Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 38-51.DOI: 10.13745/j.esf.sf.2025.5.10
Previous Articles Next Articles
WANG Pujun1(), GAO Chuancheng1, GAO Youfeng1,2,*(
), YANG Zhuolong1, TANG Xin1, ZHENG Changqing1, LIU Shuo1, LIU Haibo1, LI Honghao1, GAO Xiang1, GAO Yuan3, WANG Chengshan3, WAN Xiaoqiao3
Received:
2025-01-17
Revised:
2025-05-25
Online:
2025-09-25
Published:
2025-10-14
Contact:
GAO Youfeng
CLC Number:
WANG Pujun, GAO Chuancheng, GAO Youfeng, YANG Zhuolong, TANG Xin, ZHENG Changqing, LIU Shuo, LIU Haibo, LI Honghao, GAO Xiang, GAO Yuan, WANG Chengshan, WAN Xiaoqiao. Study on basement metamorphic rocks of the ICDP borehole SK2 in the Songliao Basin[J]. Earth Science Frontiers, 2025, 32(5): 38-51.
Fig.1 E-W geological section of Songliao Basin traversing ICDP borehole and important wells, and seismic profile traversing ICDP borehole SK2. b modified after [2,13] ; c modified after [12].
井号 | 钻探时间 | 井深/m | 层位 | 钻进类型 | 取心类型 | 取心进尺/m | 岩心长度/m | 取心率/% |
---|---|---|---|---|---|---|---|---|
松科1井南孔 海拔:135 m E 124°40'16″ N 45°34'14″ | 2006-08-18— 2006-11-04 | 0~955.00 | 泰康组—嫩江组 | 全面钻进 | ||||
955.00~ 1 935.00 | 嫩江组—泉头组 | 钻井取心 | 常规取心 保形取心 定向取心 | 946.83 | 944.23 | 99.73 | ||
松科1井北孔 海拔:134 m E 124°15'57″ N 46°12'44″ | 2006-08-29— 2007-10-20 | 0~160.51 | 泰康组 | 全面钻进 | ||||
160.51~ 233.56 | 泰康组—明水组 | 钻井取心 | 保形取心 | 1 630.41 | 1 541.66 | 94.56 | ||
233.56~ 1 811.18 | 明水组—嫩江组 | 钻井取心 | 常规取心 | |||||
松科2井 海拔:164 m E125°21'47″ N 46°14'27″ | 2014-04-13— 2018-05-26 | 0~1 074.00 | 泰康组—嫩江组 | 全面钻进 | ||||
1 074.00~ 1 256.01 | 嫩江组 | 钻井取心 | 常规取心 | 145.13 | 130.87 | 90.17 | ||
1 256.01~ 2 863.23 | 姚家组— 登娄库组 | 全面钻进 | ||||||
2 863.23~ 7 018 | 登娄库组—基底 | 钻井取心 | 常规取心 | 4 134.60 | 4 003.94 | 96.84 | ||
7 018~ 7 108.88 | 中泥盆统变 质岩基底 | 钻井取心 | 常规取心 | 90.88 | 74.71 | 82.20 | ||
松科3井 海拔:173 m E 125°17'40″ N 44°16'20″ | 2020-09-24— 2021-01-30 | 0~839.75 | 泰康组— 青山口组 | 全面钻进 | ||||
839.75~ 2 420.09 | 泉头组— 登娄库组 | 钻井取心 | 常规取心 | 1 580.34 | 1 566.26 | 99.10 | ||
2 420.09~ 3 600.00 | 沙河子组— 火石岭组 | 全面钻进 | ||||||
总计 | 总进尺14 455.06 | 8 528.19 | 8 261.67 | 96.87 |
Table 1 Songliao Basin Cretaceous international continental scientific drilling project core data summary table
井号 | 钻探时间 | 井深/m | 层位 | 钻进类型 | 取心类型 | 取心进尺/m | 岩心长度/m | 取心率/% |
