Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 220-229.DOI: 10.13745/j.esf.sf.2024.12.83
Previous Articles Next Articles
Received:
2024-04-01
Revised:
2025-01-08
Online:
2025-09-25
Published:
2025-10-14
Contact:
MAO Xumei
CLC Number:
MAO Xumei, LI Cuiming. Reassessment of the depth of groundwater circulation in geothermal systems[J]. Earth Science Frontiers, 2025, 32(5): 220-229.
样品 | 类型 | 热交换温度/℃ | 循环深度 (传统方法)/km | 混合前地热水 温度/℃ | 热交换区到混合区 迁移距离/km | 热交换区对流顶部深度 (新认识)/km |
---|---|---|---|---|---|---|
HW1 | 热井 | 140 | 3.88 | 124 | 0.32 | 1.02 |
HW2 | 热井 | 148 | 4.14 | 126 | 0.44 | 1.14 |
HW3 | 热井 | 154 | 4.34 | 131 | 0.46 | 1.15 |
HW4 | 热井 | 153 | 4.31 | 132 | 0.42 | 1.12 |
HW5 | 热井 | 144 | 4.01 | 116 | 0.56 | 1.26 |
HS1 | 热泉 | 138 | 3.81 | 116 | 0.45 | 1.15 |
HS2 | 热泉 | 132 | 3.62 | 128 | 0.09 | 0.79 |
HS3 | 热泉 | 123 | 3.32 | 120 | 0.06 | 0.75 |
HS4 | 热泉 | 125 | 3.38 | 86 | 0.79 | 1.49 |
HS5 | 热泉 | 134 | 3.68 | 97 | 0.74 | 1.44 |
HS6 | 热泉 | 121 | 3.25 | 112 | 0.18 | 0.88 |
Table 1 The circulation depths of geothermal water in Xinzhou geothermal field estimated with the recharge section (traditional method) and with the discharge section (new insight proposed in this paper), respectively
样品 | 类型 | 热交换温度/℃ | 循环深度 (传统方法)/km | 混合前地热水 温度/℃ | 热交换区到混合区 迁移距离/km | 热交换区对流顶部深度 (新认识)/km |
---|---|---|---|---|---|---|
HW1 | 热井 | 140 | 3.88 | 124 | 0.32 | 1.02 |
HW2 | 热井 | 148 | 4.14 | 126 | 0.44 | 1.14 |
HW3 | 热井 | 154 | 4.34 | 131 | 0.46 | 1.15 |
HW4 | 热井 | 153 | 4.31 | 132 | 0.42 | 1.12 |
HW5 | 热井 | 144 | 4.01 | 116 | 0.56 | 1.26 |
HS1 | 热泉 | 138 | 3.81 | 116 | 0.45 | 1.15 |
HS2 | 热泉 | 132 | 3.62 | 128 | 0.09 | 0.79 |
HS3 | 热泉 | 123 | 3.32 | 120 | 0.06 | 0.75 |
HS4 | 热泉 | 125 | 3.38 | 86 | 0.79 | 1.49 |
HS5 | 热泉 | 134 | 3.68 | 97 | 0.74 | 1.44 |
HS6 | 热泉 | 121 | 3.25 | 112 | 0.18 | 0.88 |
[11] | 汪集旸, 熊亮萍, 庞忠和. 利用地热资料确定地下热水循环深度[J]. 科学通报, 1990, 35(5): 378-380. |
[12] | 柳富田, 苏小四, 董维红, 等. 同位素技术在地下水循环深度确定中的应用[J]. 人民黄河, 2008, 30(4): 52-54. |
[13] | KEBEDE S, TRAVI Y, ALEMAYEHU T, et al. Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia[J]. Applied Geochemistry, 2005, 20(9): 1658-1676. |
[14] | LUO L, PANG Z H, LIU J X, et al. Determining the recharge sources and circulation depth of thermal waters in Xianyang geothermal field in Guanzhong Basin: the controlling role of Weibei Fault[J]. Geothermics, 2017, 69: 55-64. |
[15] | 戴振宇. 地热温标法在循环深度计算的应用[J]. 内蒙古煤炭经济, 2017( 增刊2): 142-143. |
[16] | ZENG Y C, HE B, TANG L S, et al. Numerical simulation of temperature field and pressure field of the fracture system at Zhangzhou geothermal field[J]. Environmental Earth Sciences, 2020, 79(11): 262. |
[17] | LIAO Y Z, LIU Y G, WANG G L, et al. Genesis mechanisms of geothermal resources in Mangkang geothermal field, Tibet, China: evidence from hydrochemical characteristics of geothermal water[J]. Water, 2022, 14(24): 4041. |
[18] | QIU X L, WANG Y, WANG Z Z, et al. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southern China[J]. Journal of Hydrology, 2018, 567: 339-350. |
[19] | MAO X M, ZHU D B, NDIKUBWIMANA I, et al. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, South China: insight from water chemistry and stable isotopes[J]. Journal of Hydrology, 2021, 593: 125889. |
[20] | KIRYUKHIN A V, ASAULOVA N P, VOROZHEIKINA L A, et al. Recharge conditions of the low temperature paratunsky geothermal reservoir, Kamchatka, Russia[J]. Procedia Earth and Planetary Science, 2017, 17: 132-135. |
[21] | REN Z H, ZHOU X, YANG M L, et al. Hydrochemical characteristics and formation of the Madeng hot spring in Yunnan, China[J]. Geofluids, 2018, 2018: 2368246. |
