Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (2): 316-332.DOI: 10.13745/j.esf.sf.2022.1.20
Previous Articles Next Articles
ZHANG Jian(), FANG Gui, HE Yubei
Received:
2021-08-02
Revised:
2021-11-29
Online:
2023-03-25
Published:
2023-01-05
CLC Number:
ZHANG Jian, FANG Gui, HE Yubei. High-temperature characteristics and geodynamic background at depth of geothermal anomaly areas in eastern China[J]. Earth Science Frontiers, 2023, 30(2): 316-332.
层位 | 厚度/km | 热导率/(W·(m·K)-1) | 生热率/(μW·m-3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均 | 范围 | 平均 | 范围 | 平均 | |||||
沉积盖层 | 0~4.36 | 1.15 | 1.5~2.5 | 2.2 | 2.26~2.95 | 2.35 | ||||
上地壳 | 8.79~12.95 | 10.14 | 2.0~2.75 | 2.6 | 1.24~2.38 | 1.36 |
Table 1 Formation thermophysical parameters for geothermal anomaly area of northeastern China. Adapted from [19-20].
层位 | 厚度/km | 热导率/(W·(m·K)-1) | 生热率/(μW·m-3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均 | 范围 | 平均 | 范围 | 平均 | |||||
沉积盖层 | 0~4.36 | 1.15 | 1.5~2.5 | 2.2 | 2.26~2.95 | 2.35 | ||||
上地壳 | 8.79~12.95 | 10.14 | 2.0~2.75 | 2.6 | 1.24~2.38 | 1.36 |
层位 | 厚度/km | 热导率/(W·(m·K)-1) | 生热率/(μW·m-3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均 | 范围 | 平均 | 范围 | 平均 | |||||
沉积盖层 | 0.03~8.18 | 1.73 | 1.45~1.88 | 1.76 | 1.61~2.82 | 1.85 | ||||
上地壳 | 6.68~17.91 | 10.61 | 3.5 | 3.5 | 1.05~1.26 | 1.21 |
Table 2 Formation thermophysical parameters in geothermal anomaly area of North and East China[21⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓-36]
层位 | 厚度/km | 热导率/(W·(m·K)-1) | 生热率/(μW·m-3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均 | 范围 | 平均 | 范围 | 平均 | |||||
沉积盖层 | 0.03~8.18 | 1.73 | 1.45~1.88 | 1.76 | 1.61~2.82 | 1.85 | ||||
上地壳 | 6.68~17.91 | 10.61 | 3.5 | 3.5 | 1.05~1.26 | 1.21 |
层位 | 厚度/km | 热导率/(W·(m·K)-1) | 生热率/(μW·m-3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均 | 范围 | 平均 | 范围 | 平均 | |||||
沉积盖层 | 0~1.8 | 1.73 | 2.2~2.39 | 2.37 | 2.76~3.0 | 2.87 | ||||
上地壳 | 9.53~11.63 | 10.63 | 3.0 | 3.0 | 1.22~1.38 | 1.26 |
Table 3 Formation thermophysical parameters for the of the Southeast hilly-coastal geothermal anomaly area. Adapted from [41⇓-43].
层位 | 厚度/km | 热导率/(W·(m·K)-1) | 生热率/(μW·m-3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
范围 | 平均 | 范围 | 平均 | 范围 | 平均 | |||||
沉积盖层 | 0~1.8 | 1.73 | 2.2~2.39 | 2.37 | 2.76~3.0 | 2.87 | ||||
上地壳 | 9.53~11.63 | 10.63 | 3.0 | 3.0 | 1.22~1.38 | 1.26 |
[1] |
JIANG G Z, HU S B, SHI Y Z, et al. Terrestrial heat flow of continental China: updated dataset and tectonic implications[J]. Tectonophysics, 2019, 753: 36-48.
DOI URL |
[2] | 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910. |
[3] | 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2016. |
[4] | 陈墨香, 汪集旸, 邓孝. 中国地热系统类型图及其简要说明[J]. 地质科学, 1996, 31(2): 114-121. |
[5] |
WANG Y, CHENG S H. Lithospheric thermal structure and rheology of the Eastern China[J]. Journal of Asian Earth Sciences, 2012, 47: 51-63.