---|---|---|---|---|---|---|---|---|
松科1井南孔 海拔:135 m E 124°40'16″ N 45°34'14″ | 2006-08-18— 2006-11-04 | 0~955.00 | 泰康组—嫩江组 | 全面钻进 | ||||
955.00~ 1 935.00 | 嫩江组—泉头组 | 钻井取心 | 常规取心 保形取心 定向取心 | 946.83 | 944.23 | 99.73 | ||
松科1井北孔 海拔:134 m E 124°15'57″ N 46°12'44″ | 2006-08-29— 2007-10-20 | 0~160.51 | 泰康组 | 全面钻进 | ||||
160.51~ 233.56 | 泰康组—明水组 | 钻井取心 | 保形取心 | 1 630.41 | 1 541.66 | 94.56 | ||
233.56~ 1 811.18 | 明水组—嫩江组 | 钻井取心 | 常规取心 | |||||
松科2井 海拔:164 m E125°21'47″ N 46°14'27″ | 2014-04-13— 2018-05-26 | 0~1 074.00 | 泰康组—嫩江组 | 全面钻进 | ||||
1 074.00~ 1 256.01 | 嫩江组 | 钻井取心 | 常规取心 | 145.13 | 130.87 | 90.17 | ||
1 256.01~ 2 863.23 | 姚家组— 登娄库组 | 全面钻进 | ||||||
2 863.23~ 7 018 | 登娄库组—基底 | 钻井取心 | 常规取心 | 4 134.60 | 4 003.94 | 96.84 | ||
7 018~ 7 108.88 | 中泥盆统变 质岩基底 | 钻井取心 | 常规取心 | 90.88 | 74.71 | 82.20 | ||
松科3井 海拔:173 m E 125°17'40″ N 44°16'20″ | 2020-09-24— 2021-01-30 | 0~839.75 | 泰康组— 青山口组 | 全面钻进 | ||||
839.75~ 2 420.09 | 泉头组— 登娄库组 | 钻井取心 | 常规取心 | 1 580.34 | 1 566.26 | 99.10 | ||
2 420.09~ 3 600.00 | 沙河子组— 火石岭组 | 全面钻进 | ||||||
总计 | 总进尺14 455.06 | 8 528.19 | 8 261.67 | 96.87 |
Fig.2 Structural unit division of rift sequences in Songliao Basin and well location distribution map of ICDP boreholes and important wells. Modified after [13,39-40].
Fig.3 Composite columnar chart of rock types, lithologic succession, and conventional logging in Middle Devonian basement rocks from ICDP borehole SK2 7000-7108.88 m
一级构造 | 面积/km2 | 二级构造 | 面积/km2 | |
---|---|---|---|---|
I西部断陷带 | 5 115 | I1梅里斯断陷 | 2 547 | |
I2宝山断陷 | 790 | |||
I3富裕断陷 | 749 | |||
I4林甸断陷 | 1 029 | |||
II西部隆起带 | 302 | II1依安西断陷 | 302 | |
III中部断陷带 | 8 792 | III1依安中断陷 | 483 | |
III2依安东断陷 | 812 | |||
III3黑鱼泡断陷 | 2 087 | |||
III4小林克断陷 | 270 | |||
III5古龙断陷 | 3 374 | |||
III6泰来断陷 | 1 766 | |||
IV中部隆起带 | 2 767 | IV1中和断陷 | 484 | |
IV2北安断陷 | 2 283 | |||
V东部断陷带 | 16 805 | V1莺山断陷 | 1 661 | |
V2双城断陷 | 980 | |||
V3徐家围子断陷 | 5 682 | |||
V4任民镇断陷 | 678 | |||
V5兰西断陷 | 1 156 | |||
V6呼兰北断陷 | 1 036 | |||
V7绥化断陷 | 3 523 | |||
V8兴华断陷 | 758 | |||
V9宾县西断陷 | 102 | |||
V10宾县南断陷 | 253 | |||
V11宾县东断陷 | 976 | |||
VI东部隆起带 | 3 500 | VI1德惠断陷 | 3 500 |
Table 2 Structural unit division table of major rift sequences in Songliao Basin. Modified after [12-13,39].
