Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (4): 265-277.DOI: 10.13745/j.esf.sf.2022.4.23
Special Issue: 印度-欧亚大陆碰撞及其远程效应
Previous Articles Next Articles
ZHOU Pengzhe1(), GAO Rui1,2, YE Zhuo3,*(
)
Received:
2022-03-31
Revised:
2022-04-21
Online:
2022-07-25
Published:
2022-07-28
Contact:
YE Zhuo
CLC Number:
ZHOU Pengzhe, GAO Rui, YE Zhuo. Crustal anisotropy study in the central Qilian Mountains: Evidence from teleseismic P wave receiver functions[J]. Earth Science Frontiers, 2022, 29(4): 265-277.
[1] | LEECH M L, SINGH S, JAIN A K, et al. The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth and Planetary Science Letters, 2005, 234(1/2): 83-97. |
[2] | ROWLEY D B. Age of initiation of collision between India and Asia: a review of stratigraphic data[J]. Earth and Planetary Science Letters, 1996, 145(1/2/3/4): 1-13. |
[3] | KLOOTWIJK C T, GEE J S, PEIRCE J W, et al. An early India-Asia contact: paleomagnetic constraints from Ninetyeast ridge, ODP Leg 121[J]. Geology, 1992, 20(5): 395-398. |
[4] | DING L, KAPP P, WAN X. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 2005, 24(3): TC3001. |
[5] | PANG J, YU J, ZHENG D, et al. Neogene expansion of the Qilian Shan, North Tibet: implications for the dynamic evolution of the Tibetan Plateau[J]. Tectonics, 2019, 38(3): 1018-1032. |
[6] | WANG W, ZHENG D, LI C, et al. Cenozoic Exhumation of the Qilian Shan in the northeastern Tibetan Plateau: evidence from low-temperature thermochronology[J]. Tectonics, 2020, 39(4): 1-16. |
[7] | ZHENG W, ZHANG P, HE W, et al. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 2013, 584: 267-280. |
[8] | ZUZA A V, WU C, REITH R C, et al. Tectonic evolution of the Qilian Shan: an early Paleozoic orogen reactivated in the Cenozoic[J]. Bulletin of the Geological Society of America, 2018, 130(5/6): 881-925. |
[9] | YANG H, YANG X, ZHANG H, et al. Active fold deformation and crustal shortening rates of the Qilian Shan Foreland Thrust Belt, NE Tibet, since the Late Pleistocene[J]. Tectonophysics, 2018, 742: 84-100. |
[10] | HETZEL R, HAMPEL A, GEBBEKEN P, et al. A constant slip rate for the western Qilian Shan frontal thrust during the last 200 ka consistent with GPS-derived and geological shortening rates[J]. Earth and Planetary Science Letters, 2019, 509: 100-113. |
[11] | HOUSEMAN G, ENGLAND P. Finite strain calculations of continental deformation - Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research: Solid Earth, 1986, 91: 3664-3676. |
[12] | TAPPONNIER P, ZHIQIN X, ROGER F, et al. Oblique stepwise rise and growth of the tibet plateau[J]. Science, 2001, 294(5547): 1671-1677. |
[13] | CLARK M K, ROYDEN L H. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8): 703-706. |
[14] | ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D. The geological evolution of the Tibetan plateau[J]. Science, 2008, 321(5892): 1054-1058. |
[15] | SUN Y, NIU F, LIU H, et al. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data[J]. Earth and Planetary Science Letters, 2012, 349: 186-197. |
[16] | HAO S, HUANG Z, HAN C, et al. Layered crustal azimuthal anisotropy beneath the northeastern Tibetan Plateau revealed by Rayleigh-wave Eikonal tomography[J]. Earth and Planetary Science Letters, 2021, 563: 116891. |
