Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 353-362.DOI: 10.13745/j.esf.sf.2025.4.14
Previous Articles Next Articles
HUANG Yi1,2,*(), DONG Xuan3, MA Zhiyuan4, TIAN Xizhao4, ZHU Shuai1,2, ZHU Yun1
Received:
2025-02-26
Revised:
2025-04-10
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
HUANG Yi, DONG Xuan, MA Zhiyuan, TIAN Xizhao, ZHU Shuai, ZHU Yun. Rapid detection and risk assessment of endocrine disrupting chemicals in typical urban waters in northern cities of China[J]. Earth Science Frontiers, 2025, 32(4): 353-362.
标准编号 | 标准名称 | 检出限 |
---|---|---|
HJ 1192—2021 | 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 | 40~60 ng/L |
(EU) 2018/213 | 食品接触用清漆和涂料中双酚A的测定 | 0.05 mg/kg |
GB/T 5009.99—2003 | 食品容器及包装材料用聚碳酸酯树脂卫生标准的分析方法 | 0.05 mg/kg |
美国EPA | 环境水体中烷基酚的测定 | 20~70 ng/L |
本方法 | 水体中10种酚类内分泌干扰物的测定 | 1~2 ng/L |
Table 1 This method is compared with domestic and foreign standards
标准编号 | 标准名称 | 检出限 |
---|---|---|
HJ 1192—2021 | 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 | 40~60 ng/L |
(EU) 2018/213 | 食品接触用清漆和涂料中双酚A的测定 | 0.05 mg/kg |
GB/T 5009.99—2003 | 食品容器及包装材料用聚碳酸酯树脂卫生标准的分析方法 | 0.05 mg/kg |
美国EPA | 环境水体中烷基酚的测定 | 20~70 ng/L |
本方法 | 水体中10种酚类内分泌干扰物的测定 | 1~2 ng/L |
物质名称 | 酚类化合物浓度/(ng·L-1) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S市(n=9) | X市(n=13) | Y市(n=10) | ||||||||||||||||||
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | ||||||||||||
4-叔丁基苯酚 | 753 | <2.00 | 89.1 | 622 | 6.30 | 161 | 537 | 18.6 | 78.2 | |||||||||||
4-丁基苯酚 | 16.7 | <1.00 | 1.86 | 33.7 | <1.00 | 7.94 | 22.2 | <1.00 | 2.82 | |||||||||||
4-叔辛基苯酚 | 1.39 | <1.00 | 0.15 | 1.05 | <1.00 | <1.00 | 4.25 | <1.00 | 0.42 | |||||||||||
4-戊基苯酚 | 15.1 | <1.00 | 1.84 | 5.69 | <1.00 | 1.55 | <1.00 | <1.00 | <1.00 | |||||||||||
4-己基苯酚 | <1.00 | <1.00 | <1.00 | 1.41 | <1.00 | 0.30 | 9.77 | <1.00 | 0.98 | |||||||||||
4-庚基苯酚 | <1.00 | <1.00 | <1.00 | 3.50 | <1.00 | 0.27 | <1.00 | <1.00 | <1.00 | |||||||||||
4-辛基苯酚 | 48.0 | <1.00 | 5.33 | 2.76 | <1.00 | 0.41 | <1.00 | <1.00 | <1.00 | |||||||||||
4-n-壬基酚 | 11.1 | <1.00 | 1.23 | <1.00 | <1.00 | <1.00 | 16.7 | <1.00 | 2.25 | |||||||||||
壬基酚 | 23.5 | <1.00 | 2.61 | 6.88 | <1.00 | 0.89 | <1.00 | <1.00 | <1.00 | |||||||||||
双酚A | 525 | <1.00 | 59.0 | 710 | <1.00 | 56.5 | 236 | <1.00 | 24.9 |
Table 2 Concentration of alkylphenol in the sample (maximum, minimum and average values)
物质名称 | 酚类化合物浓度/(ng·L-1) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S市(n=9) | X市(n=13) | Y市(n=10) | ||||||||||||||||||
最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | 最小值 | 平均值 | ||||||||||||
4-叔丁基苯酚 | 753 | <2.00 | 89.1 | 622 | 6.30 | 161 | 537 | 18.6 | 78.2 | |||||||||||
4-丁基苯酚 | 16.7 | <1.00 | 1.86 | 33.7 | <1.00 | 7.94 | 22.2 | <1.00 | 2.82 | |||||||||||
4-叔辛基苯酚 | 1.39 | <1.00 | 0.15 | 1.05 | <1.00 | <1.00 | 4.25 | <1.00 | 0.42 | |||||||||||
4-戊基苯酚 | 15.1 | <1.00 | 1.84 | 5.69 | <1.00 | 1.55 | <1.00 | <1.00 | <1.00 | |||||||||||
4-己基苯酚 | <1.00 | <1.00 | <1.00 | 1.41 | <1.00 | 0.30 | 9.77 | <1.00 | 0.98 | |||||||||||