一级构造 | 面积/km2 | 二级构造 | 面积/km2 | |
---|---|---|---|---|
I西部断陷带 | 5 115 | I1梅里斯断陷 | 2 547 | |
I2宝山断陷 | 790 | |||
I3富裕断陷 | 749 | |||
I4林甸断陷 | 1 029 | |||
II西部隆起带 | 302 | II1依安西断陷 | 302 | |
III中部断陷带 | 8 792 | III1依安中断陷 | 483 | |
III2依安东断陷 | 812 | |||
III3黑鱼泡断陷 | 2 087 | |||
III4小林克断陷 | 270 | |||
III5古龙断陷 | 3 374 | |||
III6泰来断陷 | 1 766 | |||
IV中部隆起带 | 2 767 | IV1中和断陷 | 484 | |
IV2北安断陷 | 2 283 | |||
V东部断陷带 | 16 805 | V1莺山断陷 | 1 661 | |
V2双城断陷 | 980 | |||
V3徐家围子断陷 | 5 682 | |||
V4任民镇断陷 | 678 | |||
V5兰西断陷 | 1 156 | |||
V6呼兰北断陷 | 1 036 | |||
V7绥化断陷 | 3 523 | |||
V8兴华断陷 | 758 | |||
V9宾县西断陷 | 102 | |||
V10宾县南断陷 | 253 | |||
V11宾县东断陷 | 976 | |||
VI东部隆起带 | 3 500 | VI1德惠断陷 | 3 500 |
[1] | ULRICH H, CHRISTIAN K, MARK D Z. Continental scientific drilling: a decade of progress, and challenges for the future[M]. Berlin, Heidelberg: Springer, 2007: 1-366. |
[2] | 王成善, 高远, 王璞珺, 等. 松辽盆地国际大陆科学钻探: 白垩纪恐龙时代陆相地质记录[J]. 地学前缘, 2024, 31(1): 412-430, 511-534. |
[3] | 王璞珺, 刘海波, 任延广, 等. 松辽盆地白垩系大陆科学钻探“松科2井”选址[J]. 地学前缘, 2017, 24(1): 216-228. |
[4] | 席党鹏, 万晓樵, 冯志强, 等. 松辽盆地晚白垩世有孔虫的发现:来自松科1井湖海沟通的证据[J]. 科学通报, 2010, 55(35): 3433-3436. |
[5] | WANG C S, SCOTT R W, WAN X Q, et al. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata[J]. Earth-Science Reviews, 2013, 126(1): 275-299. |
[6] | WANG P J, CHEN C Y, LIU H B. Aptian giant explosive volcanic eruptions in the Songliao Basin and northeast Asia:a possible cause for global climate change and OAE-1a[J]. Cretaceous Research, 2016, 62: 98-108. |
[7] | 高远, 王成善, 黄永建, 等. 大陆科学钻探开展古气候研究进展[J]. 地学前缘, 2017, 24(1): 229-241. |
[8] | WAN X Q, ZHAO J, ROBERT W.S, et al. Late Cretaceous stratigraphy, Songliao Basin, NE China: SK1 cores[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 31-43. |
[9] | WANG P J, CHEN S M. Cretaceous volcanic reservoirs and their exploration in the Songliao Basin, northeast China[J]. AAPG Bulletin, 2015, 99(3): 499-523. |
[10] | 吴怀春, 李山, 王成善, 等. 松辽盆地白垩纪综合年代地层格架[J]. 地学前缘, 2024, 31(1): 431-445. |
[11] | WANG C S, GAO Y, DANIEL I, et al. An unbroken record of climate during the age of dinosaurs[J]. EOS, 2021, 102: 36-41. |
[12] | WANG P J, YANG Z L, GAO Y F, et al. Interaction between basement detachment fault, rift onset unconformity, and overlying basin fills: an example from the Songliao basin of a Cretaceous active continental margin volcanic rift in northeast Asia[J]. Marine and Petroleum Geology, 2024, 168: 107042. |
[13] | 高航, 王璞珺, 高有峰, 等. 松辽盆地南部上、下白垩统界线研究: 以松辽盆地国际大陆科学钻探松科3井为例[J]. 地学前缘, 2023, 30(3): 425-440. |
[14] | WANG C S, GAO Y, WANG P J, et al. Continental Scientific Drilling of Cretaceous Songliao Basin[J]. Acta Geologica Sinica‐English Edition, 2019, 93: 4. |