DOI URL |
[6] | 安美建, 石耀霖. 中国大陆地壳和上地幔三维温度场[J]. 中国科学D辑: 地球科学, 2007(6): 736-745. |
[7] | 何丽娟, 胡圣标, 汪集旸. 中国东部大陆地区岩石圈热结构特征[J]. 自然科学进展, 2001, 11(9): 966-969. |
[8] | 石耀霖. 大陆岩石圈的热结构及其意义[J]. 地球科学进展, 1990, 5(6): 14-23. |
[9] | HUANG J L, ZHAO D P. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research Atmospheres, 2006, 111(B9): B09305. |
[10] | 蔺文静, 王贵玲, 邵景力, 等. 我国干热岩资源分布及勘探: 进展与启示[J]. 地质学报, 2021, 95(5): 1366-1381. |
[11] | 徐义刚, 林传勇, 史兰斌, 等. 中国东部上地幔地温线及其地质意义[J]. 中国科学: B辑, 1995(8): 874-881. |
[12] |
邱楠生, 左银辉, 常健, 等. 中国东西部典型盆地中—新生代热体制对比[J]. 地学前缘, 2015, 22(1): 157-168.
DOI |
[13] | 潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-17, 255. |
[14] |
HE C S, DONG S W, CHEN X H, et al. Seismic evidence for plume-induced rifting in the Songliao Basin of northeast China[J]. Tectonophysics, 2014, 627: 171-181.
DOI URL |
[15] | 葛荣峰, 张庆龙, 王良书, 等. 松辽盆地构造演化与中国东部构造体制转换[J]. 地质论评, 2010, 56(2): 180-195. |
[16] | 赵大鹏, 雷建设, 唐荣余. 中国东北长白山火山的起源: 地震层析成像证据[J]. 科学通报, 2004, 49(14): 1439-1446. |
[17] | 王锡魁, 裘善文, 宋长春, 等. 中国东北新生代火山活动与地热资源[J]. 地质论评, 1999, 45(增刊1): 190-195. |
[18] | 刘嘉麒. 中国东北地区新生代火山岩的年代学研究[J]. 岩石学报, 1987, 3(4): 21-31. |
[19] | 姜光政. 中国东北地区大地热流测量与岩石圈热结构[D]. 北京: 中国科学院大学, 2017. |
[20] | 韩湘君, 金旭. 中国东北地区地热资源及热结构分析[J]. 地质与勘探, 2002, 38(1): 74-76. |
[21] | 刘琼颖, 何丽娟. 渤海湾盆地新生代以来构造-热演化模拟研究[J]. 地球物理学报, 2019, 62(1): 219-235. |
[22] |
WANG Z T, JIANG G Z, ZHANG C, et al. Estimating geothermal resources in Bohai Bay Basin, Eastern China, using Monte Carlo simulation[J]. Environmental Earth Sciences, 2019, 78(12): 1-13.
DOI URL |
[23] | 王朱亭, 张超, 姜光政, 等. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 2019, 62(11): 4313-4322. |
[24] | 常健, 邱楠生, 赵贤正, 等. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 2016, 59(3): 1003-1016. |
[25] | 左银辉, 邱楠生, 常健, 等. 渤海湾盆地中、 新生代岩石圈热结构研究[J]. 地质学报, 2013, 87(2): 145-153. |
[26] | 邱楠生, 苏向光, 李兆影, 等. 济阳坳陷新生代构造-热演化历史研究[J]. 地球物理学报, 2006, 49(4): 1127-1135. |
[27] | 龚育龄, 王良书, 刘绍文, 等. 济阳坳陷地幔热流和深部温度[J]. 地球科学: 中国地质大学学报, 2005, 30(1): 121-128. |
[28] |
HU S B, O’SULLIVAN P B, RAZA A, et al. Thermal history and tectonic subsidence of the Bohai Basin, Northern China: a Cenozoic rifted and local pull-apart basin[J]. Physics of the Earth and Planetary Interiors, 2001, 126(3/4): 221-235.
DOI URL |
[29] | 胡圣标, 张容燕, 罗毓晖, 等. 渤海盆地热历史及构造-热演化特征[J]. 地球物理学报, 1999, 42(6): 748-755. |
[30] | 何争光, 刘池洋, 赵俊峰, 等. 华北克拉通南部地区现今地温场特征及其地质意义[J]. 地质论评, 2009, 55(3): 428-434. |
[31] | 张鹏, 王良书, 刘绍文, 等. 南华北盆地群地温场研究[J]. 地球物理学进展, 2007, 22(2): 604-608. |
[32] | 王一波, 胡圣标, 聂栋刚, 等. 郯庐断裂带是热异常带吗: 来自断裂带南段热流的约束[J]. 地球物理学报, 2019, 62(8): 3078-3094. |
[33] |
WANG Y B, HU S B, WANG Z T, et al. Heat flow, heat production, thermal structure and its tectonic implication of the southern Tan-Lu Fault Zone, East-Central China[J]. Geothermics, 2019, 82: 254-266.