[17] | SHERRINGTON H F, ZANDT G, FREDERIKSEN A. Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2). |
[18] | LI Y, WU Q, ZHANG F, et al. Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis[J]. Earth and Planetary Science Letters, 2011, 304(1/2): 147-157. |
[19] | YE Z, LI Q, GAO R, et al. Anisotropic regime across northeastern Tibet and its geodynamic implications[J]. Tectonophysics, 2016, 671: 1-8. |
[20] | ZHAO P, CHEN J, LIU Q, et al. Growth of Northern Tibet: insights from the crustal shear wave velocity structure of the Qilian Shan Orogenic Belt[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(9): 1-16. |
[21] | LI H, SHEN Y, HUANG Z, et al. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 1954-1970. |
[22] | LI X, LI H, SHEN Y, et al. Crustal velocity structure of the northeastern Tibetan plateau from ambient noise surface-wave tomography and its tectonic implications[J]. Bulletin of the Seismological Society of America, 2014, 104(3): 1045-1055. |
[23] | SUN Q, PEI S, CUI Z, et al. A new growth model of the northeastern Tibetan Plateau from high-resolution seismic imaging by improved double-difference tomography[J]. Tectonophysics, 2021, 798: 228699. |
[24] | JIANG C, YANG Y, ZHENG Y. Penetration of mid-crustal low velocity zone across the Kunlun Fault in the NE Tibetan Plateau revealed by ambient noise tomography[J]. Earth and Planetary Science Letters, 2014, 406: 81-92. |
[25] | LI Y, PAN J, WU Q, et al. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography[J]. Geophysical Journal International, 2017, 210(2): 570-584. |
[26] | XIAO Q, ZHANG J, ZHAO G, et al. Electrical resistivity structures northeast of the Eastern Kunlun Fault in the Northeastern Tibet: tectonic implications[J]. Tectonophysics, 2013, 601: 125-138. |
[27] | XIAO Q, SHAO G, YU G, et al. Electrical resistivity structures of the Kunlun-Qaidam-Qilian system at the northern Tibet and their tectonic implications[J]. Physics of the Earth and Planetary Interiors, 2016, 255: 1-17. |
[28] | LIANG H, GAO R, XUE S, et al. Electrical structure of the middle Qilian Shan revealed by 3-D inversion of magnetotelluric data: new insights into the growth and deformation in the Northeastern Tibetan Plateau[J]. Tectonophysics, 2020, 789: 228523. |
[29] | GAO R, WANG H, YIN A, et al. Tectonic development of the northeastern tibetan plateau as constrained by high-resolution deep seismicreflection data[J]. Lithosphere, 2013, 5(6): 555-574. |
[30] | YE Z, GAO R, LI Q, et al. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters, 2015, 426: 109-117. |
[31] | HUANG X, XU X, GAO R, et al. Shortening of lower crust beneath the NE Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2020, 198(135). |
[32] | 张洪双, 高锐, 田小波, 等. 青藏高原东北缘地壳 S 波速度结构及其动力学含义: 远震接收函数提供的证据[J]. 地球物理学报, 2015, 58(11): 3982-3992. |
[33] | YE Z, GAO R, LU Z, et al. A lithospheric-scale thrust-wedge model for the formation of the northern Tibetan plateau margin: evidence from high-resolution seismic imaging[J]. Earth and Planetary Science Letters, 2021, 574: 117170. |
[34] | WANG Q, NIU F, GAO Y, et al. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data[J]. Geophysical Journal International, 2016, 204(1): 167-179. |
[35] | 王琼, 高原, 石玉涛, 等. 青藏高原东北缘上地幔地震各向异性: 来自 SKS, PKS 和 SKKS 震相分裂的证据[J]. 地球物理学报, 2013, 56(3): 892-905. |