[15] | GAO Y, WANG C S, WANG P J, et al. Progress on Continental Scientific Drilling Project of Cretaceous Songliao Basin (SK-1 and SK-2)[J]. Science Bulletin, 2019, 64(2): 73-75. |
[16] | 王璞珺, 高有峰, 程日辉, 等. 松科1井南孔白垩系青山口组二、三段沉积序列精细描述: 岩石地层、 沉积相与旋回地层[J]. 地学前缘, 2009, 16(2): 288-313. |
[17] | 高有峰, 王璞珺, 程日辉, 等. 松科1井南孔白垩系青山口组一段沉积序列精细描述:岩石地层、沉积相与旋回地层[J]. 地学前缘, 2009, 16(2): 314-323. |
[18] | 高翔, 高有峰, 瞿雪姣, 等. 松辽盆地松科2井下白垩统营城组火山-沉积序列精细刻画[J]. 地学前缘, 2017, 24(1): 265-275. |
[19] | 李宏浩, 高有峰, 王璞珺, 等. 松辽盆地徐家围子断陷沙河子组顶界面特征研究: 基于松辽盆地大陆科学钻探松科2井[J]. 世界地质, 2018, 37(3): 838-849. |
[20] | 刘硕, 高有峰, 尹永康, 等. 松辽盆地大陆科学钻探“松科2井”登娄库组二段沉积序列精细刻画及时代归属[J]. 世界地质, 2019, 38(4): 1032-1043. |
[21] | WANG P J, MATTERN F, DIDENKO N A, et al. Tectonics and cycle system of the Cretaceous Songliao Basin: an inverted active continental margin basin[J]. Earth-Science Reviews, 2016, 159(1): 82-102. |
[22] | WANG T T, RAMEZANI J, WANG C S, et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China[J]. Earth and Planetary Science Letters, 2016, 446: 37-44. |
[23] | ZHANG L M, WANG C S, WIGNALL P B, et al. Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China[J]. Geology, 2018, 46(3): 271-274. |
[24] | ZHANG Z F, HUANG Y J, LI M S, et al. Obliquity-forced aquifer-eustasy during the Late Cretaceous greenhouse world[J]. Earth and Planetary Science Letters, 2022, 596: 117800. |
[25] | 邹长春, 王成善, 彭诚, 等. 中国大陆科学深钻发展的若干思考与建议[J]. 现代地质, 2023, 37(1): 1-14. |
[26] | 朱永宜, 王稳石. 松科一井(主井)取心钻进工艺[J]. 钻探工程, 2008(9): 1-5, 10. |
[27] | 朱永宜, 王稳石. 中国陆相白垩纪科学钻探松科一井(北井)钻探工程技术配套[J]. 探矿工程(岩土钻掘工程), 2009, 36(S1): 388-392. |
[28] | 朱永宜, 王稳石, 张恒春, 等. 我国大陆科学钻探工程实施概况及其取心钻进技术体系[J]. 地质学报, 2018, 92(10): 1971-1984. |
[29] | ZHU Y Y, WANG W S, WU X M, et al. Main technical innovations of Songke Well No.2 Drilling Project[J]. China Geology, 2018, 1(2): 187-201. |
[30] | 邹长春, 肖亮, 牛一雄, 等. 松辽盆地科学钻探工程松科2井东孔测井设计[J]. 地学前缘, 2016, 23(3): 279-287. |
[31] | 邹长春, 张小环, 赵金环, 等. 松辽盆地科学钻探工程松科二井东孔上白垩统地球物理测井科学成果[J]. 地球学报, 2018, 39(6): 679-690. |
[32] | 张淑霞, 邹长春, 彭诚, 等. 松科2井东孔营城组高放射性异常层测井响应特征及成因初探[J]. 地球物理学报, 2018, 61(11): 4712-4728. |
[33] | 胡丁玉, 邹长春, 彭诚, 等. 松科二井火石岭组地层岩石物理学特征研究[J]. 中国地质, 2019, 46(5): 1161-1173. |
[34] | 赵金环, 邹长春, 王稳石, 等. 松科二井东孔营城组火山岩测井响应特征及岩性评价[J]. 中国地质, 2019, 46(5): 1174-1183. |
[35] | 张浩东, 邹长春, 彭诚, 等. 基于测井频谱分析的松科二井登娄库组地层沉积速率研究[J]. 地球学报, 2022, 43(5): 654-664. |
[36] | YIN Y K, GAO Y F, WANG P J, et al. Discovery of Triassic volcanic-sedimentary strata in the basement of Songliao Basin[J]. Science Bulletin, 2019, 64(10): 644-646. |
[37] | LIU H B, WANG P J, GAO Y F, et al. New Data from ICDP Borehole SK2 and Its Constraint on the Beginning of the Lower Cretaceous Shahezi Formation in the Songliao Basin, NE China[J]. Science Bulletin, 2021, 66(5): 411-413. |