[1] | AKRAM W, CHEN W, HUANG C S, et al. Genesis of geothermal waters in Suichuan County, China: an integrated method constrained by the hydrochemical and isotopic characteristics[J]. Water, 2022, 14(10): 1591. |
[2] | SUSMITA G, RAI ABHISHEK K, SUBHASISH T. Re-visiting geothermal fluid circulation, reservoir depth and temperature of geothermal springs of India[J]. Journal of Hydrology, 2022, 612(PA): 128131. |
[3] | CARREIRA P M, MARQUES J M, GUERRA A, et al. Caldelas and gerês hydrothermal systems (NW Portugal): a comparative study based on geochemical and isotopic signatures[J]. Environmental Earth Sciences, 2021, 80(3): 100. |
[4] | NDIKUBWIMANA I, MAO X M, NIYONSENGA J D, et al. Water-rock interaction, formation and circulation mechanism of highly bicarbonate groundwater in the northwestern geothermal prospects of Rwanda[J]. Episodes, 2022, 45(1): 73-86. |
[5] | ZHANG H, WANG G, ZHANG W, et al. Characteristics of the Rongcheng Bulge Geothermal Field and the Evolution of Geothermal Fluids, Xiong’ an New Area, China[J]. Water, 2022, 14(16): 2468. |
[6] | LIU Y G, WANG G L, GUO X Z, et al. A joint method based on geochemistry and magnetotelluric sounding for exploring geothermal resources in sedimentary basins and its application[J]. Water, 2022, 14(20): 3299. |
[7] | MAO X M, DONG Y Q, HE Y Y, et al. The effect of granite fracture network on silica-enriched groundwater formation and geothermometers in low-temperature hydrothermal system[J]. Journal of Hydrology, 2022, 609: 127720. |
[8] | CHATTERJEE S, GUSYEV M A, SINHA U K, et al. Understanding water circulation with tritium tracer in the Tural-Rajwadi geothermal area, India[J]. Applied Geochemistry, 2019, 109: 104373. |
[9] | TRUESDELL A H, NATHENSON M, RYE R O. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters[J]. Journal of Geophysical Research, 1977, 82(26): 3694-3704. |
[10] | ADIARATOU T, MAO X M, FENG L, et al. Use of microbial communities to assess the mixing of deep and shallow groundwater: case study from Southern China[J]. Hydrogeology Journal, 2022, 30(8): 2299-2313. |
[22] | YIN Z B, LI X, HUANG C S, et al. Analysis of the formation mechanism of medium and low-temperature geothermal water in Wuhan based on hydrochemical characteristics[J]. Water, 2023, 15(2): 227. |
[23] | HU H Y, LU G P, LU Q Y, et al. Hydrogeochemical characteristics and geothermometry of hot springs in the tensile tectonic Region Leizhou Peninsula and Hainan Island in South China[J]. Geofluids, 2022, 2022: 1101015. |
[24] | WANG G W, KUANG J. Genetic analysis of geothermal resources in deep-seated fault area in Tonghe County, NorthEast China and implications of geothermal exploration[J]. Sustainability, 2022, 14(9): 5431. |
[25] | WANG Z T, JIANG G Z, ZHANG C, et al. Thermal regime of the lithosphere and geothermal potential in Xiongan New Area[J]. Energy Exploration and Exploitation, 2019, 37(2): 787-810. |
[26] | LONG X T, ZHANG K N, YUAN R Q, et al. Hydrogeochemical and isotopic constraints on the pattern of a deep circulation groundwater flow system[J]. Energies, 2019, 12(3): 404. |
[27] | TIAN J, STEFÁNSSON A, LI Y M, et al. Geochemistry of thermal fluids and the genesis of granite-hosted Huangshadong geothermal system, SouthEast China[J]. Geothermics, 2023, 109: 102647. |
[28] | MOECK I S. Catalog of geothermal play types based on geologic controls[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 867-882. |
