reservoir, Tahe oilfield [J]. Earth Science Frontiers, 2024, 31(5): 209-226. |
[4] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[5] | CAI Zhenzhong, ZHAO Haitao, WANG Peng, LI Jing, XU Guojin. Characterization of Connectivity in Ultra-Deep Fractured-Caveate Reservoirs Considering Fluid-Solid Coupling: A Case Study of the Manfen Block in the Fuman Oil Field of the Tar Basin [J]. Earth Science Frontiers, 2024, 31(5): 301-312. |
[6] | GU Yu, WU Jun, FAN Tailiang, LÜ Junling. Lithological associations, deformation characteristics of the Lower-Middle Cambrian and their influence on oil and gas migration in the North-central Tarim Basin [J]. Earth Science Frontiers, 2024, 31(5): 313-331. |
[7] | LI Fenglei, LIN Chengyan, REN Lihua, ZHANG Guoyin, GUAN Baozhu. Characteristics of deep karst fracture-cavity reservoir formation controlled by multi-phase faults matching in the northern Tarim Basin [J]. Earth Science Frontiers, 2024, 31(4): 219-236. |
[8] | CHEN Changjin, CHENG Xiaogan, LIN Xiubin, LI Feng, TIAN Hefeng, QU Mengxue, SUN Siyao. Modeling of the Cenozoic subsidence of northern Tarim Basin using elastic plate numerical model: Implications for uplift of South Tian Shan [J]. Earth Science Frontiers, 2024, 31(4): 340-353. |
[9] | WANG Junpeng, ZENG Lianbo, XU Zhenping, WANG Ke, ZENG Qinglu, ZHANG Zhiyuan, ZHANG Ronghu, JIANG Jun. The impact of diagenetic fluids on the structural fracture filling and dissolution alteration of ultra-deep tight sandstone reservoirs: a case study of the Kelasu oil and gas field in the Tarim Basin [J]. Earth Science Frontiers, 2024, 31(3): 312-323. |
[10] | XU Zhaohui, HU Suyun, ZENG Hongliu, MA Debo, LUO Ping, HU Zaiyuan, SHI Shuyuan, CHEN Xiuyan, TAO Xiaowan. Distribution and hydrocarbon significance of source rock in the Upper Xiaoerbulake Formation, Tarim Basin, NW China [J]. Earth Science Frontiers, 2024, 31(2): 343-358. |
[11] | MA Yongsheng, CAI Xunyu, LI Huili, ZHU Dongya, ZHANG Juntao, YANG Min, DUAN Jinbao, DENG Shang, YOU Donghua, WU Chongyang, CHEN Senran. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata [J]. Earth Science Frontiers, 2023, 30(6): 1-13. |
[12] | JIN Yanlin, ZHANG Huitao, LIU Yao, JI Yuwen. Reservoir development characteristics and karst models for the “strata bound” karst reservoirs in the Tahe Oilfield [J]. Earth Science Frontiers, 2023, 30(6): 125-134. |
[13] | LI Dan, CHANG Jian, QIU Nansheng, XIONG Yujie. Thermal analysis of ultra-deep layers and its influence on reservoir utilization in platform area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 135-149. |
[14] | CHEN Jianfa, XU Jin, WANG Jie, LIU Peng, CHEN Feiran, LI Maowen. Paleo-environmental variation and its control on organic enrichment in the black rock series, Cambrian Yuertusi Formation in northwestern Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 150-161. |
[15] | QIU Nansheng, CHANG Jian, FENG Qianqian, ZENG Shuai, LIU Xiaoyu, LI Huili, MA Anlai. Maturation history of deep and ultra-deep source rocks, central and western basins, China [J]. Earth Science Frontiers, 2023, 30(6): 199-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||