

Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (6): 457-472.DOI: 10.13745/j.esf.sf.2024.5.28
Previous Articles Next Articles
CHEN Yue1(
), TAO Shizhen1,*(
), YANG Yiqing1, LIU Xiangbai1, LUO Xia1, WANG Ying2, LIU Guodong2, CHEN Yanyan1, GAO Jianrong1, LI Chunbai3, FU Li3, WANG Lei3
Received:2024-01-08
Revised:2024-02-22
Online:2025-11-25
Published:2025-11-12
Contact:
TAO Shizhen
CLC Number:
CHEN Yue, TAO Shizhen, YANG Yiqing, LIU Xiangbai, LUO Xia, WANG Ying, LIU Guodong, CHEN Yanyan, GAO Jianrong, LI Chunbai, FU Li, WANG Lei. Genesis mechanisms and enrichment factors of crust-mantle mixed source helium: Taking helium in deep natural gas in the Songliao Basin as an example[J]. Earth Science Frontiers, 2025, 32(6): 457-472.
| 领域 | 评价单元 | 类比法 | 最终取值 | He含量/% | |||||
|---|---|---|---|---|---|---|---|---|---|
| 常规天然气 地质资源量/ (108 m3) | 致密气地质 资源量/ (108 m3) | 成因法计算的 天然气资源量/ (108 m3) | 常规天然气 地质资源量/ (108 m3) | 致密气地质 资源量/ (108 m3) | |||||
| 松辽 盆地 北部 深层 | 徐家围子断陷 | 5 866.45 | 4 335.72 | 10 269.26 | 5 866.45 | 4 435.72 | 0.002~4.67 (0.130/189) | ||
| 莺山—双城断陷 | 1 790 | 799.8 | 2 589.8 | 1 810 | 779.8 | ||||
| 林甸—古龙断陷 | 1 990.7 | 1 990.7 | 1 990.7 | ||||||
| 绥化断陷 | 393 | 393 | 393 | ||||||
| 古中央隆起带 | 610 | 610 | |||||||
| 合计 | 10 670.15 | 5 215.52 | |||||||
| 松辽 盆地 南部 深层 | 英台断陷 | 1 385 | 1 950 | ||||||
| 王府断陷 | 1 630 | 2 143 | 1 556+2 726 | 1 601 | 1 922 | ||||
| 德惠断陷 | 1 424 | 1 799 | 1 461+1 485 | 1 407 | 1 706 | 0.02~0.04 (0.027/14) | |||
| 梨树断陷 | 167 | 5 043 | 146+4 198 | 158 | 914.6 | ||||
| 长岭断陷 | 2 104 | 1 471 | 1 976 | 0.013~0.03 (0.019/3) | |||||
| 双辽断陷 | 966 | 485 | 870 | ||||||
| 榆树断陷 | 1 396 | 1 455 | 1 391 | ||||||
| 孤店断陷 | 1 067 | 451 | 1 088 | ||||||
| 大安断陷 | 607 | 614 | |||||||
| 伏双大 | 1 805 | 1 556 | 1 816 | ||||||
| 乾北洼槽 | 545 | 473 | 541 | ||||||
| 前神字井 | 1 048 | 803 | 1 026 | ||||||
| 合计 | 7 397 | 12 969 | |||||||
Table 1 Summary of natural gas resources in deep fault depression of Songliao Basin. Adapted from [24-29].