4-庚基苯酚 | <1.00 | <1.00 | <1.00 | 3.50 | <1.00 | 0.27 | <1.00 | <1.00 | <1.00 | |||||||||||
4-辛基苯酚 | 48.0 | <1.00 | 5.33 | 2.76 | <1.00 | 0.41 | <1.00 | <1.00 | <1.00 | |||||||||||
4-n-壬基酚 | 11.1 | <1.00 | 1.23 | <1.00 | <1.00 | <1.00 | 16.7 | <1.00 | 2.25 | |||||||||||
壬基酚 | 23.5 | <1.00 | 2.61 | 6.88 | <1.00 | 0.89 | <1.00 | <1.00 | <1.00 | |||||||||||
双酚A | 525 | <1.00 | 59.0 | 710 | <1.00 | 56.5 | 236 | <1.00 | 24.9 |
[1] |
MORGAN M, DEORAJ A, FELTY Q, et al. Environmental estrogen-like endocrine disrupting chemicals and breast cancer[J]. Molecular and Cellular Endocrinology, 2017, 457: 89-102.
DOI PMID |
[2] | BIRGERSSON L, ODENLUND S, STURVE J. Effects of environmental enrichment on exposure to human-relevant mixtures of endocrine disrupting chemicals in Zebrafish[J]. Animals: An Open Access Journal from MDPI, 2024, 14(9): 1296. |
[3] | OLIVAS-MARTíNEZ A, VENTURA-WISCHNER P S, FERNANDEZ M F, et al. Influence of exposure to endocrine disruptors and other environmental chemicals on breast development in girls: a systematic review of human studies[J]. International Journal of Hygiene and Environmental Health, 2025, 263: 114487. |
[4] | LI Z X, LI M G, LI D, et al. A review of cumulative toxic effects of environmental endocrine disruptors on the zebrafish immune system: characterization methods, toxic effects and mechanisms[J]. Environmental Research, 2024, 246: 118010. |
[5] | POP C E, DRAGA S, MȦCIUCȦ R, et al. Bisphenol a effects in aqueous environment on Lemna minor[J]. Processes, 2021, 9(9): 1512. |
[6] | SHARMA N, KUMAR V, Vimal S, et al. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans[J]. Environmental Toxicology and Pharmacology, 2024, 109: 104480. |
[7] | VARTICOVSKI L, STAVREVA D A, MCGOWAN A, et al. Endocrine disruptors of sex hormone activities[J]. Molecular and Cellular Endocrinology, 2022, 539: 111415. |
[8] | MATIKE D M E, NGOLE-JEME V M. A review of phthalates and phenols in landfill environments: occurrence, fate and environmental implications[J]. International Journal of Environmental Research, 2024, 18(5): 79. |
[9] | GIL-SOLSONA R, CASTAÑO-ORTIZ J M, MUÑOZ-MAS R, et al. A holistic assessment of the sources, prevalence, and distribution of bisphenol A and analogues in water, sediments, biota and plastic litter of the Ebro Delta (Spain)[J]. Environmental Pollution, 2022, 314: 120310. |
[10] | CHAFI S, AZZOUZ A, BALLESTEROS E. Occurrence and distribution of endocrine disrupting chemicals and pharmaceuticals in the river Bouregreg (Rabat, Morocco)[J]. Chemosphere, 2022, 287: 132202. |
[11] | BEHNISCH P A, FUJII K, SHIOZAKI K, et al. Estrogenic and dioxin-like potency in each step of a controlled landfill leachate treatment plant in Japan[J]. Chemosphere, 2001, 43(4/5/6/7): 977-984. |
[12] |
CRYSTAL Y O, LUO Y L, DUANGTHIP D, et al. A scoping review of the links between early childhood caries and clean water and sanitation: the Sustainable Development Goal 6[J]. BMC Oral Health, 2024, 24(1): 769.