[36] | CHANG L, DING Z, WANG C, et al. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data[J]. Tectonophysics, 2017, 699: 93-101. |
[37] | LEÓN SOTO G, SANDVOL E, NI J F, et al. Significant and vertically coherent seismic anisotropy beneath eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(5). |
[38] | XU X, NIU F, DING Z, et al. Complicated crustal deformation beneath the NE margin of the Tibetan plateau and its adjacent areas revealed by multi-station receiver-function gathering[J]. Earth and Planetary Science Letters, 2018, 497: 204-216. |
[39] | LI J, SONG X, WANG P, et al. A Generalized H-κ method with harmonic corrections on PS and its crustal multiples in receiver functions[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3782-3801. |
[40] | YUAN D, GE W, CHEN Z, et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 2013, 32(5): 1358-1370. |
[41] | YIN A, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Reviews of Earth and Planetary Sciences, 2000, 28: 211-280. |
[42] | MAINPRICE D, NICOLAS A. Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust[J]. Journal of Structural Geology, 1989, 11(1/2): 175-189. |
[43] | ALMQVIST B S G, MAINPRICE D. Seismic properties and anisotropy of the continental crust: predictions based on mineral texture and rock microstructure[J]. Reviews of Geophysics, 2017, 55(2): 367-433. |
[44] | RABBEL W, MOONEY W D. Seismic anisotropy of the crystalline crust: what does it tell us?[J]. Terra Nova, 1996, 8(1): 16-21. |
[45] | CRAMPIN S. Effective anisotropic elastic constants for wave propagation through cracked solids[J]. Geophysical Journal of the Royal Astronomical Society, 1984, 76(1): 135-145. |
[46] | CRAMPIN S. The fracture criticality of crustal rocks[J]. Geophysical Journal International, 1994, 118(2): 428-438. |
[47] | TAN P, NIE S. Crustal deformation in eastern margin of Tibetan Plateau from a dense linear seismic array[J]. Physics of the Earth and Planetary Interiors, 2021, 321: 106801. |
[48] | ZHU L. Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves[J]. Earth and Planetary Science Letters, 2000, 179(1): 183-190. |
[49] | WANG W, WU J, FANG L, et al. Sedimentary and crustal thicknesses and Poisson’s ratios for the NE Tibetan Plateau and its adjacent regions based on dense seismic arrays[J]. Earth and Planetary Science Letters, 2017, 462: 76-85. |
[50] | PAN S, NIU F. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis[J]. Earth and Planetary Science Letters, 2011, 303(3/4): 291-298. |
[51] | YUAN X, NI J, KIND R, et al. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment[J]. Journal of Geophysical Research B: Solid Earth, 1997, 102(12): 27491-27500. |
[52] | YU Y, SONG J, LIU K H, et al. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(5): 3208-3218. |
[53] | DING Z, CHENG B, DONG Y, et al. Seismic imaging of the crust and uppermost mantle beneath the Qilian Orogenic Belt and its geodynamic implications[J]. Tectonophysics, 2017, 705: 63-79. |
[54] | 郑文俊, 袁道阳, 张培震, 等. 青藏高原东北缘活动构造几何图像, 运动转换与高原扩展[J]. 第四纪研究, 2016, 36(4): 775-788. |
[55] | 袁道阳, 张培震, 刘百篪, 等. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 2004, 78(2): 270-278. |
[56] | ZHENG D, LI H, SHEN Y, et al. Crustal and upper mantle structure beneath the northeastern Tibetan Plateau from joint analysis of receiver functions and Rayleigh wave dispersions[J]. Geophysical Journal International, 2016, 204(1): 583-590. |
