Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (5): 68-78.DOI: 10.13745/j.esf.sf.2021.2.19
Previous Articles Next Articles
HUI Shujun1(), YANG Bing1,2, GUO Huaming1,*(), LIAN Guoxi2, SUN Juan2
Received:
2020-08-17
Revised:
2021-01-15
Online:
2021-09-25
Published:
2021-10-29
Contact:
GUO Huaming
CLC Number:
HUI Shujun, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Factors affecting uranium adsorption on aquifer sandstone[J]. Earth Science Frontiers, 2021, 28(5): 68-78.
粒径/mm | R2 | Kd/(L·g-1) |
---|---|---|
<0.10 | 0.995 1 | 0.030 |
0.10<0.15 | 0.994 3 | 0.038 |
0.15<0.20 | 0.997 9 | 0.032 |
0.20<0.25 | 0.993 6 | 0.029 |
0.250.50 | 0.997 8 | 0.029 |
Table 1 Fitting coefficients and adsorption partition coefficients of isothermal adsorption curves for sandstone samples with different particle sizes
粒径/mm | R2 | Kd/(L·g-1) |
---|---|---|
<0.10 | 0.995 1 | 0.030 |
0.10<0.15 | 0.994 3 | 0.038 |
0.15<0.20 | 0.997 9 | 0.032 |
0.20<0.25 | 0.993 6 | 0.029 |
0.250.50 | 0.997 8 | 0.029 |
因素 | 不同pH值条件下的影响因素情况 | ||
---|---|---|---|
pH<4 | pH=46 | pH>6 | |
固体表面带电荷情况 | 有正电荷也有负电荷 | 主要带负电荷 | 几乎都带负电荷 |
U的络合形态 | | (UO2)3(OH (UO2)4(OH | UO2CO3、UO2(OH (UO2)3(OH UO2(CO3 |
库仑力 | 引力为主 | 引力 | 斥力增强 |
H+竞争作用 | 较强 | 减弱 | 几乎没有 |
Table 2 List of factors affecting U(VI) adsorption at different pH
因素 | 不同pH值条件下的影响因素情况 | ||
---|---|---|---|
pH<4 | pH=46 | pH>6 | |
固体表面带电荷情况 | 有正电荷也有负电荷 | 主要带负电荷 | 几乎都带负电荷 |
U的络合形态 | | (UO2)3(OH (UO2)4(OH | UO2CO3、UO2(OH (UO2)3(OH UO2(CO3 |
库仑力 | 引力为主 | 引力 | 斥力增强 |
H+竞争作用 | 较强 | 减弱 | 几乎没有 |
不同试验条件 | U(VI)含量占比/% | U(IV)含量占比/% | Fe(II)含量占比/% | Fe(III)含量占比/% |
---|---|---|---|---|
原始黄铁矿 | 98.9 | 1.1 | ||
近中性pH值 | 68 | 32 | 95.8 | 4.2 |
弱碱性pH值 | 100 | 0 | 98.5 | 1.5 |
Table 3 Percentages of U (VI), U (IV), Fe(II), and Fe(III) on solid sample surface containing 10% FeS2 reacting with U(VI) for 10 d under different experimental conditions
不同试验条件 | U(VI)含量占比/% | U(IV)含量占比/% | Fe(II)含量占比/% | Fe(III)含量占比/% |
---|---|---|---|---|
原始黄铁矿 | 98.9 | 1.1 | ||
近中性pH值 | 68 | 32 | 95.8 | 4.2 |
弱碱性pH值 | 100 | 0 | 98.5 | 1.5 |
[1] | 张飞凤, 苏学斌, 邢拥国, 等. 地浸采铀新工艺综述[J]. 中国矿业, 2012, 21(增刊):9-12. |
[2] |
SEREDKIN M, ZABOLOTSKY A, JEFFRESS G. In situ recovery, an alternative to conventional methods of mining: exploration, resource estimation, environmental issues, project evaluation and economics[J]. Ore Geology Reviews, 2016, 79:500-514.