DOI PMID |
[13] | WEE S Y, ARIS A Z. Occurrence and public-perceived risk of endocrine disrupting compounds in drinking water[J]. NPJ Clean Water, 2019, 2(1): 4. |
[14] | LEE K H, NOH J, KHIM J S. The Blue Economy and the United Nations’ sustainable development goals: challenges and opportunities[J]. Environment International, 2020, 137: 105528. |
[15] | BORNMAN M S, ANECK-HAHN N H, DE JAGER C, et al. Endocrine disruptors and health effects in Africa: a call for action[J]. Environmental Health Perspectives, 2017, 125(8): 085005. |
[16] | VESELI M, ROŽMAN M, VILENICA M, et al. Bioaccumulation and bioamplification of pharmaceuticals and endocrine disruptors in aquatic insects[J]. Science of The Total Environment, 2022, 838: 156208. |
[17] | 陈雨, 刘德柱, 罗锦, 等. UV/MgO2体系对水体中双酚A的降解机制研究[J]. 环境科学学报, 2024, 44(2): 1-10. |
[18] | 黄苑, 张维, 王瑞国, 等. 双酚类化合物污染现状和内分泌干扰效应研究进展[J]. 生态毒理学报, 2022, 17(1): 60-81. |
[19] | 陈亮平, 黄颖. 紫外分光光度法及毛细管电泳法测定烷基酚与环糊精的包合常数[J]. 分析测试学报, 2015, 34(7): 836-839. |
[20] | 刘伟杰, 吴孝情, 鄢佳英, 等. 壬基酚对羊角月牙藻的毒性效应研究[J]. 中国环境科学, 2018, 38(6): 2329-2336. |
[21] |
ISMAIL N A H, WEE S Y, ARIS A Z. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota[J]. Chemosphere, 2017, 188: 375-388.
DOI PMID |
[22] | TOYO’OKA T, OSHIGE Y. Determination of Alkylphenols in mineral water contained in PET Bottles by liquid chromatography with coulometric detection[J]. Analytical Sciences, 2000, 16(10): 1071-1076. |
[23] | ZHANG H, OUYANG W, HE K, et al. Developing water quality and land use surrogates to predict endocrine-disrupting chemical profiles in a highly urbanized river basin[J]. Environmental Pollution, 2024, 362: 124951. |
[24] | LIU S Y, LIU J. An integrated approach of bioassays and non-target screening for the assessment of endocrine-disrupting activities in tap water and identification of novel endocrine-disrupting chemicals[J]. Toxics, 2024, 12(4): 247. |
[25] | LV X M, XIAO S H, ZHANG G, et al. Occurrence and removal of phenolic endocrine disrupting chemicals in the water treatment processes[J]. Scientific Reports, 2016, 6(3): 22860. |
[26] | 王梦圆, 史永富, 吴迪, 等. 水生环境中OH-PCBs的来源、污染现状及其内分泌干扰机制研究进展[J]. 环境化学, 2023, 42(9): 3075-3089. |
[27] | 樊静静, 王赛, 唐金鹏, 等. 广州市流溪河水体中6种内分泌干扰素时空分布特征与环境风险[J]. 环境科学, 2018, 39(3): 1053-1064. |
[28] | ERRICO S, NICOLUCCI C, MIGLIACCIO M, et al. Analysis and occurrence of some phenol endocrine disruptors in two marine sites of the northern coast of Sicily (Italy)[J]. Marine Pollution Bulletin, 2017, 120(1): 68-74. |
[29] | BEN SGHAIER R, NET S, GHORBEL-ABID I, et al. Simultaneous detection of 13 endocrine disrupting chemicals in water by a combination of SPE-BSTFA derivatization and GC-MS in transboundary rivers (France-Belgium)[J]. Water Air and Soil Pollution, 2017, 228(1): 2. |
[30] |
LALONDE B, GARRON C. Nonylphenol, octylphenol, and nonylphenol ethoxylates dissemination in the Canadian freshwater environment[J]. Archives of Environmental Contamination and Toxicology, 2021, 80(2): 319-330.
