Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (1): 411-419.DOI: 10.13745/j.esf.sf.2020.12.14
Previous Articles Next Articles
DU Shuheng1,2(), LIANG Yaohuan1, SHI Yongmin1, GUAN Ping1
Received:
2017-04-02
Revised:
2020-11-20
Online:
2021-01-25
Published:
2021-01-28
CLC Number:
DU Shuheng, LIANG Yaohuan, SHI Yongmin, GUAN Ping. Variations of Poisson’s ratio for tight sandstone and shale under changing confining or pore pressure: Characteristics and mechanism[J]. Earth Science Frontiers, 2021, 28(1): 411-419.
Fig.3 Cross-plot between the static Possion’s ratio and the “new effective stress” when changing the external (right panel) or internal (left panel) pressure on the Gaotaizi tight sandstone
Fig.4 Cross-plot between the static Possion’s ratio and the “Terzaghi effective stress” when changing the external (right panel) or internal (left panel) pressure on the Gaotaizi tight sandstone
Fig.5 Cross-plot between the dynamic Possion’s ratio and the “new effective stress” when changing the external (right panel) or internal (left panel) pressure on the Gaotaizi tight sandstone
Fig.6 Cross-plot between the dynamic Possion’s ratio and the “Terzaghi effective stress” when changing the external (right panel) orinternal (left panel) pressure on the Gaotaizi tight sandstone
Fig.7 Cross-plot between the static Possion’s ratio and the “new effective stress” when changing the external (right panel) or internal (left panel) pressure on the Qingshankou source rock of shale
Fig.8 Cross-plot between the static Possion’s ratio and the “Terzaghi effective stress” when changing the external (right panel) or internal (left panel) pressure on the Qingshankou source rock of shale
Fig.9 Cross-plot between the dynamic Possion’s ratio and the “new effective stress” when changing the external (right panel) or internal (left panel) pressure on the Qingshankou source rock of shale
Fig.10 Cross-plot between the dynamic Possion’s ratio and the “Terzaghi effective stress” when changing the external (right panel) or internal (left panel) pressure on the Qingshankou source rock of shale
储集层 泊松比 | 变化特征描述 | 改变内压 | 改变外压 |
---|---|---|---|
静态 泊松比 | 曲线类型 | 线性 | 对数 |
曲线组合样式 | “1+1+1” | “2+1” | |
“新有效应力”下变化 率及各向异性 | 0.007 MPa-1 (X≈Y≈Z) | 0.001 MPa-1(Y≈Z)+ 0.002/MPa(X) | |
“Terzaghi有效应力” 下变化率及各向异性 | 0.000 5 MPa-1 (X≈Y≈Z) | 0.001 MPa-1(Y≈Z)+ 0.002 MPa(X) | |
动态 泊松比 | 曲线类型 | 线性 | 线性 |
曲线组合样式 | “2+1” | “2+1” | |
“新有效应力”下变化 率及各向异性 | 0.203 MPa-1 (X≈Y≈Z) | 0.004 MPa-1(X≈ Y≈Z) | |
“Terzaghi有效应力” 下变化率及各向异性 | 0.004 MPa-1 (X≈Y≈Z) | 0.004 MPa-1(X≈ Y≈Z) |