| 领域 | 评价单元 | 类比法 | 最终取值 | He含量/% | |||||
|---|---|---|---|---|---|---|---|---|---|
| 常规天然气 地质资源量/ (108 m3) | 致密气地质 资源量/ (108 m3) | 成因法计算的 天然气资源量/ (108 m3) | 常规天然气 地质资源量/ (108 m3) | 致密气地质 资源量/ (108 m3) | |||||
| 松辽 盆地 北部 深层 | 徐家围子断陷 | 5 866.45 | 4 335.72 | 10 269.26 | 5 866.45 | 4 435.72 | 0.002~4.67 (0.130/189) | ||
| 莺山—双城断陷 | 1 790 | 799.8 | 2 589.8 | 1 810 | 779.8 | ||||
| 林甸—古龙断陷 | 1 990.7 | 1 990.7 | 1 990.7 | ||||||
| 绥化断陷 | 393 | 393 | 393 | ||||||
| 古中央隆起带 | 610 | 610 | |||||||
| 合计 | 10 670.15 | 5 215.52 | |||||||
| 松辽 盆地 南部 深层 | 英台断陷 | 1 385 | 1 950 | ||||||
| 王府断陷 | 1 630 | 2 143 | 1 556+2 726 | 1 601 | 1 922 | ||||
| 德惠断陷 | 1 424 | 1 799 | 1 461+1 485 | 1 407 | 1 706 | 0.02~0.04 (0.027/14) | |||
| 梨树断陷 | 167 | 5 043 | 146+4 198 | 158 | 914.6 | ||||
| 长岭断陷 | 2 104 | 1 471 | 1 976 | 0.013~0.03 (0.019/3) | |||||
| 双辽断陷 | 966 | 485 | 870 | ||||||
| 榆树断陷 | 1 396 | 1 455 | 1 391 | ||||||
| 孤店断陷 | 1 067 | 451 | 1 088 | ||||||
| 大安断陷 | 607 | 614 | |||||||
| 伏双大 | 1 805 | 1 556 | 1 816 | ||||||
| 乾北洼槽 | 545 | 473 | 541 | ||||||
| 前神字井 | 1 048 | 803 | 1 026 | ||||||
| 合计 | 7 397 | 12 969 | |||||||
Fig.1 Distribution of volcanic rocks, faults, and helium content in Xujiaweizi and Changling fault basins. Modified after [22,28,30-31] and data from [27,29].
Fig.3 Comparison of the proportion of helium mixing from mantle sources in the Xujiaweizi fault depression in the northern part of the Songliao Basin (a) and the Changling fault depression in its southern part (b). Data from [6,27,33-35].
Fig.5 Correlation diagram of3He/4He and 4He/20Ne natural gas in the Songliao Basin. Volcanic rock data from [6], and natural gas sample data from this article.
| 地区 | 岩石类型 | 时代/Ma | U含量/10-6 | Th含量/10-6 | 4He生成速率/(cm3·g-1·a-1) | 参考文献 |
|---|---|---|---|---|---|---|
| 徐家围子断陷营城组 | 流纹岩 | 110 | 1.5~7.8 (平均4.42) | 12.8~33.61 (平均22.22) | 1.172×10-12 | [ |
| 长岭断陷营城组 | 火山岩 | 116~111 | 0.464~9.02 (平均2.77) | 1.27~33.3 (平均12.75) | 7.006×10-13 | [ |
Table 2 Helium generation capacity of the Yingcheng Formation in the Xujiaweizi and Changling fault basins
| 地区 | 岩石类型 | 时代/Ma | U含量/10-6 | Th含量/10-6 | 4He生成速率/(cm3·g-1·a-1) | 参考文献 |
|---|---|---|---|---|---|---|
| 徐家围子断陷营城组 | 流纹岩 | 110 | 1.5~7.8 (平均4.42) | 12.8~33.61 (平均22.22) | 1.172×10-12 | [ |
| 长岭断陷营城组 | 火山岩 | 116~111 | 0.464~9.02 (平均2.77) | 1.27~33.3 (平均12.75) | 7.006×10-13 | [ |
| 地区 | 样品 | 天然气组分含量/% | (3He/4He)/10-7 | 4He/20Ne | 数据 来源 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| He | H2 | N2 | CO2 | CH4 | C2H6 | C3H8 | |||||
| 徐家 围子 断陷 | SHS7 | 0.244 | 0.027 | 4.01 | 2.31 | 90.39 | 2.04 | 0.73 | 文献 [ | ||
| SHS201 | 0.036 | 0.004 | 3.27 | 2.91 | 92.11 | 1.5 | 0.13 | ||||
| XS14 | 0.067 | 0.005 | 2.09 | 0.67 | 92.95 | 3.03 | 0.61 | ||||
