Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 282-294.DOI: 10.13745/j.esf.sf.2020.5.26
Previous Articles Next Articles
CHEN Huanqing1(), ZHU Xiaomin2, ZHANG Gongcheng3, ZHANG Yaxiong4, ZHANG Qin2, LIU Changli5
Received:
2019-12-05
Revised:
2020-05-19
Online:
2021-01-25
Published:
2021-01-28
CLC Number:
CHEN Huanqing, ZHU Xiaomin, ZHANG Gongcheng, ZHANG Yaxiong, ZHANG Qin, LIU Changli. Classification and combination model characteristics of pathway system in marine faulted basin: Taking the Paleogene Lingshui Formation, Qiongdongnan Basin as an example[J]. Earth Science Frontiers, 2021, 28(1): 282-294.
Fig.1 Structural pattern and stratigraphic characteristics of the Qiongdongnan Basin (Note: circled numbers denote sequence number). Adapted from [2].
Fig.4 Fault profile characteristics of the Lingshui Formation of the Paleogene, Qiongdongnan Basin. Legends: ①Controlling concave fault; ②Common fault.
Fig.7 Schematic diagram showing the relationships among different transport systems in a hierarchical lattice. Legends: ①Braided river delta;②Fan delta;③Beach bar; ④Slope fan; ⑤Pelvic floor fan.
凹陷名称 | SⅠ层位 | SⅡ层位 | SⅢ层位 | SⅣ层位 |
---|---|---|---|---|
崖南凹陷 | 裂隙型、断层+不整合面(储集体)“Y”型 | 裂隙型 | 裂隙型 | 裂隙型、断层+储集体“Y”型 |
崖北凹陷 | 裂隙型、断层+不整合面(储集体)“Y”型 | 裂隙型 | 裂隙型 | 断层+储集体“Y”型 |
松东凹陷 | 裂隙型、断层+不整合面阶梯型 | 裂隙型、断层+不整合面阶梯型 | 裂隙型、断层+不整合面阶梯型 | 断层+储集体“Y”型 |
松西凹陷 | 裂隙型、断层+不整合面阶梯型 | 裂隙型、断层+不整合面阶梯型 | 裂隙型、断层+不整合面阶梯型 | 断层+储集体“Y”型 |
乐东凹陷 | 裂隙型 | 裂隙型 | 裂隙型 | 裂隙型 |
陵水凹陷 | 裂隙型、断层+不整合面(储集体)“Y”型 | 裂隙型、断层+不整合梳状型 | 裂隙型、断层+不整合面“T”型 | 断层+储集体梳状型 |
松南凹陷 | 裂隙型、断层+储集体梳状型 | 断层+不整合面(储集体)网格型 | 裂隙型、断层+不整合面“T”型 | 断层+储集体梳状型 |
宝岛凹陷 | 断层+储集体梳状型 | 断层+储集体梳状型 | 裂隙型、断层+储集体网格型 | 断层+不整合面“T”型 |
北礁凹陷 | 裂隙型、断层+不整合面“Y”型 | 断层+不整合面(储集体)“T”型 | 裂隙型、断层+不整合面“T”型 | 断层+储集体梳状型 |
长昌凹陷 | 裂隙型、断层+不整合面阶梯型、断层+不整合面“T”型 | 裂隙型、断层+不整合面“Y”型 | 裂隙型、断层+不整合面阶梯型、断层+不整合面“T”型 | 断层+不整合面“T”型 |
Table 1 Characteristics of sequence transport modes in the Lingshui Formation of the Paleogene in the Qiongdongnan Basin
凹陷名称 | SⅠ层位 | SⅡ层位 | SⅢ层位 | SⅣ层位 |
---|---|---|---|---|
崖南凹陷 | 裂隙型、断层+不整合面(储集体)“Y”型 | 裂隙型 | 裂隙型 | 裂隙型、断层+储集体“Y”型 |