Table 1 Changing rule of Poisson ratio of the Gaotaizi tight sandstone reservoir
储集层 泊松比 | 变化特征描述 | 改变内压 | 改变外压 |
---|---|---|---|
静态 泊松比 | 曲线类型 | 线性 | 对数 |
曲线组合样式 | “1+1+1” | “2+1” | |
“新有效应力”下变化 率及各向异性 | 0.007 MPa-1 (X≈Y≈Z) | 0.001 MPa-1(Y≈Z)+ 0.002/MPa(X) | |
“Terzaghi有效应力” 下变化率及各向异性 | 0.000 5 MPa-1 (X≈Y≈Z) | 0.001 MPa-1(Y≈Z)+ 0.002 MPa(X) | |
动态 泊松比 | 曲线类型 | 线性 | 线性 |
曲线组合样式 | “2+1” | “2+1” | |
“新有效应力”下变化 率及各向异性 | 0.203 MPa-1 (X≈Y≈Z) | 0.004 MPa-1(X≈ Y≈Z) | |
“Terzaghi有效应力” 下变化率及各向异性 | 0.004 MPa-1 (X≈Y≈Z) | 0.004 MPa-1(X≈ Y≈Z) |
烃源岩 泊松比 | 变化特征描述 | 改变内压 | 改变外压 |
---|---|---|---|
静态 泊松比 | 曲线类型 | 线性 | 对数(X/Z)+线性(Y) |
曲线组合样式 | “2+1” | “1+1+1” | |
“新有效应力”下变化 率及各向异性 | 0.010 MPa-1 (X≈Y≈Z) | 0.002 MPa-1(X)+ 0.000 2 MPa-1(Y)+ 0.005 MPa-1(Z) | |
“Terzaghi有效应力” 下变化率及各向异性 | 0.001 MPa-1 (X≈Y≈Z) | 0.002 MPa-1(X)+ 0.000 2 MPa-1(Y)+ 0.005 MPa-1(Z) | |
动态 泊松比 | 曲线类型 | 线性 | 对数(X/Z)+线性(Y) |
曲线组合样式 | “1+1+1” | “1+1+1” | |
“新有效应力”下变化率及各向异性 | 0.035 MPa-1 (X≈Y≈Z) | 0.004 MPa-1 (X≈Y≈Z) | |
“Terzaghi有效应力”下变化率及各向异性 | 0.004 MPa-1 (X≈Y≈Z) | 0.004 MPa-1 (X≈Y≈Z) |
Table 2 Changing rule of Poisson ratio of the Qingshankou source rock of shale
烃源岩 泊松比 | 变化特征描述 | 改变内压 | 改变外压 |
---|---|---|---|
静态 泊松比 | 曲线类型 | 线性 | 对数(X/Z)+线性(Y) |
曲线组合样式 | “2+1” | “1+1+1” | |
“新有效应力”下变化 率及各向异性 | 0.010 MPa-1 (X≈Y≈Z) | 0.002 MPa-1(X)+ 0.000 2 MPa-1(Y)+ 0.005 MPa-1(Z) | |
“Terzaghi有效应力” 下变化率及各向异性 | 0.001 MPa-1 (X≈Y≈Z) | 0.002 MPa-1(X)+ 0.000 2 MPa-1(Y)+ 0.005 MPa-1(Z) | |
动态 泊松比 | 曲线类型 | 线性 | 对数(X/Z)+线性(Y) |
曲线组合样式 | “1+1+1” | “1+1+1” | |
“新有效应力”下变化率及各向异性 | 0.035 MPa-1 (X≈Y≈Z) | 0.004 MPa-1 (X≈Y≈Z) | |
“Terzaghi有效应力”下变化率及各向异性 | 0.004 MPa-1 (X≈Y≈Z) | 0.004 MPa-1 (X≈Y≈Z) |
[1] |
HUANG Z Q, ZHANG X Y, YAO J, et al. Non-Darcy displacement by a non-Newtonian fluid in porous media according to the Barree-Conway model[J]. Advances in Geo-Energy Research, 2017, 1(2):74-85.
DOI URL |
[2] | 李道伦, 齐银, 达引朋, 等. 低速非线性是低渗油藏的流动机制[J]. 非常规油气, 2020, 7(4):1-8. |
[3] |
WAN Y W, ZHANG H, LIU X J, et al. Prediction of mechanical parameters for low-permeability gas reservoirs in the Tazhong Block and its applications[J]. Advances in Geo-Energy Research, 2020, 4(2):219-228.
DOI URL |
[4] | 贾光亮, 吴天乾, 李晔旻, 郑道明. 临兴低压浅层气压裂改造技术研究与应用[J]. 非常规油气, 2020, 7(3):101-107. |
[5] |
LU M J, SU Y L, ZHAN S Y, et al. Modeling for reorientation and potential of enhanced oil recovery in refracturing[J]. Advances in Geo-Energy Research, 2020, 4(1):20-28.
DOI URL |
[6] |
WOOD D A. Establishing credible reaction-kinetics distributions to fit and explain multi-heating rate S2 pyrolysis peaks of kerogens and shales[J]. Advances in Geo-Energy Research, 2019, 3(1):1-28.