[29] | BELHAI M, FUJIMITSU Y, NISHIJIMA J, et al. Hydrochemistry and gas geochemistry of the northeastern Algerian geothermal waters[J]. Arabian Journal of Geosciences, 2016, 10(1): 8. |
[30] | ZHANG Y Q, ZHOU X, LIU H S, et al. Hydrogeochemistry, geothermometry, and genesis of the hot springs in the Simao basin in southwestern China[J]. Geofluids, 2019, 2019: 7046320. |
[31] | 多吉. 典型高温地热系统: 羊八井热田基本特征[J]. 中国工程科学, 2003, 5(1): 42-47. |
[32] | BIRKLE P, BUNDSCHUH J, SRACEK O. Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico[J]. Water Research, 2010, 44(19): 5605-5617. |
[33] | CHIODINI G, LICCIOLI C, VASELLI O, et al. The Domuyo volcanic system: an enormous geothermal resource in Argentine Patagonia[J]. Journal of Volcanology and Geothermal Research, 2014, 274: 71-77. |
[34] | 史自德, 毛绪美, 叶建桥, 等. 中低温地热系统低盐度地热水高含量钠的地球化学成因: 以广东惠州黄沙洞地热田为例[J]. 地球科学, 2024, 49(1): 271-287. |
[35] | XU P P, LI M N, QIAN H, et al. Hydrochemistry and geothermometry of geothermal water in the central Guanzhong Basin, China: a case study in Xi’an[J]. Environmental Earth Sciences, 2019, 78(3): 87. |
[36] | 王莹, 周训, 于湲, 等. 应用地热温标估算地下热储温度[J]. 现代地质, 2007, 21(4): 605-612. |
[37] | 张发旺, 王贵玲, 侯新伟, 等. 地下水循环对围岩温度场的影响及地热资源形成分析: 以平顶山矿区为例[J]. 地球学报, 2000, 21(2): 142-146. |
[38] | 林塨. 漳州汤洋地下水循环对围岩温度场的影响及水热系统成因分析[J]. 能源与环境, 2023(2): 43-45. |
[39] | 邓孝. 地下水垂直运动的地温场效应与实例剖析[J]. 地质科学, 1989, 24(1): 77-81. |
[40] | CLAUSER C, VILLINGER H. Analysis of conductive and convective heat transfer in a sedimentary basin, demonstrated for the Rheingraben[J]. Geophysical Journal International, 1990, 100(3): 393-414. |
[41] | YANG J W, FENG Z H, LUO X R, et al. Numerically quantifying the relative importance of topography and buoyancy in driving groundwater flow[J]. Science in China Series D: Earth Sciences, 2010, 53(1): 64-71. |
[42] | CSEREPES L, LENKEY L. Forms of hydrothermal and hydraulic flow in a homogeneous unconfined aquifer[J]. Geophysical Journal International, 2004, 158(2): 785-797. |
[43] | 毛绪美, 叶建桥, 董亚群, 等. 地热驱动力: 广东阳江新洲地热田驱动地热水运移的一种额外非重力作用的分析方法[J]. 地质科技通报, 2022, 41(1): 137-145. |
[44] | DOMENICO P A, PALCIAUSKAS VV. Theoretical analysis of forced convective heat transfer in regional ground-water flow[J]. Geological Society of America Bulletin, 1973, 84(12): 3803-3814. |
[45] | SZIJÁRTÓ M, GALSA A, TÓTH Á, et al. Numerical investigation of the combined effect of forced and free thermal convection in synthetic groundwater basins[J]. Journal of Hydrology, 2019, 572: 364-379. |
[46] | LÓPEZ D L, SMITH L. Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow[J]. Water Resources Research, 1995, 31(6): 1489-1503. |
[47] | YANG J, LARGE RR, BULL S, et al. Basin-scale numerical modeling to test the role of buoyancy-driven fluid flow and heat transfer in the formation of stratiform Zn-Pb-Ag deposits in the northern mount isa basin[J]. Economic Geology, 2006, 101(6): 1275-1292. |
[48] | PRZYBYCIN A M, SCHECK-WENDEROTH M, SCHNEIDER M. The origin of deep geothermal anomalies in the German Molasse Basin: results from 3D numerical models of coupled fluid flow and heat transport[J]. Geothermal Energy, 2017, 5(1): 1. |
[49] | 汪啸. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D]. 武汉: 中国地质大学(武汉), 2018. |
[50] | NDIKUBWIMANA I, MAO X M, ZHU D B, et al. Geothermal evolution of deep parent fluid in Western Guangdong, China: evidence from water chemistry, stable isotopes and geothermometry[J]. Hydrogeology Journal, 2020, 28(8): 2947-2961. |