崖北凹陷 | 裂隙型、断层+不整合面(储集体)“Y”型 | 裂隙型 | 裂隙型 | 断层+储集体“Y”型 |
松东凹陷 | 裂隙型、断层+不整合面阶梯型 | 裂隙型、断层+不整合面阶梯型 | 裂隙型、断层+不整合面阶梯型 | 断层+储集体“Y”型 |
松西凹陷 | 裂隙型、断层+不整合面阶梯型 | 裂隙型、断层+不整合面阶梯型 | 裂隙型、断层+不整合面阶梯型 | 断层+储集体“Y”型 |
乐东凹陷 | 裂隙型 | 裂隙型 | 裂隙型 | 裂隙型 |
陵水凹陷 | 裂隙型、断层+不整合面(储集体)“Y”型 | 裂隙型、断层+不整合梳状型 | 裂隙型、断层+不整合面“T”型 | 断层+储集体梳状型 |
松南凹陷 | 裂隙型、断层+储集体梳状型 | 断层+不整合面(储集体)网格型 | 裂隙型、断层+不整合面“T”型 | 断层+储集体梳状型 |
宝岛凹陷 | 断层+储集体梳状型 | 断层+储集体梳状型 | 裂隙型、断层+储集体网格型 | 断层+不整合面“T”型 |
北礁凹陷 | 裂隙型、断层+不整合面“Y”型 | 断层+不整合面(储集体)“T”型 | 裂隙型、断层+不整合面“T”型 | 断层+储集体梳状型 |
长昌凹陷 | 裂隙型、断层+不整合面阶梯型、断层+不整合面“T”型 | 裂隙型、断层+不整合面“Y”型 | 裂隙型、断层+不整合面阶梯型、断层+不整合面“T”型 | 断层+不整合面“T”型 |
[1] | 米立军, 王东东, 李增学, 等. 琼东南盆地崖城组高分辨率层序地层格架与煤层形成特征[J]. 石油学报, 2010, 31(4):534-541. |
[2] | 李增学, 宋广增, 王东东, 等. 琼东南盆地渐新统煤系(扇)辫状河三角洲特征[J]. 地球科学, 2018, 43(10):3471-3484. |
[3] | 刘莹, 刘海燕, 杨海长, 等. 琼东南盆地古近纪成煤沉积体系类型及特征[J]. 石油与天然气地质, 2019, 40(1):142-151. |
[4] | 谢玉洪, 童传新, 范彩伟, 等. 琼东南盆地断裂系统特征与演化[J]. 大地构造与成矿学, 2015, 39(5):795-807. |
[5] | 张迎朝, 甘军, 杨希冰, 等. 琼东南盆地陵水凹陷构造演化及其对深水大气田形成的控制作用[J]. 海洋地质前沿, 2017, 33(10):22-31. |
[6] | 杨东升, 赵志刚, 杨海长, 等. 深水崎岖海底区构造解释与圈闭落实: 以琼东南盆地深水区宝岛凹陷为例[J]. 石油学报, 2018, 39(7):767-774. |
[7] | 廖计华, 王华, 吕明, 等. 琼东南盆地深水区松南G宝岛凹陷同沉积断裂活动及其对沉积充填的控制[J]. 中国矿业大学学报, 2016, 45(2):336-346. |
[8] | 徐新德, 张迎朝, 梁刚, 等. 南海北部琼东南盆地深水区烃源条件及天然气成藏机制[J]. 天然气地球科学, 2016, 27(11):1985-1992. |
[9] | 刘爱群, 范彩伟, 邓勇, 等. 南海琼东南高压盆地压力结构与油气成藏关系[J]. 地球物理学进展, 2017, 32(4):1817-1822. |
[10] | 郝芳, 刘建章, 邹华耀, 等. 莺歌海-琼东南盆地超压层系油气聚散机理浅析[J]. 地学前缘, 2015, 22(1):169-180. |
[11] |
RUITENBEEK F J A, VAN CUDAHY T, HALE M, et al. Tracing fluid pathways in fossil hydrothermal systems with near-infrared spectroscopy[J]. Geology, 2005, 33(7):597-600.
DOI URL |
[12] |
WATKINSON A J, WARD E M G. Reactivation of pressure-solution seams by a strike-slip fault-sequential, dilational jog formation and fluid flow[J]. AAPG Bulletin, 2006, 90(8):1187-1200.
DOI URL |
[13] |
WALL B R G, GIRBACEA R, MESONJESI A, et al. Evolution of fracture and fault-controlled fluid pathways in carbonates of the Albanides fold-thrust belt[J]. AAPG Bulletin, 2006, 90(8):1227-1249.