DOI PMID |
[31] | HASNI N A K, ANUAL Z F, RASHID S A, et al. Occurrence of endocrine disruptors in Malaysia’s water systems: a scoping review[J]. Environmental Pollution, 2023, 324: 121095. |
[32] | GAO A F, WANG J Y, POETZSCHER J, et al. Coordinated health effects attributable to particulate matter and other pollutants exposures in the North China Plain[J]. Environmental Research, 2022, 208: 112671. |
[33] | LIU H J, XU M Y, YANG Y, et al. The oxidative potential of fine ambient particulate matter in Xinxiang, North China: pollution characteristics, source identification and regional transport[J]. Environmental Pollution, 2024, 360: 124615. |
[34] | ZHU Y, ZHANG J P, WANG J X, et al. Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements[J]. Atmospheric Chemistry and Physics, 2016, 16(19): 12551-12565. |
[35] | KANG B, WANG D, DU S H. Source identification and degradation pathway of multiple persistent organic pollutants in groundwater at an abandoned chemical site in Hebei, China[J]. Exposure and Health, 2017, 9(2): 135-141. |
[36] | COLÓN L P, RASCÓN A J, BALLESTEROS E. Simultaneous determination of phenolic pollutants in dairy products held in various types of packaging by gas chromatography-mass spectrometry[J]. Food Control, 2022, 146: 109564. |
[37] | MA J Q, REN J Y, WANG L L, et al. Covalent triazine-based frameworks/iron oxide for highly sensitive magnetic solid-phase extraction of phenolic pollutants in water samples[J]. Journal of Separation Science, 2018, 41(19): 3724-3732. |
[38] | HAN X X, ZHAO R J, TIAN Y, et al. Simple high-performance liquid chromatography-ultraviolet method for simultaneous separation and detection of 14 bisphenol pollutants in building materials[J]. Journal of Separation Science, 2023, 46(11): 2300006. |
[39] |
ARISMENDI D, BECERRA-HERRERA M, CERRATO I, et al. Simultaneous determination of multiresidue and multiclass emerging contaminants in waters by rotating-disk sorptive extraction-derivatization-gas chromatography/mass spectrometry[J]. Talanta, 2019, 201: 480-489.
DOI PMID |
[40] | 中华人民共和国住房和城乡建设部. GB/T 18772—2017生活垃圾卫生填埋场环境监测技术要求[S]. 北京: 中国标准出版社, 2017. |
[41] |
YAMAZAKI E, YAMASHITA N, TANIYASU S, et al. Bisphenol a and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122: 565-572.