| XS15 | 0.25 | 0.002 | 13.69 | 15.79 | 69.58 | 0.63 | 0.02 | ||||
| 长岭 断陷 | CS1 | 0.060 | 0.032 | 4.67 | 23.87 | 69.83 | 1.28 | 0.074 | 6.14 | 2 764 | 本文 数据 |
| CS1-1 | 0.057 | 0.00 | 5.08 | 14.20 | 79.00 | 1.46 | 0.082 | 34.0 | 5 145 | ||
| CS40 | 0.011 | 0.031 | 0.41 | 0.46 | 98.22 | 0.77 | 0.055 | 2.68 | 1 719 | ||
| CS119 | 0.065 | 0.00 | 4.97 | 17.82 | 75.66 | 1.33 | 0.066 | 36.0 | 5 715 | ||
| F243 | 0.042 | 0.00 | 2.97 | 0.072 | 92.76 | 2.71 | 0.75 | 2.19 | 2 821 | ||
| F14 | 0.034 | 0.009 | 2.59 | 0.087 | 91.07 | 3.22 | 1.41 | 2.64 | 5 229 | ||
Table 3 Natural gas composition and rare gas isotope data of some sampling wells in the Songliao Basin
| 地区 | 样品 | 天然气组分含量/% | (3He/4He)/10-7 | 4He/20Ne | 数据 来源 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| He | H2 | N2 | CO2 | CH4 | C2H6 | C3H8 | |||||
| 徐家 围子 断陷 | SHS7 | 0.244 | 0.027 | 4.01 | 2.31 | 90.39 | 2.04 | 0.73 | 文献 [ | ||
| SHS201 | 0.036 | 0.004 | 3.27 | 2.91 | 92.11 | 1.5 | 0.13 | ||||
| XS14 | 0.067 | 0.005 | 2.09 | 0.67 | 92.95 | 3.03 | 0.61 | ||||
| XS15 | 0.25 | 0.002 | 13.69 | 15.79 | 69.58 | 0.63 | 0.02 | ||||
| 长岭 断陷 | CS1 | 0.060 | 0.032 | 4.67 | 23.87 | 69.83 | 1.28 | 0.074 | 6.14 | 2 764 | 本文 数据 |
| CS1-1 | 0.057 | 0.00 | 5.08 | 14.20 | 79.00 | 1.46 | 0.082 | 34.0 | 5 145 | ||
| CS40 | 0.011 | 0.031 | 0.41 | 0.46 | 98.22 | 0.77 | 0.055 | 2.68 | 1 719 | ||
| CS119 | 0.065 | 0.00 | 4.97 | 17.82 | 75.66 | 1.33 | 0.066 | 36.0 | 5 715 | ||
| F243 | 0.042 | 0.00 | 2.97 | 0.072 | 92.76 | 2.71 | 0.75 | 2.19 | 2 821 | ||
| F14 | 0.034 | 0.009 | 2.59 | 0.087 | 91.07 | 3.22 | 1.41 | 2.64 | 5 229 | ||
Fig.11 Relationship between He content and CH4 (a), CO2 (b), N2 (c) in different layers of Xujiaweizi and Changling fault depressions. Data from [27-29,34,36].
Fig.12 Identification diagram of organic and inorganic CO2 in the Xujiaweizi and Changling fault basins of the Songliao Basin. Graph from [63] and data from [28,64].
| [1] | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 481-538. |
| [2] | 陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 44(3): 1024-1041. |
| [3] | 彭威龙, 刘全有, 张英, 等. 中国首个特大致密砂岩型(烃类)富氦气田: 鄂尔多斯盆地东胜气田特征[J]. 中国科学(地球科学), 2022, 52(6): 1078-1085. |
| [4] | 陈践发, 刘凯旋, 董勍伟, 等. 天然气中氦资源研究现状及我国氦资源前景[J]. 天然气地球科学, 2021, 32(10): 1436-1449. |
| [5] | 徐永昌, 沈平, 刘文汇, 等. 天然气中稀有气体地球化学[M]. 北京: 科学出版社, 1998: 100-106. |
| [6] | 陶士振, 戴金星, 邹才能, 等. 松辽盆地火山岩包裹体稀有气体同位素与天然气成因成藏示踪[J]. 岩石学报, 2012, 28(3): 927-938. |
| [7] | DAI J X, HU G Y, NI Y Y, et al. Distribution characteristics of natural gas in eastern China[J]. Natural Gas Geoscience, 2009, 20(4): 471-487. |
| [8] | XU Y, SHEN P, TAO M, et al. Geochemistry on mantle-derived volatiles in natural gases from eastern China oil/gas provinces (II): helium, argon and hydrocarbons in mantle volatiles[J]. Science in China Series D: Earth Sciences, 1997, 40: 315-321. |