DOI URL |
[34] | 邱楠生, 苏向光, 李兆影, 等. 郯庐断裂中段两侧坳陷的新生代构造-热演化特征[J]. 地球物理学报, 2007, 50(5): 1497-1507. |
[35] | 白嘉启, 王小凤, 冯向阳. 郯庐断裂带地温场研究[J]. 地质力学学报, 1998, 4(1): 78-88. |
[36] | 王一波. 中国东部克拉通区热体制差异和深部动力学机制探讨[D]. 北京: 中国科学院大学, 2020. |
[37] |
WANG Y B, WANG L J, HU D, et al. The present-day geothermal regime of the North Jiangsu Basin, East China[J]. Geothermics, 2020, 88: 101829.
DOI URL |
[38] | 姜耀辉, 王国昌. 中国东南部晚中生代花岗岩成因与深部动力学机制: 古太平洋板块反复俯冲-后退模式[J]. 矿物岩石地球化学通报, 2016, 35(6): 1073-1081, 1070. |
[39] | 毛建仁, 厉子龙, 叶海敏. 华南中生代构造-岩浆活动研究: 现状与前景[J]. 中国科学: 地球科学, 2014, 44(12): 2593-2617. |
[40] | 舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7): 1035-1053. |
[41] | 赵平, 汪集, 汪缉安, 等. 中国东南地区岩石生热率分布特征[J]. 岩石学报, 1995, 11(3): 292-305. |
[42] | 张健, 王蓓羽, 唐显春, 等. 华南陆缘高热流区的壳幔温度结构与动力学背景[J]. 地球物理学报, 2018, 61(10): 3917-3932. |
[43] | 赵梦磊. 华南地壳生热率研究及干热岩资源潜力估算[D]. 北京: 中国地质大学(北京), 2021. |
[44] | 袁玉松, 马永生, 胡圣标, 等. 中国南方现今地热特征[J]. 地球物理学报, 2006, 49(4): 1118-1126. |
[45] | 郝天珧, 胡卫剑, 邢健, 等. 中国海陆1∶500万莫霍面深度图及其所反映的地质内涵[J]. 地球物理学报, 2014, 57(12): 3869-3883. |
[46] | RANALLI G. Rheology of the Earth[M]. 2nd Edition. London: Chapman and Hall, 1995. |
[47] |
BHATTACHARYYA B K, LEU L K. Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance[J]. Journal of Geophysical Research Atmospheres, 1975, 80(32): 4461-4465.
DOI URL |
[48] |
OKUBO Y, GRAF R J, HANSEN R O, et al. Curie point depths of the Island of Kyushu and surrounding areas, Japan[J]. Geophysics, 1985, 50(3): 481-494.
DOI URL |
[49] | BLAKELY R J. Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B10): 11817-11832. |
[50] |
OKUBO Y, TSU H, OGAWA K. Estimation of Curie point temperature and geothermal structure of island arcs of Japan[J]. Tectonophysics, 1989, 159(3/4): 279-290.
DOI URL |
[51] |
MAUS S, GORDON D, FAIRHEAD D. Curie-temperature depth estimation using a self-similar magnetization model[J]. Geophysical Journal International, 1997, 129(1): 163-168.
DOI URL |
[52] |
TANAKA A, OKUBO Y, MATSUBAYASHI O. Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia[J]. Tectonophysics, 1999, 306(3/4): 461-470.
DOI URL |
[53] |
RAVAT D, PIGNATELLI A, NICOLOSI I, et al. A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data[J]. Geophysical Journal International, 2007, 169(2): 421-434.
DOI URL |
[54] | BOULIGAND C, GLEN J M G, BLAKELY R J. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B11): B1110410.1029/2009JB006494. |
[55] |
BANSAL A R, GABRIEL G, DIMRI V P, et al. Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany[J]. GEOPHYSICS, 2011, 76(3): L11-L22.
DOI URL |
[56] |
ARNAIZ-RODRÍGUEZ M S, ORIHUELA N. Curie point depth in Venezuela and the Eastern Caribbean[J]. Tectonophysics, 2013, 590: 38-51.
DOI URL |
[57] |
NWANKWO L I. Estimation of depths to the bottom of magnetic sources and ensuing geothermal parameters from aeromagnetic data of Upper Sokoto Basin, Nigeria[J]. Geothermics, 2015, 54: 76-81.