[38] | HUANG F, ZHANG Z, XU J F, et al. Lithospheric extension in response to subduction of the Paleo-Pacific Plate: Insights from Early Jurassic intraplate volcanic rocks in the Sk2 Borehole, Songliao Basin, NE China[J]. Lithos, 2021, 380: 105871. |
[39] | 大庆油气区编纂委员会. 中国石油地质志第二版卷二大庆油气区[M]. 北京: 石油工业出版社, 2023. |
[40] | 程日辉, 朱德丰, 王洪艳, 等. 松辽盆地林甸断陷白垩纪沙河子期盆地次级构造单元与沉积体系[J]. 吉林大学学报(地球科学版), 2006, 36(5): 793-798. |
[41] | FENG Z Q, JIA C Z, XIE X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China[J]. Basin Research, 2010, 22(1): 79-95. |
[42] | 陈曼云, 金巍, 郑常青. 包含变质岩分类三要素的主要变质岩分类表[J]. 岩石学报, 2009, 25(8): 1749-1752. |
[43] | 刘正宏, 陈煜嵩, 贾振杨, 等. 地壳不同构造层次岩石变形机制及其构造岩类型[J]. 岩石学报, 2020, 36(8): 2344-2356. |
[44] | 陈能松, 夏彬, 游振东. 基于组构组分的变质岩岩相学分类[J]. 地球科学, 2021, 46(9): 3049-3056. |
[45] | SIBSON R H. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 1977, 133(3): 191-213. |
[46] | SIBSON R H. Kinetic shear resistance, fluid pressures and radiation efficiency during seismic faulting[J]. Pure & Applied Geophysics, 1977, 115(1/2): 387-400. |
[47] | GB/T 958-2015,区域地质图图例[S]. |
[48] | 亚洲最深大陆科学钻井正式完井松科二井入地7018米[J]. 中国地质教育, 2018, 27(2): 96. |
[49] | 侯贺晟, 王成善, 张交东, 等. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质, 2018, 45(4): 641-657. |
[50] | 马顺元, 杨洪明, 朱斌, 等. LOG-IQ成像测井系统培训手册[M]. 北京: 石油工业出版社, 2007. |
[1] | CAO Lifu, WANG Haiyan, LI Wenhui, HOU Hesheng, WANG Guangwen, PANG Yongxiang. Refraction Pg tomographic imaging reveals the upper crustal structure of the Xing-Meng Orogenic Belt and its adjacent areas [J]. Earth Science Frontiers, 2025, 32(2): 346-356. |
[2] | WANG Bin, SUN Dongsheng, LI Awei, YANG Yuehui, CHEN Qunce. In situ stress state of deep basement in the Songliao Basin: Evidence from in situ stress measurement in SK-2 borehole [J]. Earth Science Frontiers, 2024, 31(2): 377-390. |
[3] | WANG Chengshan, GAO Yuan, WANG Pujun, WU Huaichun, LÜ Qingtian, ZHU Yongyi, WAN Xiaoqiao, ZOU Changchun, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Wenshi, HE Huaiyu, FENG Zihui, YANG Guang, DENG Chenglong, ZHANG Laiming, WANG Tiantian, HU Bin, CUI Liwei, PENG Cheng, YU Enxiao, HUANG He, YANG Liu, WU Zhengxuan. International Continental Scientific Drilling Project of the Songliao Basin: Terrestrial Geological Records of the Cretaceous Dinosaur Age [J]. Earth Science Frontiers, 2024, 31(1): 412-430. |
[4] | WU Huaichun, LI Shan, WANG Chengshan, CHU Runjian, WANG Pujun, GAO Yuan, WAN Xiaoqiao, HE Huaiyu, DENG Chenglong, YANG Guang, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Tiantian, FANG Qiang, YANG Tianshui, ZHANG Shihong. Integrated chronostratigraphic framework for Cretaceous strata in the Songliao Basin [J]. Earth Science Frontiers, 2024, 31(1): 431-445. |