| [9] | 赵欢欢, 梁慨慷, 魏志福, 等. 松辽盆地富氦气藏差异性富集规律及有利区预测[J]. 天然气地球科学, 2023, 34(4): 628-646. |
| [10] | BOHNING J J, SIERRA L W. Discovery of helium in natural gas[R]. Kansas City: University of Kansas, 2000. |
| [11] | SIDDHANTAKAR A, SANTILLAN-SALDIVAR J, KIPPES T, et al. Helium resource global supply and demand: geopolitical supply risk analysis[J]. Resources, Conservation and Recycling, 2023, 193: 106935. |
| [12] | 戴金星, 宋岩, 戴春森, 等. 中国东部无机成因气及其气藏形成条件[M]. 北京: 科学出版社, 1995: 80-190. |
| [13] | 陶明信, 徐永昌, 韩文功, 等. 中国东部幔源流体的活动特征与成藏效应[J]. 大地构造与成矿学, 2001, 25(3): 265-270. |
| [14] | 付晓飞, 宋岩. 松辽盆地无机成因气及气源模式[J]. 石油学报, 2005(4): 23-28. |
| [15] | 冯子辉, 霍秋立, 王雪. 松辽盆地北部氦气成藏特征研究[J]. 天然气工业, 2001(5): 27-30. |
| [16] | 王晓锋, 刘全有, 刘文汇, 等. 中国东部含油气盆地幔源氦气资源富集成藏机理[J]. 中国科学: 地球科学, 2022, 52(12): 2441-2453. |
| [17] | 张健, 张海华, 贺君玲, 等. 东北地区氦气成藏条件与资源前景分析[J]. 西北地质, 2023, 56(1): 117-128. |
| [18] | 陈悦, 陶士振, 杨怡青. 中国氦气地球化学特征、聚集规律与前景展望[J]. 中国矿业大学学报, 2023, 52(1): 145-167. |
| [19] | 钟鑫. 松辽盆地北部氦气分布特征及控制因素[J]. 地质调查与研究, 2017, 40(4): 300-305. |
| [20] | LIU Q, DAI J, JIN Z, et al. Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field, Songliao Basin, China, suggesting abiogenic alkanes?[J]. Journal of Asian Earth Sciences, 2016, 115: 285-297. |
| [21] | 孙立东, 周翔, 杨亮, 等. 松辽盆地莺山地区深层天然气地球化学特征与成藏模式[J]. 石油学报, 2023, 44(2): 285-298. |
| [22] | LIU X, FU X, LIU D, et al. Distribution of mantle-derived CO2 gas reservoir and its relationship with basement faults in Songliao Basin, China[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 593-607. |
| [23] | 李娟, 舒良树. 松辽盆地中、新生代构造特征及其演化[J]. 南京大学学报(自然科学), 2002(4): 525-531. |
| [24] | 王颖, 邓守伟, 范晶, 等. 松辽盆地南部重点断陷天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1455-1464. |
| [25] | 白雪峰, 梁江平, 张文婧, 等. 松辽盆地北部深层天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10): 1443-1454. |
| [26] | XU Z J, PENG B, FENG Y J, et al. Characteristics and origins of the natural gas and implications for gas-source correlation in deep formations of the Songliao Basin, NE China[J]. Energies, 2019, 12(24): 4641. |
| [27] | 柳少波, 鲁雪松, 洪峰, 等. 松辽盆地含CO2天然气成藏机制与分布规律研究[M]. 北京: 科学出版社, 2016: 37-58. |
| [28] | ZENG H, LI J, HOU Q. A review of alkane gas geochemistry in the Xujiaweizi fault-depression, Songliao Basin[J]. Marine and Petroleum Geology, 2013, 43: 284-296. |
| [29] | 杨春. 松辽盆地深层不同类型天然气成因机理及其成藏贡献[D]. 杭州: 浙江大学, 2009. |
| [30] | 付广, 吴薇, 历娜. 松辽盆地徐家围子断陷大型断裂带对天然气成藏的控制作用[J]. 天然气工业, 2014, 34(7): 7-12. |
| [31] | NI Y Y, DAI J J, ZHOU Q H, et al. Geochemical characteristics of abiogenic gas and its percentage in Xujiaweizi fault depression, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2009, 36(1): 35-45. |
| [32] | 赵泽辉, 孙平, 罗霞, 等. 松辽断陷盆地火山岩大气田形成条件与勘探实践[J]. 现代地质, 2014, 28(3): 592-603. |