DOI URL |
[58] |
SAADA S A. Curie point depth and heat flow from spectral analysis of aeromagnetic data over the northern part of Western Desert, Egypt[J]. Journal of Applied Geophysics, 2016, 134: 100-111.
DOI URL |
[59] |
SALAZAR J M, VARGAS C A, LEON H. Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies[J]. Tectonophysics, 2017, 694: 400-413.
DOI URL |
[60] |
LI C F, LU Y, WANG J. A global reference model of Curie-point depths based on EMAG2[J]. Scientific Reports, 2017, 7: 45129.
DOI URL |
[61] |
QUINTERO W, CAMPOS-ENRÍQUEZ O, HERNÁNDEZ O. Curie point depth, thermal gradient, and heat flow in the Colombian Caribbean (northwestern South America)[J]. Geothermal Energy, 2019, 7(1). doi: 10.1186/s40517-019-0132-9.
DOI |
[62] | KUMAR R, BANSAL A R, GHODS A. Estimation of depth to bottom of magnetic sources using spectral methods: application on Iran’s aeromagnetic data[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018119. |
[63] | 熊盛青, 杨海, 丁燕云, 等. 中国陆域居里等温面深度特征[J]. 地球物理学报, 2016, 59(10): 3604-3617. |
[64] | 胡旭芝, 徐鸣洁, 谢晓安, 等. 中国东北地区航磁特征及居里面分析[J]. 地球物理学报, 2006, 49(6): 1674-1681. |
[65] | FENG M, AN M J. Lithospheric structure of the Chinese mainland determined from joint inversion of regional and teleseismic Rayleigh-wave group velocities[J]. Journal of Geophysical Research Atmospheres, 2010, 115(B6): B06317. |
[66] | 张健, 汪集旸. 南海北部陆缘带构造扩张的深部地球动力学特征[J]. 中国科学D辑: 地球科学, 2000, 30(6): 561-567. |
[67] | 施小斌, 周蒂, 张毅祥. 南海北部陆缘岩石圈热-流变结构[J]. 科学通报, 2000, 45(15): 1660-1665. |
[68] | 陈超强, 何丽娟, 焉力文, 等. 中国陆地热岩石圈厚度及其地球动力学意义[J]. 地球物理学报, 2022, 65(8): 3054-3063. |
[1] | REN Jishun, LIU Jianhui, ZHU Junbin. Mesozoic superposed orogenic system in eastern China [J]. Earth Science Frontiers, 2024, 31(1): 142-153. |
[2] | XIE Yuling, CUI Kai, XIA Jiaming, WANG Ying, QU Yunwei, YU Chao, SHAN Xiaoyu. The origin of ore-forming materials of the Yanshanian porphyry Mo-hydrothermal Pb-Zn(Ag) metallogenic system in eastern China [J]. Earth Science Frontiers, 2020, 27(2): 182-196. |
[3] | ZHANG Jinhu,JIN Chunshuang,XU Liming,WANG Hairong,YANG Yuru, DENG Ke,GAO Yongjin,WU Zhaojian. Geochemical characteristics and sedimentary environmental implications of the Late Jurassic siliceous rocks in the Changlin Formation, Huangtang section, Fujian Province [J]. Earth Science Frontiers, 2019, 26(3): 190-201. |
[4] | LIU Qingqing,CHI Qinghua,WANG Xueqiu,ZHOU Jian,LIU Hanliang,LIU Dongsheng,GAO Yanfang,ZHAI Daxing. Distribution and influencing factors of rare earth elements in carbonate rocks along three continentalscale transects in eastern China. [J]. Earth Science Frontiers, 2018, 25(4): 99-115. |
[5] | WU Zhaocai,GAO Jinyao,SHEN Zhongyan,YANG Chunguo,ZHANG Tao. Magnetic anomaly in eastern China and adjacent sea, and its tectonic significance [J]. Earth Science Frontiers, 2018, 25(1): 210-217. |
[6] | . The recent tectonic stress field of offshore of China mainland and adjacent areas. [J]. Earth Science Frontiers, 2012, 19(4): 1-7. |
[7] | WANG Chang, JIANG Hong-Chen, HUANG Liu-Qin, TU Chao, YANG Zhong-Fang. Microbial carbon distribution and its controlling factors in arable soils of eastern China. [J]. Earth Science Frontiers, 2011, 18(6): 134-142. |
[8] | ZHANG Qi JIN Wei-Dun LI Cheng-Dong WANG Yuan-Long. Yanshanian largescale magmatism and lithosphere thinning in Eastern China: Relation to large igneous province. [J]. Earth Science Frontiers, 2009, 16(2): 21-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||