[5] | LI Ruilei, YANG Liying, ZHU Jianfeng, LIU Yuhu, XU Wen, LI Zhongbo, FAN Xuepei, LENG Qinglei, ZHANG Tingting. Volcanic reservoir characteristics and hydrocarbon accumulation control factors of rift depressions in southern Songliao Basin [J]. Earth Science Frontiers, 2023, 30(4): 100-111. |
[6] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
[7] | HAN Shuangbiao, TANG Zhiyuan, BAI Songtao, WAN Lei, RUI Yurun, GAO Yuan, HUANG Yongjian, WANG Chengshan. Application of elemental capture spectroscopy in deep tight reservoir evaluation: A case study of well SK-2 [J]. Earth Science Frontiers, 2022, 29(1): 449-458. |
[8] | QU Xuejiao, GAO Youfeng, LIN Zhicheng, WANG Pujun, WU Kangjun. Discussion on the characteristics of the Jurassic-Cretaceous boundary correlation in the Songliao Basin and adjacent areas [J]. Earth Science Frontiers, 2021, 28(4): 299-315. |
[9] | DU Shuheng, LIANG Yaohuan, SHI Yongmin, GUAN Ping. Variations of Poisson’s ratio for tight sandstone and shale under changing confining or pore pressure: Characteristics and mechanism [J]. Earth Science Frontiers, 2021, 28(1): 411-419. |
[10] | NIU Huapeng,WANG Guiwen,XIAN Benzhong,FU Jianwei,JIAO Xiaoqin,LI Hongjuan. The formation mechanism of pyroclastic lava and its significance for the identification of volcanic rock faces: a case study from Qingshen gasfield, Songliao Basin [J]. Earth Science Frontiers, 2019, 26(6): 281-288. |
[11] | SONG Ying, ZHANG Dun-Xia, Andrei Stepashko, YUAN Mo-Meng, CONG Xu-Ri. Decomposition the detrital grain ages by Kernel Density Estimation and its applications: Determining the major tectonic events in the Songliao Basin, NE China. [J]. Earth Science Frontiers, 2016, 23(4): 265-276. |
[12] | ZOU Changchun, XIAO Liang, NIU Yixiong. General design of geophysical logging of the CCSDSK2 East Borehole in the Songliao Basin of Northeast China [J]. Earth Science Frontiers, 2016, 23(3): 279-286. |
[13] | WANG Pu-Jun, DIAO Ran-Lei, MENG Qi-An, JI Xue-Jiao, SHU De-Feng, GAO Wei-Feng. The Cretaceous Songliao Basin: Dynamic background from volcanic rift to interior sag basin. [J]. Earth Science Frontiers, 2015, 22(3): 99-117. |
[14] | FENG Zhi-Jiang, ZHANG Shun, FU Xiu-Li. Depositional evolution and accumulation response of YaojiaNenjiang Formation in Songliao Basin. [J]. Earth Science Frontiers, 2012, 19(1): 78-88. |
[15] | LI Zi-Shun. Sequence stratigraphic characteristics of channel sandbody through broad band high resolution seismic section. [J]. Earth Science Frontiers, 2012, 19(1): 200-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||