DOI URL |
[7] | 谢明英, 戴宗, 罗东红, 等. 基于微米CT扫描驱替实验的稠油油藏剩余油特征分析新方法[J]. 非常规油气, 2020, 7(5):102-107. |
[8] | 祝金利. 强非均质致密砂岩气藏剩余气分布定量描述与挖潜对策: 以苏里格气田苏11区块北部老区为例[J]. 天然气工业, 2020, 40(11):89-95. |
[9] | 白远, 康胜松, 云彦舒, 等. 基于高温岩电实验的致密砂岩储层含油饱和度解释方法研究: 以鄂尔多斯盆地南部延长组长8致密储层为例[J]. 非常规油气, 2019, 6(6):68-73. |
[10] | 张海杰, 蒋裕强, 周克明, 等. 页岩气储层孔隙连通性及其对页岩气开发的启示: 以四川盆地南部下志留统龙马溪组为例[J]. 天然气工业, 2019, 39(12):22-31. |
[11] | 赵伦, 陈烨菲, 宁正福, 等异常高压碳酸盐岩油藏应力敏感实验评价: 以滨里海盆地肯基亚克裂缝-孔隙型低渗透碳酸盐岩油藏为例[J]. 石油勘探与开发, 2013, 40(2):194-200. |
[12] | 骆杨, 赵彦超, 陈红汉, 等. 构造应力-流体压力耦合作用下的裂缝发育特征: 以渤海湾盆地东濮凹陷柳屯洼陷裂缝性泥页岩“油藏”为例[J]. 石油勘探与开发, 2015, 42(2):177-185. |
[13] | 王敬, 刘慧卿, 刘仁静, 等. 考虑启动压力和应力敏感效应的低渗、 特低渗油藏数值模拟研究[J]. 岩石力学与工程学报, 2013, 32(增刊2):3317-3327. |
[14] | 冉启全, 顾小芸. 油藏渗流与应力耦合分析[J]. 岩土工程学报, 1998, 20(2):69-73. |
[15] | 洪亮, 刘雄志, 杨兆平, 等. 对多孔介质双重有效应力理论的讨论[J]. 新疆石油地质, 2014, 35(6):732-737. |
[16] |
赵成刚, 刘真真, 李舰, 等. 土力学有效应力及其作用的讨论[J]. 力学学报, 2015, 47(2):356-361.
DOI |
[17] | 邵龙潭, 郭晓霞, 郑国锋. 粒间应力、 土骨架应力和有效应力[J]. 岩土工程学报, 2015, 37(8):1478-1483. |
[18] | 路德春, 杜修力, 许成顺. 有效应力原理解析[J]. 岩土工程学报, 2013, 35(增刊1):146-151. |
[19] | 雷国辉, 陈晶晶. 有效应力决定饱和岩土材料抗剪强度的摩擦学解释[J]. 岩土工程学报, 2011, 33(10):1517-1525. |
[20] | 陈正汉, 秦冰. 非饱和土的应力状态变量研究[J]. 岩土力学, 2012, 33(1):1-11. |
[21] | 李传亮. 关于双重有效应力: 回应洪亮博士[J]. 新疆石油地质, 2015, 36(2):238-243. |
[22] | 李传亮. 有效应力概念的误用[J]. 天然气工业, 2008, 28(10):130-132. |
[23] | 李传亮, 朱苏阳. 关于应力敏感测试方法的认识误区[J]. 岩性油气藏, 2015, 27(6):1-4. |
[24] | 李传亮. 多孔介质的应力关系方程: 答周大晨先生[J]. 新疆石油地质, 2002, 23(2):163-164. |
[25] | 周大晨. 对李传亮上覆岩层压力公式的质疑[J]. 新疆石油地质, 2001, 22(2):150-154. |
[26] | DU S H, SHI Y M, GUAN P, et al. New inspiration on effective development of tight reservoir in secondary exploitation by using rock mechanics method[J]. Energy Exploration & Exploitation, 2016, 34(1):1-16. |
[27] | 杜书恒, 师永民. 低渗油气藏水力压裂理想水驱波及范围预测新方法[J]. 天然气地球科学, 2015, 26(10):1956-1962. |
[28] | 卜向前, 师永民, 杜书恒, 等. 低渗透油藏压力场变化对岩体力学性质的影响[J]. 北京大学学报(自然科学版), 2015, 51(5):850-856. |
[29] | 胡伟光, 蒲勇, 赵卓男, 等. 利用弹性参数预测礁、 滩相储层[J]. 石油地球物理勘探, 2010, 45(增刊1):176-180. |
[30] | 刘钦节. 低渗油藏储层裂缝的参数反分析优化方法研究[D]. 北京: 中国石油大学, 2009. |
[31] | 贺顺义. 大庆外围低渗透油藏应力场恢复模拟及裂缝预测[D]. 北京: 中国地质大学(北京), 2010. |
[32] | 樊长江, 王贤. 泊松比岩性预测方法研究: 以准噶尔盆地为例[J]. 石油勘探与开发, 2006, 33(3):299-302. |
[33] | 许卫卫, 郑天愉. 渤海湾盆地北西盆山边界地区泊松比分布[J]. 地球物理学报, 2005, 48(5):1077-1084. |
[34] | 杜书恒, 师永民, 徐启, 等. 井震联合非均质储层改造规模的非线性表征方法[J]. 北京大学学报(自然科学版), 2016, 52(2):241-248. |
[35] | DU S H, SHI Y M, BU X Q, et al. New expression of the changing stress field in low-permeability reservoir and its application in secondary exploitation[J]. Energy Exploration & Exploitation, 2015, 33(4):491-514. |