| [33] | 李贶, 王果寿, 周卓明. 松辽盆地长岭断陷无机成因CO2气成藏条件分析[J]. 石油实验地质, 2015, 37(4): 439-444. |
| [34] | 杨春, 陶士振, 侯连华, 等. 松辽盆地火山岩储层天然气藏He同位素组成累积效应[J]. 天然气地球科学, 2014, 25(1): 109-115. |
| [35] | YU Y, NIU W, YANG G, et al. Mechanisms for the accumulation of deep gas in the southern Songliao Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106302. |
| [36] | HUANG H, YANG J, YANG Y, et al. Geochemistry of natural gases in deep strata of the Songliao Basin, NE China[J]. International Journal of Coal Geology, 2004, 58(4): 231-244. |
| [37] | 龙伟. 松辽盆地徐家围子断陷构造特征研究[D]. 成都: 成都理工大学, 2017. |
| [38] | 霍秋立. 松辽盆地徐家围子断陷深层天然气来源与成藏研究[D]. 大庆: 大庆石油学院, 2007. |
| [39] | 王琦, 张万福, 孙永河, 等. 长岭断陷断层活动特征及控藏作用[J]. 石油地球物理勘探, 2022, 57(5): 1182-1191, 1007. |
| [40] | 李景坤. 松辽盆地徐家围子断陷深层天然气成因和保存条件研究[D]. 北京: 中国地质大学(北京), 2010. |
| [41] | 李晶秋, 苗宏伟, 李立立, 等. 松辽盆地南部长岭断陷深层碎屑岩天然气成藏特征及主控因素[J]. 中国石油勘探, 2009, 14(4): 34-39, 9. |
| [42] | 杨玉峰, 张秋, 黄海平, 等. 松辽盆地徐家围子断陷无机成因天然气及其成藏模式[J]. 地学前缘, 2000, 7(4): 523-533. |
| [43] | 赵力彬, 黄志龙, 马玉杰, 等. 松辽盆地南部德惠断陷深层天然气地球化学特征及成因[J]. 天然气地球科学, 2006(2): 177-182. |
| [44] | 仵宗涛, 刘兴旺, 李孝甫, 等. 稀有气体同位素在四川盆地元坝气藏气源对比中的应用[J]. 天然气地球科学, 2017, 28(7): 1072-1077. |
| [45] | 杜建国, 刘文汇. 三水盆地天然气中的氦和氩同位素地球化学研究[J]. 天然气地球科学, 1991(6): 283-285. |
| [46] | WANG X, CHEN J, LI Z, et al. Rare gases geochemical characteristics and gas source correlation for Dabei gas field in Kuche depression, Tarim Basin[J]. Energy Exploration & Exploitation, 2016, 34(1): 113-128. |
| [47] | WANG X, WEI G, LI J, et al. Geochemical characteristics and origins of noble gases of the Kela 2 gas field in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2018, 89: 155-163. |
| [48] | 戴金星, 胡国艺, 倪云燕, 等. 中国东部天然气分布特征[J]. 天然气地球科学, 2009, 20(4): 471-487. |
| [49] | 李晓锋, 彭仕宓, 邵明礼, 等. 松辽盆地深层天然气成因分析及气源对比: 以长岭断陷长深1区块营城组气藏为例[J]. 天然气工业, 2009, 29(11): 5-8, 133-134. |
| [50] | 鲁雪松, 宋岩, 柳少波, 等. 松辽盆地幔源CO2分布规律与运聚成藏机制[J]. 石油学报, 2009, 30(5): 661-666. |
| [51] | 付晓飞, 沙威, 王磊, 等. 松辽盆地幔源成因CO2气藏分布规律及控制因素[J]. 吉林大学学报(地球科学版), 2010, 40(2): 253-263. |
| [52] | 孙扬. 松辽盆地不同类型断陷沉积与储层发育模式差异性分析[D]. 大庆: 东北石油大学, 2019. |
| [53] | 王琦, 张万福, 孙永河, 等. 长岭断陷断层活动特征及控藏作用[J]. 石油地球物理勘探, 2022, 57(5): 1182-1191. |
| [54] | 孟凡超, 刘嘉麒, 李明, 等. 松辽盆地徐家围子营城组流纹岩地球化学特征及构造指示意义[J]. 岩石学报, 2010, 26(1): 227-241. |
| [55] | 于文修, 陆建林, 张庆龙, 等. 松辽盆地长岭断陷早白垩世火山岩地球化学研究[J]. 矿物学报, 2012, 32(1): 83-92. |
| [56] | 李瑞磊, 杨立英, 朱建峰, 等. 松辽盆地南部断陷层火山岩储层特征及油气成藏主控因素[J]. 地学前缘, 2023, 30(4): 100-111. |
| [57] | CRAIG H, LUPTON J E. Primordial neon, helium, and hydrogen in oceanic basalts[J]. Earth and Planetary Science Letters, 1976, 31(3): 369-385. |
| [58] | 曹跃, 高胜利, 乔向阳, 等. 松辽盆地南部长岭断陷营城组火山岩天然气成因与成藏[J]. 西安石油大学学报(自然科学版), 2018, 33(4): 27-35. |
| [59] | DANABALAN D. Helium: exploration methodology for a strategic resource[D]. Durham: Durham University, 2017: 234-235. |