[57] | ZHANG H, TENG J, TIAN X, et al. Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements[J]. Geophysical Journal International, 2012, 191(3): 1285-1294. |
[58] | WANG M, SHEN Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. |
[59] | DEMETS C, GORDON R G, ARGUS D F. Geologically current plate motions[J]. Geophysical Journal International, 2010, 181(1): 1-80. |
[60] | 张洪双, 滕吉文, 田小波, 等. 青藏高原东北缘岩石圈厚度与上地幔各向异性[J]. 地球物理学报, 2013, 56(2): 450-471. |
[61] | KIND R, YUAN X, SAUL J, et al. Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction[J]. Science, 2002, 298(5596): 1219-1221. |
[62] | NÁBĚLEK J, HETÉNYI G, VERGNE J, et al. Underplating in the himalaya-tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science, 2009, 325(5946): 1371-1374. |
[63] | SHI D, WU Z, KLEMPERER S L, et al. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth and Planetary Science Letters, 2015, 414: 6-15. |
[64] | FENG M, KUMAR P, MECHIE J, et al. Structure of the crust and mantle down to 700 km depth beneath the East Qaidam basin and Qilian Shan from P and S receiver functions[J]. Geophysical Journal International, 2014, 199(3): 1416-1429. |
[65] | SHI J, SHI D, SHEN Y, et al. Growth of the northeastern margin of the Tibetan Plateau by squeezing up of the crust at the boundaries[J]. Scientific Reports, 2017, 7(1): 1-7. |
[66] | WANG Y. Heat flow pattern and lateral variations of lithosphere strength in China mainland: constraints on active deformation[J]. Physics of the Earth and Planetary Interiors, 2001, 126(3/4): 121-146. |
[67] | 高锐, 齐蕊, 黄兴富, 等. 青藏高原东北缘祁连山中部精细地壳结构研究[J]. 地球物理学报, 2022(已接收). |
[68] | WANG X, LI Y, DING Z, et al. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(8): 6703-6720. |
[69] | CRAMPIN S, BOOTH D C. Shear-wave polarizations near the North Anatolian Fault: II.Interpretation in terms of crack-induced anisotropy[J]. Geophysical Journal of the Royal Astronomical Society, 1985, 83(1): 75-92. |
[70] | 张辉, 高原, 石玉涛, 等. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J]. 地球物理学报, 2012, 55(1): 95-104. |
[71] | 李永华, 吴庆举, 安张辉, 等. 青藏高原东北缘地壳 S 波速度结构与泊松比及其意义[J]. 地球物理学报, 2006, 49(5): 1359-1368. |
[72] | 杨晓松, 马瑾, 张先进. 大陆壳内低速层成因综述[J]. 地质科技情报, 2003, 22(2): 35-41. |
[73] | 周永胜, 何昌荣, 杨晓松. 中地壳韧性剪切带中的水与变形机制[J]. 中国科学: D 辑, 2008, 38(7): 819-832. |
[74] | JI S, WANG Q, SALISBURY M H. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson’s ratio[J]. Tectonophysics, 2009, 463(1/2/3/4): 15-30. |
[75] | XIAO W, WINDLEY B F, YONG Y, et al. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China[J]. Journal of Asian Earth Sciences, 2009, 35(3/4): 323-333. |
[1] | ZHANG Jiawen, LI Mingchao, HAN Shuai, ZHANG Jingyi. Analysis and discrimination of tectonic settings based on stacking quantum neural networks [J]. Earth Science Frontiers, 2024, 31(3): 511-519. |
[2] | FU Yu, CAO Wengeng, ZHANG Chunju, ZHAI Wenhua, REN Yu, NAN Tian, LI Zeyan. Risk assessment of groundwater arsenic in Hetao Basin base on ensemble learning optimization [J]. Earth Science Frontiers, 2024, 31(3): 371-380. |
[3] | CAI Wei, LU Zhanwu, HUANG Rong, LI Wenhui, LUO Yinhe, WANG Guangwen, MU Qing, CHENG Yongzhi, CHEN Si, WANG Guan, CHEN Zilong. Crustal structure beneath the Cuonadong dome in southern Tibet revealed by receiver functions from a short-period dense array [J]. Earth Science Frontiers, 2024, 31(1): 170-180. |