[36] | 杜书恒, 关平, 师永民, 等. 低渗透砂岩储层可压裂性新判据[J]. 地学前缘, 2017, 24(2):257-264. |
[37] | 杜书恒, 师永民, 关平 等. 松辽盆地扶余低渗储层压裂缝定量预测[J]. 地学前缘, 2017, 24(6):381-389. |
[38] | 杜书恒, 赵晔, 庞姗, 等. 岩石水力压裂微观破裂机制[J]. 天然气地球科学, 2016, 27(12):2237-2245. |
[39] | 郭培峰, 邓虎成, 邓勇, 等. 鄂尔多斯盆地南缘长8储层岩石力学特征及影响因素[J]. 科学技术与工程, 2019, 19(18):189-198. |
[40] | 石玉江, 么勃卫, 夏宏泉. 致密油储层岩石各向异性的动态声学实验研究[J]. 测井技术, 2019, 43(3):228-234. |
[41] | 桂俊川, 陈平, 马天寿. 正交各向异性岩石弹性参数的空间展布[J]. 西南石油大学学报(自然科学版), 2019, 41(3):13-28. |
[42] | 王国栋, 程日辉, 王璞珺, 等. 松辽盆地嫩江组白云岩形成机理: 以松科1井南孔为例[J]. 地质学报, 2008, 82(1):48-54. |
[43] | 王磊. 基于非均质岩石力学模型的水力压裂数值模拟[D]. 北京: 北京大学, 2016. |
[1] | WANG Bin, SUN Dongsheng, LI Awei, YANG Yuehui, CHEN Qunce. In situ stress state of deep basement in the Songliao Basin: Evidence from in situ stress measurement in SK-2 borehole [J]. Earth Science Frontiers, 2024, 31(2): 377-390. |
[2] | WANG Chengshan, GAO Yuan, WANG Pujun, WU Huaichun, LÜ Qingtian, ZHU Yongyi, WAN Xiaoqiao, ZOU Changchun, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Wenshi, HE Huaiyu, FENG Zihui, YANG Guang, DENG Chenglong, ZHANG Laiming, WANG Tiantian, HU Bin, CUI Liwei, PENG Cheng, YU Enxiao, HUANG He, YANG Liu, WU Zhengxuan. International Continental Scientific Drilling Project of the Songliao Basin: Terrestrial Geological Records of the Cretaceous Dinosaur Age [J]. Earth Science Frontiers, 2024, 31(1): 412-430. |
[3] | WU Huaichun, LI Shan, WANG Chengshan, CHU Runjian, WANG Pujun, GAO Yuan, WAN Xiaoqiao, HE Huaiyu, DENG Chenglong, YANG Guang, HUANG Yongjian, GAO Youfeng, XI Dangpeng, WANG Tiantian, FANG Qiang, YANG Tianshui, ZHANG Shihong. Integrated chronostratigraphic framework for Cretaceous strata in the Songliao Basin [J]. Earth Science Frontiers, 2024, 31(1): 431-445. |
[4] | LI Ruilei, YANG Liying, ZHU Jianfeng, LIU Yuhu, XU Wen, LI Zhongbo, FAN Xuepei, LENG Qinglei, ZHANG Tingting. Volcanic reservoir characteristics and hydrocarbon accumulation control factors of rift depressions in southern Songliao Basin [J]. Earth Science Frontiers, 2023, 30(4): 100-111. |
[5] | GAO Hang, WANG Pujun, GAO Youfeng, WAN Xiaoqiao, YANG Guang, HU Jingsong, WU Huaichun. The Upper-Lower Cretaceous boundary in the southern Songliao Basin: A case study of ICDP borehole SK-3 [J]. Earth Science Frontiers, 2023, 30(3): 425-440. |
[6] | HAN Shuangbiao, TANG Zhiyuan, BAI Songtao, WAN Lei, RUI Yurun, GAO Yuan, HUANG Yongjian, WANG Chengshan. Application of elemental capture spectroscopy in deep tight reservoir evaluation: A case study of well SK-2 [J]. Earth Science Frontiers, 2022, 29(1): 449-458. |