| [60] | 牛文. 徐家围子断陷控陷断裂活动特征及其对断陷的控制作用[J]. 大庆石油地质与开发, 2019, 38(4): 38-44. |
| [61] | 张居和, 方伟, 李景坤, 等. 松辽盆地徐家围子断陷深层天然气成因类型及各种成因气贡献[J]. 地质学报, 2009, 83(4): 579-589. |
| [62] | 昝灵, 张枝焕, 黄军平, 等. 松辽盆地长岭断陷天然气地球化学特征及气源分析[J]. 天然气地球科学, 2010, 21(2): 331-337. |
| [63] | 戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993(增刊1): 1-40. |
| [64] | 鲁雪松, 魏立春, 宋岩, 等. 松辽盆地南部长岭断陷高含CO2气藏成藏机制分析[J]. 天然气地球科学, 2011, 22(4): 657-663. |
| [65] | 何家雄, 夏斌, 刘宝明, 等. 中国东部及近海陆架盆地CO2成因及运聚规律与控制因素研究[J]. 石油勘探与开发, 2005(4): 42-49. |
| [66] | DAI J, NI Y, QIN S, et al. Geochemical characteristics of He and CO2 from the Ordos (cratonic) and Bohaibay (rift) basins in China[J]. Chemical Geology, 2017, 469: 192-213. |
| [67] | CAI C, WORDEN R H, WANG Q, et al. Chemical and isotopic evidence for secondary alteration of natural gases in the Hetianhe Field, Bachu Uplift of the Tarim Basin[J]. Organic Geochemistry, 2002, 33(12): 1415-1427. |
| [68] | 张彦霞, 李海华, 王保华, 等. 松辽盆地长岭断陷深层天然气输导体系研究[J]. 石油实验地质, 2012, 34(6): 582-586. |
| [69] | 于丹, 付晓飞, 吕延防, 等. 徐家围子断陷深层天然气盖层特征及封盖性评价[J]. 吉林大学学报(地球科学版), 2009, 39(5): 773-780. |
| [70] | 黄兰. 长岭断陷深层天然气盖层特征研究[J]. 四川地质学报, 2018, 38(2): 231-235. |
| [1] | WANG Pujun, GAO Chuancheng, GAO Youfeng, YANG Zhuolong, TANG Xin, ZHENG Changqing, LIU Shuo, LIU Haibo, LI Honghao, GAO Xiang, GAO Yuan, WANG Chengshan, WAN Xiaoqiao. Study on basement metamorphic rocks of the ICDP borehole SK2 in the Songliao Basin [J]. Earth Science Frontiers, 2025, 32(5): 38-51. |
| [2] | YU Lu, LI Xian, CUI Guodong, XING Donghui, LU Hongfeng, WANG Yejia. The impact of threshold pressure gradient on the production dynamics of gas hydrate reservoirs in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 178-194. |
| [3] | WU Nengyou, LI Yanlong, JIANG Yujing, SUN Jinsheng, XIE Wenwei, HU Gaowei, WANG Ren, YU Yanjiang, WANG Jintang, CHEN Qiang, SHEN Kaixiang, SUN Zhiwen, CHEN Mingtao. Proposal, subject connotation and prospect of marine natural gas hydrate engineering geology [J]. Earth Science Frontiers, 2025, 32(2): 216-229. |
| [4] | CAO Lifu, WANG Haiyan, LI Wenhui, HOU Hesheng, WANG Guangwen, PANG Yongxiang. Refraction Pg tomographic imaging reveals the upper crustal structure of the Xing-Meng Orogenic Belt and its adjacent areas [J]. Earth Science Frontiers, 2025, 32(2): 346-356. |
| [5] | LAI Hongfei, KUANG Zenggui, FANG Yunxin, XU Chenlu, REN Jinfeng, LIANG Jinqiang, LU Jing’an. Origin and genetic mechanism of hydrocarbon gas sources of the highly saturated gas hydrate deposits in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 36-60. |
| [6] | LIU Yang, LI Sanzhong, ZHONG Shihua, GUO Guanghui, LIU Jiaqing, NIU Jinghui, XUE Zimeng, ZHOU Jianping, DONG Hao, SUO Yanhui. Machine learning: A new approach to intelligent exploration of seafloor mineral resources [J]. Earth Science Frontiers, 2024, 31(3): 520-529. |