DOI URL |
[14] |
FOSSEN H, BALE A. Deformation bands and their influence on fluid flow[J]. AAPG Bulletin, 2007, 91(12):1685-1700.
DOI URL |
[15] |
GALE J F W, GOMEZ L A. Late opening-mode fractures in karst-brecciated dolostones of the Lower Ordovician Ellenburger Group, west Texas: recognition, characterization, and implications for fluid flow[J]. AAPG Bulletin, 2007, 91(7):1005-1023.
DOI URL |
[16] |
BOWEN B B, MARTINI B A, CHAN M A, et al. Reflectance spectroscopic mapping of diagenetic heterogeneities and fluid-flow pathways in the Jurassic Navajo Sandstone[J]. AAPG Bulletin, 2007, 91(2):173-190.
DOI URL |
[17] |
BHATTACHARYA S, BYRNES A P, WATNEY W L, et al. Flow unit modeling and fine-scale predicted permeability validation in Atokan sandstones: Norcan East field, Kansas[J]. AAPG Bulletin, 2008, 92(6):709-732.
DOI URL |
[18] |
KARSTEN F K, ROLANDO D P, BRIAN H. Hydrocarbon flow modeling in complex structures (Mackenzie Basin, Canada)[J]. AAPG Bulletin, 2009, 93(9):1209-1234.
DOI URL |
[19] |
PETER E, NICHOLAS C D, STEPHEN P B. Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah[J]. AAPG Bulletin, 2009, 93(5):653-681.
DOI URL |
[20] | ZHOU X, JIAO W, HAN J, et al. Tracing hydrocarbons migration pathway in carbonate rock in Lunnan-Tahe oilfield[J]. Energy Exploration & Exploritation, 2010, 28(4):259-278. |
[21] |
HEIN J R, MIZELL K, BARNARD P L. Sand sources and transport pathways for the San Francisco Bay coastal system, based on X-ray diffraction mineralogy[J]. Marine Geology, 2013, 345:154-169.
DOI URL |
[22] |
AIAMERI T K. Oil biomarkers, isotopes, and palynofacies are used for petroleum system type and migration pathway assessments of Iraqi oil fields[J]. Arabian Journal of Geosciences, 2014. DOI: 10.1007/s12517-014-1606-5.
DOI |
[23] |
HUTCHISION W, MATHER T A, PYLE D M, et al. Structural controls on fluid pathways in an active rift system: a case study of the Aluto volcanic complex[J]. Geosphere, 2015, 11(3):542-562.
DOI URL |
[24] |
BURISCH M, WALTER B F, WALLE M, et al. Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: insights from trace element systematics of individual fluid inclusions[J]. Chemical Geology, 2016, 429:44-50.
DOI URL |
[25] |
GOLAB J A, SMITH J J, CLARK A K, et al. Bioturbation-influenced fluid pathways within a carbonate platform system: the Lower Cretaceous (Aptian-Albian) Glen Rose Limestone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016. DOI: 10.1016/j.palaeo.2016.10.025.
DOI |
[26] |
MCGIBBON C, CROSSEY L J, KARLSTROM K E, et al. Carbonic springs as distal manifestations of geothermal systems, highlighting the importance of fault pathways and hydrochemical mixing: example from the Jemez Mountains, New Mexico[J]. Applied Geochemistry, 2018. DOI: 10.1016/j.apgeochem.2018.08.015.