[4] | LI Qiang, WU Jianping. Crustal thickness and Poisson’s ratio beneath the continental margin of southeastern China and the tectonic implications [J]. Earth Science Frontiers, 2023, 30(5): 408-419. |
[5] | MU Qing, HUANG Rong, YAN Jiayong, LU Zhanwu, LUO Yinhe, ZHANG Yongqian, JIANG Xiaohuan, WEN Hongbin, WEI Penglong, ZHOU Wanli. Constraining the crustal structure of the southern segment of the north-south gravity lineament by the receiver function H-κ-c method [J]. Earth Science Frontiers, 2023, 30(5): 369-383. |
[6] | JIANG Xiaohuan, HUANG Rong, ZHU Lupei, LU Zhanwu, LUO Yinhe, ZHANG Rongtang, XU Hao. Crustal structure beneath a seismic linear array in the Western Junggar, northwestern China by RF-RTM imaging [J]. Earth Science Frontiers, 2023, 30(5): 358-368. |
[7] | CHENG Yongzhi, GAO Rui, LU Zhanwu, LI Wenhui, WANG Guangwen, CHEN Si, WU Guowei, CAI Yuguo. Deep structure and dynamics of the eastern segment of the Qilian orogenic belt in the northeastern margin of the Tibetan Plateau [J]. Earth Science Frontiers, 2023, 30(5): 314-333. |
[8] | TONG Xiaofei, XU Xiao, GUO Xiaoyu, LI Chunsen, XIANG Bo, YU Jiahao, LUO Xucong, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Receiving function imaging reveals the crustal structure of the East Kunlun fault zone and surrounding areas [J]. Earth Science Frontiers, 2023, 30(4): 270-282. |
[9] | XU Xiao, YU Jiahao, XIANG Bo, GUO Xiaoyu, LI Chunsen, LUO Xucong, TONG Xiaofei, YUAN Zizhao, LIN Yanqi, SHI Hongcheng. Deep crustal structure of the southeastern Lhasa Terrane [J]. Earth Science Frontiers, 2023, 30(3): 221-232. |
[10] | LI Chunsen, XU Xiao, XIANG Bo, GUO Xiaoyu, WU You, WU Jiajie, LUO Xucong, YU Jiahao, TONG Xiaofei, YUAN Zizhao, LIN Yanqi. Moho geometry in the eastern North Himalayan tectonic belt: An example of the receiver function 3DCCP method [J]. Earth Science Frontiers, 2023, 30(2): 57-67. |
[11] | WU Jiajie, XU Xiao, GUO Xiaoyu, LU Zhanwu, WU You, XIANG Bo, YU Yang, LI Chunsen, YU Jiahao, TONG Xiaofei, LUO Xucong. Crustal structure of the Cona rift, eastern Himalaya [J]. Earth Science Frontiers, 2022, 29(4): 221-230. |
[12] | Valentina V. MORDVINOVA, Maria A. KHRITOVA, Elena A. KOBELEVA, Mikhail M. KOBELEV, Evgeniy Kh. TURUTANOV, Victor S. KANAYKIN. Detailed structure of the Earth’s crust and upper mantle of the Severomuysk segment of the Baikal rift zone according to teleseismic data [J]. Earth Science Frontiers, 2022, 29(2): 378-392. |
[13] | ZHU Xiaohui, CHEN Danling, FENG Yimin, REN Yunfei, ZHANG Xin. Granitic magmatism and tectonic evolution in the Qilian Mountain Range in NW China: A review [J]. Earth Science Frontiers, 2022, 29(2): 241-260. |
[14] | . Petrogenesis and tectonic implications of the Maozangsi and Huangyanghe granitic intrusions in Lenglongling area, the eastern part of North Qilian Mountains, NW China. [J]. Earth Science Frontiers, 2012, 19(3): 214-227. |
[15] | LOU Hai, WANG Chun-Yong, TAO Zhi-Xiang, LI Gong-Yi, SU Wei, LV Zhi-Yong. Subsection feature of the deep structure and material properties of Longmenshan fault zone. [J]. Earth Science Frontiers, 2010, 17(5): 128-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||