DOI URL |
[3] | 苏学斌. 高效绿色发展推进铀矿大基地建设[J]. 中国核工业, 2016(11):16-19. |
[4] | 李衡, 周义朋. 地浸采铀溶质运移研究进展及展望[J]. 稀有金属, 2019, 43(3):319-330. |
[5] | International Atomic Energy Agency. In situ leach uranium mining: an overview of operations[R]. Vienna: IAEA, 2016. |
[6] |
CORLIN L, ROCK T, CORDOVA J, et al. Health effects and environmental justice concerns of exposure to uranium in drinking water[J]. Current Environmental Health Reports, 2016, 3(4):434-442.
DOI URL |
[7] |
DICKINSON M, SCOTT T B. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent[J]. Journal of Hazardous Materials, 2010, 178(1/2/3):171-179.
DOI URL |
[8] |
BORCH T, ROCHE N, JOHNSON T E. Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine[J]. Journal of Environmental Monitoring, 2012, 14(7):1814-1823.
DOI URL |
[9] |
STANLEY D M, WILKIN R T. Solution equilibria of uranyl minerals:role of the common groundwater ions calcium and carbonate[J]. Journal of Hazardous Materials, 2019, 377:315-320.
DOI URL |
[10] |
BACHMAF S, PLANER-FRIEDRICH B, MERKEL B J. Effect of sulfate, carbonate, and phosphate on the uranium(VI) sorption behavior onto bentonite[J]. Radiochimica Acta, 2008, 96(6):359-366.
DOI URL |
[11] | GAJOWIAK A, MAJDAN M, DROZDZAL K. Sorption of uranium(VI) on clays and clay minerals[J]. Przemysl Chemiczny, 2009, 88(2):190-196. |
[12] |
WEI M, LIAO J L, LIU N, et al. Interaction between uranium and humic acid (I):adsorption behaviors of U(VI) in soil humic acids[J]. Nuclear Science and Techniques, 2007, 18(5):287-293.
DOI URL |
[13] |
XIE S B, ZHANG C, ZHOU X H, et al. Removal of uranium (VI) from aqueous solution by adsorption of hematite[J]. Journal of Environmental Radioactivity, 2009, 100(2):162-166.
DOI URL |
[14] |
AL-HOBAIB A S, AL-SUHYBANI A A. Removal of uranyl ions from aqueous solutions using barium titanate[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(1):559-567.
DOI URL |
[15] | 吴晓朦, 刘洪雪, 王锐, 等. 硝酸铀酰溶液初始浓度与pH值对其水解反应的影响[J]. 辽宁石油化工大学学报, 2015, 35(5):18-21. |
[16] |
FORNASIERO D, EIJT V, RALSTON J. An electrokinetic study of pyrite oxidation[J]. Colloids and Surfaces, 1992, 62(1/2):63-73.
DOI URL |
[17] |
BEBIE J, SCHOONEN M A A, FUHRMANN M, et al. Surface charge development on transition metal sulfides:an electrokinetic study[J]. Geochimica et Cosmochimica Acta, 1998, 62(4):633-642.
DOI URL |
[18] |
LUO M B, LIU S J, LI J Q, et al. Uranium sorption characteristics onto synthesized pyrite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(1):305-312.
DOI URL |
[19] |
NOUBACTEP C, SONNEFELD J, MERTEN D, et al. Effects of the presence of pyrite and carbonate minerals on the kinetics of the uranium release from a natural rock[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006, 270(2):325-333.
DOI URL |
[20] |
LIU J, ZHAO C S, YUAN G Y, et al. Adsorption of U(VI) on a chitosan/polyaniline composite in the presence of Ca/Mg-U(VI)-CO3 complexes[J]. Hydrometallurgy, 2018, 175:300-311.
DOI URL |
[21] |
AUBRIET H, HUMBERT B, PERDICAKIS M. Interaction of U(VI) with pyrite, galena and their mixtures:a theoretical and multitechnique approach[J]. Radiochimica Acta, 2006, 94(9/10/11):657-663.
DOI URL |
[22] |
EGLIZAUD N, MISERQUE F, SIMONI E, et al. Uranium(VI) interaction with pyrite (FeS2): chemical and spectroscopic studies[J]. Radiochimica Acta, 2006, 94(9/10/11):651-656.