DOI |
[27] | 高长海, 查明, 张新征. 埕北断坡区断层输导体系与油气成藏模式[J]. 新疆石油地质, 2007, 28(6):721-724. |
[28] | 陈瑞银, 罗晓容, 吴亚生. 利用成岩序列建立油气输导格架[J]. 石油学报, 2007, 28(6):43-46, 51. |
[29] | 陈欢庆, 朱筱敏, 张琴, 等. 输导体系研究进展[J]. 地质论评, 2009, 55(2):269-276. |
[30] | 王宗礼, 罗强, 李胜利, 等. 冀中廊固凹陷油气输导体系类型与成藏模式[J]. 现代地质, 2011, 25(6):1137-1144. |
[31] | 罗晓容, 雷裕红, 张立宽, 等. 油气运移输导层研究及量化表征方法[J]. 石油学报, 2012, 33(3):428-436. |
[32] | 辛仁臣, 杨波, 王树恒, 等. 松辽盆地富拉尔基油田油气输导体系[J]. 石油勘探与开发, 2014, 41(5):554-562. |
[33] | 高长海, 查明, 陈力, 等. 渤海湾盆地冀中坳陷大柳泉构造不整合输导油气能力的定量表征[J]. 天然气地球科学, 2016, 27(4):619-627. |
[34] | 万雪峰. 断裂向上和向下输导油气特征的差异性[J]. 大庆石油地质与开发, 2018, 37(3):16-21. |
[35] | 江汝锋, 郭明刚, 朱继田, 等. 琼东南盆地深水区宝岛凹陷3D 输导体系评价[J]. 西南石油大学学报(自然科学版), 2018, 40(2):57-66. |
[36] | 范彩伟. 莺-琼盆地高压成因输导体系特征、识别及其成藏过程[J]. 天然气地球科学, 2018, 39(2):254-267. |
[37] | 李坤, 赵锡奎, 张小兵, 等. 塔里木盆地阿克库勒凸起油气输导体系类型与演化[J]. 地质科学, 2007, 42(4):766-778. |
[38] | 徐发, 张建培, 张田, 等. 西湖凹陷输导体系特征及其对油气成藏的控制作用[J]. 海洋地质前沿, 2012, 28(7):24-29, 43. |
[39] | 李绪宣, 朱光辉. 琼东南盆地断裂系统及其油气输导特征[J]. 中国海上油气, 2005, 17(1):1-7. |
[40] | 朱伟林, 张功成, 杨少坤, 等. 南海北部大陆边缘盆地天然气地质[M]. 北京: 石油工业出版社, 2007: 1-351. |
[41] | 付广, 王摇慧. 隆起区和斜坡区断-砂输导体系控制油气分布特征的差异性[J]. 中国石油大学学报(自然科学版), 2018, 42(3):22-30. |
[42] | 武卫峰. 不同类型断-砂输导体系分布及对油气成藏的贡献[J]. 大庆石油地质与开发, 2019, 38(3):40-45. |
[43] |
CHEN H Q, ZHU X M, ZHANG G C, et al. Seismic facies in a deepwater area of a marine faulted basin: deepwater area of the Paleogene Lingshui Formation in the Qiongdongnan Basin[J]. Acta Geologica Sinica, 2012, 86(2):473-483.
DOI URL |
[44] | 崔护社, 仝志刚, 胡根成. 崖13-1气田成因浅析[J]. 石油勘探与开发, 2000, 27(4):45-48. |
[45] | 王敏芳. 琼东南盆地崖南凹陷崖13-1构造与崖21-1构造成藏条件比较[J]. 天然气地球科学, 2003, 14(2):126-129. |
[46] | 陈中红, 查明, 朱筱敏. 准噶尔盆地陆梁隆起不整合面与油气运聚关系[J]. 古地理学报, 2003, 5(1):120-126. |
[47] | 何登发. 不整合面的结构与油气聚集[J]. 石油勘探与开发, 2007, 34(2):142-201. |
[48] | 朱光辉, 陈刚, 习应护. 琼东南盆地温压场特征及其与油气运聚的关系[J]. 中国海上油气(地质), 2000, 14(1):29-36. |
[1] | LIU Yuan-Zheng, MA Jin, MA Wen-Chao. The role of the Zipingpu reservoir in the generation of the Wenchuan earthquake. [J]. Earth Science Frontiers, 20140101, 21(1): 150-160. |
[2] | XU Jiading, ZHANG Chongyuan, ZHANG Hao, BAI Jinpeng, ZHANG Shi’an, ZHANG Shengsheng, QIN Xianghui, SUN Dongsheng, HE Manchao, WU Manlu. In-situ stress measurements in hot dry rock, Qinghai Gonghe Basin and simulation analysis of reservoir fracture modification [J]. Earth Science Frontiers, 2024, 31(6): 130-144. |
[3] | ZHAO Kan, SHEN Jian, CAI Yun, ZHAO Sumin. Insights into the root causes of difficulties in reinjection in sandstone geothermal reservoir and countermeasures [J]. Earth Science Frontiers, 2024, 31(6): 196-203. |
[4] | QI Xiaofei, XIAO Yong, SHANGGUAN Shuantong, SU Ye, WANG Hongke, LI Yingying, HU Zhixing. Fracture propagation mechanism in artificial reservoir of deep hot dry rock, Matouying and its applications [J]. Earth Science Frontiers, 2024, 31(6): 224-234. |