[7] | QU Xuejiao, GAO Youfeng, LIN Zhicheng, WANG Pujun, WU Kangjun. Discussion on the characteristics of the Jurassic-Cretaceous boundary correlation in the Songliao Basin and adjacent areas [J]. Earth Science Frontiers, 2021, 28(4): 299-315. |
[8] | NIU Huapeng,WANG Guiwen,XIAN Benzhong,FU Jianwei,JIAO Xiaoqin,LI Hongjuan. The formation mechanism of pyroclastic lava and its significance for the identification of volcanic rock faces: a case study from Qingshen gasfield, Songliao Basin [J]. Earth Science Frontiers, 2019, 26(6): 281-288. |
[9] | SONG Ying, ZHANG Dun-Xia, Andrei Stepashko, YUAN Mo-Meng, CONG Xu-Ri. Decomposition the detrital grain ages by Kernel Density Estimation and its applications: Determining the major tectonic events in the Songliao Basin, NE China. [J]. Earth Science Frontiers, 2016, 23(4): 265-276. |
[10] | ZOU Changchun, XIAO Liang, NIU Yixiong. General design of geophysical logging of the CCSDSK2 East Borehole in the Songliao Basin of Northeast China [J]. Earth Science Frontiers, 2016, 23(3): 279-286. |
[11] | WANG Pu-Jun, DIAO Ran-Lei, MENG Qi-An, JI Xue-Jiao, SHU De-Feng, GAO Wei-Feng. The Cretaceous Songliao Basin: Dynamic background from volcanic rift to interior sag basin. [J]. Earth Science Frontiers, 2015, 22(3): 99-117. |
[12] | FENG Zhi-Jiang, ZHANG Shun, FU Xiu-Li. Depositional evolution and accumulation response of YaojiaNenjiang Formation in Songliao Basin. [J]. Earth Science Frontiers, 2012, 19(1): 78-88. |
[13] | LI Zi-Shun. Sequence stratigraphic characteristics of channel sandbody through broad band high resolution seismic section. [J]. Earth Science Frontiers, 2012, 19(1): 200-208. |
[14] | WANG Guo-Dong, CHENG Ri-Hui, WANG Pu-Jun, GAO Wei-Feng, WANG Cheng-Shan, LIN Yan-An, HUANG Qing-Hua. Centimeterscale sedimentary sequence description of Upper Cretaceous Sifangtai Formation: Lithostratigraphy, facies and cyclostratigraphy, based on the scientific drilling (SK1) borehole in the Songliao Basin. [J]. Earth Science Frontiers, 2011, 18(6): 263-284. |
[15] | WANG Pu-Jun, GAO Wei-Feng, CHENG Ri-Hui, WANG Guo-Dong, TUN He-Yong, MO Xiao-Qiao, YANG Gan-Sheng, HONG Zhong-Xin. Centimeterscale sedimentary sequence description of Upper Cretaceous Nenjiang Formation (upper numbers 35): Lithostratigraphy,facies and cyclostratigraphy, based on the scientific drilling (SK1) borehole in the Songliao Basin. [J]. Earth Science Frontiers, 2011, 18(6): 218-262. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||