DOI URL |
[23] |
SCOTT T B, RIBA TORT O, ALLEN G C. Aqueous uptake of uranium onto pyrite surfaces: reactivity of fresh versus weathered material[J]. Geochimica et Cosmochimica Acta, 2007, 71(21):5044-5053.
DOI URL |
[24] |
WUNSCH A, NAVARRE-SITCHLER A K, MOORE J, et al. Metal release from limestones at high partial-pressures of CO2[J]. Chemical Geology, 2014, 363:40-55.
DOI URL |
[25] |
RIEGEL M. Sorption of natural uranium on weakly basic anion exchangers[J]. Solvent Extraction and Ion Exchange, 2017, 35(5):363-375.
DOI URL |
[26] |
WU Y, WANG Y X, GUO W. Behavior and fate of geogenic uranium in a shallow groundwater system[J]. Journal of Contaminant Hydrology, 2019, 222:41-55.
DOI URL |
[27] | 张红霞. U(Ⅵ)、Th(Ⅳ)在几种吸附剂上的吸附机理研究[D]. 兰州: 兰州大学, 2011. |
[28] |
LI X L, WU J J, LIAO J L, et al. Adsorption and desorption of uranium (VI) in aerated zone soil[J]. Journal of Environmental Radioactivity, 2013, 115:143-150.
DOI URL |
[29] | GUO Z, SU H Y, WU W S. Sorption and desorption of uranium(VI) on silica:experimental and modeling studies[J]. Radiochimica Acta, 2009, 97(3):133-140. |
[30] |
BARGAR J R, REITMEYER R, DAVIS J A. Spectroscopic confirmation of uranium(VI)- carbonato adsorption complexes on hematite[J]. Environmental Science & Technology, 1999, 33(14):2481-2484.
DOI URL |
[31] |
YANG Z W, KANG M L, MA B, et al. Inhibition of U(VI) reduction by synthetic and natural pyrite[J]. Environmental Science & Technology, 2014, 48(18):10716-10724.
DOI URL |
[32] |
SEDER-COLOMINA M, MANGERET A, STETTEN L, et al. Carbonate facilitated mobilization of uranium from lacustrine sediments under anoxic conditions[J]. Environmental Science & Technology, 2018, 52(17):9615-9624.
DOI URL |
[33] |
DESCOSTES M, SCHLEGEL M L, EGLIZAUD N, et al. Uptake of uranium and trace elements in pyrite (FeS2) suspensions[J]. Geochimica et Cosmochimica Acta, 2010, 74(5):1551-1562.
DOI URL |
[34] |
LIGER E, CHARLET L, VAN CAPPELLEN P. Surface catalysis of uranium(VI) reduction by iron(II)[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20):2939-2955.
DOI URL |
[35] |
JEON B H, DEMPSEY B A, BURGOS W D, et al. Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides[J]. Environmental Science & Technology, 2005, 39(15):5642-5649.
DOI URL |
[36] | 李肃宁, 周丽, 李和平, 等. 黄铁矿吸附-还原金络合物的试验研究进展[J]. 地球与环境, 2013, 41(2):185-192. |
[37] |
WIDLER A M, SEWARD T M. The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces[J]. Geochimica et Cosmochimica Acta, 2002, 66(3):383-402.
DOI URL |
[38] | CUI D Q, SPAHIU K. On the Interaction between uranyl carbonate and UO2(s) in anaerobic solution[J]. Journal of Nuclear Science and Technology, 2002, 39(Suppl 3):500-503. |
[39] |
BRUGGEMAN C, MAES N. Uptake of uranium(VI) by pyrite under boom clay conditions:influence of dissolved organic carbon[J]. Environmental Science & Technology, 2010, 44(11):4210-4216.