[5] | JIANG Zheng, SHU Biao, TAN Jingqiang. Heat transfer in geothermal reservoir of CO2-based enhanced geothermal systems—current research status and prospects [J]. Earth Science Frontiers, 2024, 31(6): 235-251. |
[6] | SHANGGUAN Shuantong, TIAN Lanlan, PAN Miaomiao, YANG Fengliang, YUE Gaofan, SU Ye, QI Xiaofei. Fault slip tendency and induced-earthquake risks in hot dry rock development: A case study in the Tangshan Matouying HDR site [J]. Earth Science Frontiers, 2024, 31(6): 252-260. |
[7] | KANG Fengxin, ZHANG Baojian, CUI Yang, YAO Song, SHI Meng, QIN Peng, SUI Haibo, ZHENG Tingting, LI Jialong, YANG Haitao, LI Chuanlei, LIU Chunwei. Formation of high-temperature geothermal reservoirs in central and eastern North China [J]. Earth Science Frontiers, 2024, 31(6): 31-51. |
[8] | WANG Guiling, MA Feng, ZHANG Wei, ZHU Xi, YU Mingxiao, ZHANG Hanxiong, LUO Cheng. Dominant heat transfer mechanism in buried-hill reservoirs in North China: A case study in Xiong’an new area [J]. Earth Science Frontiers, 2024, 31(6): 52-66. |
[9] | DING Wenlong, WANG Yao, ZHANG Ziyou, LIU Tianshun, CHENG Xiaoyun, GOU Tong, WANG Shenghui, LIU Tingfeng. Tectonic fracturing and fracture initiation in shale reservoirs—research progress and outlooks [J]. Earth Science Frontiers, 2024, 31(5): 1-16. |
[10] | LIU Yanxiang, LÜ Wenya, ZENG Lianbo, LI Ruiqi, DONG Shaoqun, WANG Zhaosheng, LI Yanlu, WANG Leifei, JI Chunqiu. Three-dimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield, Ordos Basin [J]. Earth Science Frontiers, 2024, 31(5): 103-116. |
[11] | JU Wei, YANG Hui, HOU Guiting, NING Weike, LI Yongkang, LIANG Xiaobai. Development and distribution pattern of fault-controlled fractures in complex structural deformation zones [J]. Earth Science Frontiers, 2024, 31(5): 130-138. |
[12] | YIN Shuai, ZHANG Ziyang, ZHANG Xingxing, WANG Jingchen, HU Wei, DING Wenlong, LI Hu. Fracture development mode in fan delta front unconventional tight oil reservoirs: A case study of Paleogene He-3 in southeastern Biyang Depression [J]. Earth Science Frontiers, 2024, 31(5): 139-155. |
[13] | PAN Lei, DU Hongquan, LI Leitao, LONG Tao, YIN Xuefeng. Fracture development characteristics and main controlling factors of natural fracture in the Upper Triassic Xujiahe Formation in Yuanba area, northeastern Sichuan Basin [J]. Earth Science Frontiers, 2024, 31(5): 156-165. |
[14] | DONG Shaoqun, ZENG Lianbo, JI Chunqiu, ZHANG Yanbing, HAO Jingru, XU Xiaotong, HAN Gaosong, XU Hui, LI Haiming, LI Xinqi. A deep kernel method for fracture identification in ultra-deep tight sandstones using well logs [J]. Earth Science Frontiers, 2024, 31(5): 166-176. |
[15] | HE Jianhua, CAO Hongxiu, DENG Hucheng, YIN Changhai, ZHU Yanping, LI Chang, LI Yong, YIN Shuai. Nature fractures in shales of the Lianggaoshan Formation in northern Sichuan Basin: Fracture development characteristics and fracture formation and evolution model [J]. Earth Science Frontiers, 2024, 31(5): 17-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||