[1] | REN Zhanli, YANG Peng, QI Kai, CUI Junping, YU Qiang, CHENG Xin, HUANG Lei, CHEN Gang, YAO Juwen. Research status and progress of tectonic-thermal evolution history in Qiangtang Basin [J]. Earth Science Frontiers, 2025, 32(5): 12-27. |
[2] | XIAO Yunting, CAI Chenkang, HUANG Yixin, ZHU Jialei. Study on the impact of daily sea surface temperature variation characteristics on the simulation of sea land breeze [J]. Earth Science Frontiers, 2025, 32(3): 218-230. |
[3] | ZHANG Yanli, RAN Haofan, ZENG Jianqiang, LU Yuting, PANG Weihua, GUO Hao, WANG Xinming. Advances and perspectives of biogenic reactive trace volatile organic compounds in the context of global change [J]. Earth Science Frontiers, 2025, 32(3): 288-310. |
[4] | WANG Guocan, ZHAO Zihao, SHEN Tianyi, MA Cheng, ZHOU Yabo. A brief analysis on the dynamic sources of the uplift and exhumation of the Tianshan Mountains during the Meso-Cenozoic based on the spatio-temporal differences of rock cooling in the Central Asia [J]. Earth Science Frontiers, 2025, 32(1): 322-342. |
[5] | SHI Honglei, WANG Wanli, WANG Guiling, XING Linxiao, LU Chuan, ZHAO Jiayi, LIU Lu, SONG Jiajia. Numerical simulation of hydrothermal cycling process and lithium isotope fractionation in a typical high-temperature geothermal system [J]. Earth Science Frontiers, 2024, 31(6): 104-119. |
[6] | WENG Wei, WU Shuo, HE Yunchao, LIN Wenjing, FENG Meigui, GAN Haonan, LI Xiaodong. New technologies, methodology and application in directional high-temperature hard rock drilling—a critical review [J]. Earth Science Frontiers, 2024, 31(6): 120-129. |
[7] | LONG Xiting, LI Shuheng, XIE Heping, SUN Licheng, GAO Tianyi, XIA Entong, LI Biao, WANG Jun, LI Cunbao, MO Zhengyu, DU Min. System design and performance analysis of a modular thermoelectric generator for low- and medium-temperature geothermal resource [J]. Earth Science Frontiers, 2024, 31(6): 215-223. |
[8] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[9] | WANG Guiling, MA Feng, ZHANG Wei, ZHU Xi, YU Mingxiao, ZHANG Hanxiong, LUO Cheng. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area [J]. Earth Science Frontiers, 2024, 31(6): 52-66. |
[10] | ZHOU Wei, MA Xiao, CHEN Wenyi, GAO Rui, WANG Yan, HU Dawei. Carbonates of the Wumishan Formation, Jixian System in the North China Plain: Mechanical properties under in-situ geothermal conditions [J]. Earth Science Frontiers, 2024, 31(6): 95-103. |
[11] | LI Keran, YANG Di, SONG Jinmin, LI Zhiwu, JIN Xin, LIU Fang, YANG Xiong, LIU Shugen, YE Yuehao, FAN Jianping, REN Jiaxin, ZHAO Lingli, XIA Shun, CHEN Wei. Dolomitization in the Lower Cambrian Longwangmiao Formation in northeastern Yunnan: Insights from a simulation study [J]. Earth Science Frontiers, 2024, 31(2): 313-326. |
[12] | HU Ruizhong, GAO Wei, FU Shanling, SU Wenchao, PENG Jiantang, BI Xianwu. Mesozoic intraplate metallogenesis in South China [J]. Earth Science Frontiers, 2024, 31(1): 226-238. |
[13] | LI Dan, CHANG Jian, QIU Nansheng, XIONG Yujie. Thermal analysis of ultra-deep layers and its influence on reservoir utilization in platform area, Tarim Basin [J]. Earth Science Frontiers, 2023, 30(6): 135-149. |
[14] | BI Wenjun, ZHANG Jiawei, LI Yalin, DENG Yuzhen. The uplift and exhumation processes in the Qiangtang terrane of Central Tibet since the Cretaceous [J]. Earth Science Frontiers, 2023, 30(2): 18-34. |
[15] | ZHANG Jian, FANG Gui, HE Yubei. High-temperature characteristics and geodynamic background at depth of geothermal anomaly areas in eastern China [J]. Earth Science Frontiers, 2023, 30(2): 316-332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||