DOI URL |
[1] | CUI Di, YANG Bing, GUO Huaming, LIAN Guoxi, SUN Juan. Adsorption and transport of uranium in porous sandstone media [J]. Earth Science Frontiers, 2022, 29(3): 217-226. |
[2] | GUO Huaming, GAO Zhipeng, XIU Wei. Typical redox-sensitive components in groundwater systems: Research highlights and trends [J]. Earth Science Frontiers, 2022, 29(3): 64-75. |
[3] | LIANG Xiaoliang, TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits [J]. Earth Science Frontiers, 2022, 29(1): 29-41. |
[4] | HUANG Ranxiao, WANG Guosheng, YUAN Guoli, QIU Kunfeng, Hounkpe Jechonias BIDOSSESSI. Assimilation-fractional crystallization (AFC) of pegmatitic magma and its implications for uranium mineralization: A case study of the Husab uranium deposit, Namibia [J]. Earth Science Frontiers, 2022, 29(1): 377-402. |
[5] | WANG Wei, HOU Xianhua, ZHENG Mianping, GAO Xing, FAN Fu, LIU Qing. Key technology application in high resolution seismic data processing for deep potash deposits: An example from Lop Nur [J]. Earth Science Frontiers, 2021, 28(6): 146-154. |
[6] | GAO Heng, TAN Hang, REN Yu, ZHU Lecheng, BI Erping. Nitrogen removal during reclaimed water infiltration in soil aquifer treatment: Experimental simulation using soil column [J]. Earth Science Frontiers, 2021, 28(5): 125-135. |
[7] | ZHANG Yuling, YIN Siqi, SI Chaoqun, WANG Xi, CHU Wenlei. Characteristics of scoria adsorption of Escherichia coli phage in groundwater [J]. Earth Science Frontiers, 2021, 28(5): 167-174. |
[8] | ZHANG Weimin, WANG Zhen, QIAN Cheng, GUO Yadan, LIU Haiyan. An activated calcite-loaded hydroxyapatite PRB media for uranium ion removal from aqueous solution [J]. Earth Science Frontiers, 2021, 28(5): 175-185. |
[9] | SUN Zhanxue, MA Wenjie, LIU Yajie, LIU Jinhui, ZHOU Yipeng. Research progress on groundwater contamination and remediation in in situ leaching uranium mines [J]. Earth Science Frontiers, 2021, 28(5): 215-225. |
[10] | JIA Han, LIU Junxing, YIN Xianyang, WANG Chunguang, GENG Hao, CHI Haoxuan, TANG Shijie. Ecological evaluation of the Tongling pyrite mining district in Anhui Province [J]. Earth Science Frontiers, 2021, 28(4): 131-141. |
[11] | SHAO Xuewei, PENG Yongming, WANG Gongwen, ZHAO Xianyong, TANG Jiayang, HUANG Leilei, LIU Xiaoning, ZHAO Xiandong. Application of SWIR, XRF and thermoelectricity analysis of pyrite in deep prospecting in the Xincheng gold orefield, Jiaodong Peninsula [J]. Earth Science Frontiers, 2021, 28(3): 236-251. |
[12] | LI Chenglu, LI Shengrong, YUAN Maowen, DU Bingying, LI Wenlong, Masroor ALAM, LIU Dongyuan, LIU Hao. Genesis of the Keluo Au deposit in the Nenjiang-Heihe tectonic melange belt, Heilongjiang Province: evidence from chemical composition and pyrite He-Ar, S, Pb isotopes [J]. Earth Science Frontiers, 2020, 27(5): 99-115. |
[13] | Jinru Lin, Ning Chen, Yuanming Pan. Uptake mechanisms of arsenate in gypsum: Structural incorporation versus surface adsorption and implications for remediation of arsenic contamination [J]. Earth Science Frontiers, 2020, 27(5): 227-237. |
[14] | LU Taijin, DAI Hui, TIAN Gengfan, LI Ke, ZHANG Jian, CHEN Hua, KE Jie. Quantitative analysis of pore characteristics of natural and electrochemically treated turquoises based on gas adsorption method and X-ray micro-CT 3D imaging technique [J]. Earth Science Frontiers, 2020, 27(5): 247-253. |
[15] | WANG Di, WANG Xinwei, MAO Xiang, WU Minghui, LIU Huiying, ZHANG Xuan, WANG Tinghao. Characteristics of geothermal geology of the Wucheng uplift geothermal field [J]. Earth Science Frontiers, 2020, 27(3): 269-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||