| [7] | WANG Bin, SUN Dongsheng, LI Awei, YANG Yuehui, CHEN Qunce. In situ stress state of deep basement in the Songliao Basin: Evidence from in situ stress measurement in SK-2 borehole [J]. Earth Science Frontiers, 2024, 31(2): 377-390. |
| [8] | YANG Yiqing, TAO Shizhen, CHEN Yue. Geological characteristics and mechanism of helium accumulation in typical abiotic helium-rich gas fields in the United States [J]. Earth Science Frontiers, 2024, 31(1): 327-339. |
| [9] | LIU Chiyang, ZHANG Long, HUANG Lei, WU Bailin, WANG Jianqiang, ZHANG Dongdong, TAN Chengqian, MA Yanping, ZHAO Jianshe. Novel metallogenic model of sandstone-type uranium deposits: Mineralization by deep organic fluid [J]. Earth Science Frontiers, 2024, 31(1): 368-383. |
| [10] | WANG Chengshan, GAO Yuan, WANG Pujun, WU Huaichun, LÜ Qingtian, ZHU Yongyi, WAN Xiaoqiao, ZOU Changchun, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Wenshi, HE Huaiyu, FENG Zihui, YANG Guang, DENG Chenglong, ZHANG Laiming, WANG Tiantian, HU Bin, CUI Liwei, PENG Cheng, YU Enxiao, HUANG He, YANG Liu, WU Zhengxuan. International Continental Scientific Drilling Project of the Songliao Basin: Terrestrial Geological Records of the Cretaceous Dinosaur Age [J]. Earth Science Frontiers, 2024, 31(1): 412-430. |
| [11] | WU Huaichun, LI Shan, WANG Chengshan, CHU Runjian, WANG Pujun, GAO Yuan, WAN Xiaoqiao, HE Huaiyu, DENG Chenglong, YANG Guang, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Tiantian, FANG Qiang, YANG Tianshui, ZHANG Shihong. Integrated chronostratigraphic framework for Cretaceous strata in the Songliao Basin [J]. Earth Science Frontiers, 2024, 31(1): 431-445. |
| [12] | LI Ruilei, YANG Liying, ZHU Jianfeng, LIU Yuhu, XU Wen, LI Zhongbo, FAN Xuepei, LENG Qinglei, ZHANG Tingting. Volcanic reservoir characteristics and hydrocarbon accumulation control factors of rift depressions in southern Songliao Basin [J]. Earth Science Frontiers, 2023, 30(4): 100-111. |
| [13] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
| [14] | HAN Shuangbiao, TANG Zhiyuan, BAI Songtao, WAN Lei, RUI Yurun, GAO Yuan, HUANG Yongjian, WANG Chengshan. Application of elemental capture spectroscopy in deep tight reservoir evaluation: A case study of well SK-2 [J]. Earth Science Frontiers, 2022, 29(1): 449-458. |
| [15] | CHEN Xiao'er, ZHANG Bing, FAN Kun, YANG Kai, ZHANG Saimin. Metallogenic model for the coexistence of potassium-rich brine and natural gas in the same strata: An example from the Middle Triassic Leikoupo Formation in the Moxi Anticline, Central Sichuan Basin, Southwest China [J]. Earth Science Frontiers, 2021, 28(6): 79-94. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||