DOI PMID |
[42] | SAHA S, NARAYANAN N, SINGH N, et al. Occurrence of endocrine disrupting chemicals (EDCs) in river water, ground water and agricultural soils of India[J]. International Journal of Environmental Science and Technology, 2022, 19(11): 11459-11474. |
[43] | KURATA Y, ONO Y, ONO Y. Occurrence of phenols in leachates from municipal solid waste landfill sites in Japan[J]. Journal of Material Cycles and Waste Management, 2008, 10(2): 144-152. |
[1] | XU Donghui, LI Tao, LIN Yanzhu, CHEN Tianfei. Source apportionment of nitrate in groundwater based on correlation monitoring indicators in Liaodong Bay [J]. Earth Science Frontiers, 2025, 32(4): 376-387. |
[2] | HUANG Shiwen, XIA Qiwen, HE Jiangtao, HE Baonan, CHEN Cuibai, SUN Jichao. Study on zoning characteristics and genesis of iodine in shallow groundwater in North China Plain [J]. Earth Science Frontiers, 2025, 32(4): 510-522. |
[3] | ZHANG Xuehang, HE Baonan, HE Jiangtao, MA Shuo, LIU Fei, YANG Shanshan, SHI Yuanyuan, HE Wei, YANG Baiju. Study on groundwater pollution risk evolution in Yongding River recharge area [J]. Earth Science Frontiers, 2025, 32(4): 523-536. |
[4] | CHEN Hongwei, ZHU Zhichao, LI Zhengzui, YU Weihou, ZHOU Hui, YU Shasha, PENG Xiangxun. Interaction between the river and groundwater in the Dongting Lake during extreme climate: Taking the Zijiang River segment in the Dongting Lake as an example [J]. Earth Science Frontiers, 2025, 32(2): 445-455. |
[5] | CHU Yanjia, HE Baonan, CHEN Zhen, HE Jiangtao. Research on identifying the outliers of the TDS in shallow groundwater based on the random forest model [J]. Earth Science Frontiers, 2025, 32(2): 456-468. |
[6] | WANG Wei, CHENG Xing, GAO Xubo, TIAN Zhenhuan, LIU Chunhua, WU Zhanhui, LI Chengcheng, KONG Shuqiong. The genesis of groundwater chemistry in Yellow River Delta: A case study of Gudao Town, Dongying City, Shandong Province [J]. Earth Science Frontiers, 2025, 32(2): 469-483. |
[7] | OUYANG Kaigao, JIANG Xiaowei, DU Yanan, ZHANG Zhiyuan, HAN Pengfei, WU Yenan, WANG Xusheng. Mechanism of groundwater recharge at different depths during the “23·7” heavy rainfall event in North China: A case study of Xiong’an New Area [J]. Earth Science Frontiers, 2025, 32(1): 432-439. |
[8] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[9] | HE Jiahui, MAO Hairu, XUE Yang, LIAO Fu, GAO Bai, RAO Zhi, YANG Yang, LIU Yuanyuan, WANG Guangcai. Variability in spatiotemporal groundwater nitrate concentrations in the northeast Ganfu Plain [J]. Earth Science Frontiers, 2024, 31(3): 360-370. |
[10] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[11] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[12] | CHEN Hongwei, YANG Yao, HUANG He, ZHOU Hui, PENG Xiangxun, YU Shasha, YU Weihou, LI Zhengzui, WANG Zhaoguo. Interaction between surface water and groundwater during the dry season in Lake Dongting based on 222Rn tracing [J]. Earth Science Frontiers, 2024, 31(2): 423-434. |
[13] | LÜ Lianghua, QIAO Wenjing, ZHANG Han, YE Shujun, WU Jichun, WANG Shui, JIANG Jiandong. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species [J]. Earth Science Frontiers, 2024, 31(2): 472-480. |
[14] | HAO Mengqiuyue, LIU Daqing, YAN Zhenfei, FENG Chenglian. Short chain chlorinated paraffins in soil: Environmental safety criteria based on ecological risks [J]. Earth Science Frontiers, 2024, 31(2): 54-63. |
[15] | GUO Huaming, YIN Jiahong, YAN Song, LIU Chao. Distribution and source of nitrate in high-chromium groundwater in Jingbian, northern Shaanxi [J]. Earth Science Frontiers, 2024, 31(1): 384-399. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||