Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 361-376.DOI: 10.13745/j.esf.sf.2025.2.7
Previous Articles Next Articles
HE Xiao1,2(), NIU Huapeng1,2,*(
), ZHAO Xian1,2, ZHOU Haoyan1,2, LIN Weijun1,2, ZHANG Guanlong3, MENG Tao3, MU Xing3
Received:
2024-12-03
Revised:
2025-02-27
Online:
2025-09-25
Published:
2025-10-14
Contact:
NIU Huapeng
CLC Number:
HE Xiao, NIU Huapeng, ZHAO Xian, ZHOU Haoyan, LIN Weijun, ZHANG Guanlong, MENG Tao, MU Xing. Numerical simulation method on the impact of the difference of rock composition and structure on the development mechanism of fractured reservoirs: A case study from the granitoids in Jiyang Depression[J]. Earth Science Frontiers, 2025, 32(5): 361-376.
样品 编号 | 岩性 | 石英 含量/% | 石英 粒径/mm | 斜长石 含量/% | 斜长石 粒径/mm | 碱性长石 含量/% | 碱性长石 粒径/mm | 暗色矿物 含量/% | 暗色矿物 粒径/mm |
---|---|---|---|---|---|---|---|---|---|
0920 | 花岗闪长岩 | 29.6 | 1.0~3.0 | 52.2 | 1.0~3.0 | 13.5 | 1.0~2.0 | 4.7 | 1.0~2.0 |
1041 | 花岗闪长岩 | 38.2 | 1.0~4.0 | 39.8 | 1.0~3.0 | 18.6 | 1.0~4.0 | 3.4 | 1.0左右 |
1717 | 花岗闪长岩 | 22.0 | 1.0~2.5 | 62.3 | 1.0~3.5 | 14.8 | 1.0~2.0 | 0.9 | 1.0左右 |
1722 | 二长花岗岩 | 25.6 | 1.0~4.0 | 28.9 | 1.0~3.5 | 43.5 | 1.0~5.0 | 2.0 | 1.0左右 |
T15 | 英云闪长岩 | 17.7 | 1.0左右 | 55.0 | 1.0~3.5 | 0.0 | 27.3 | 1.0~4.5 |
Table 1 Mineral content and particle size of the samples
样品 编号 | 岩性 | 石英 含量/% | 石英 粒径/mm | 斜长石 含量/% | 斜长石 粒径/mm | 碱性长石 含量/% | 碱性长石 粒径/mm | 暗色矿物 含量/% | 暗色矿物 粒径/mm |
---|---|---|---|---|---|---|---|---|---|
0920 | 花岗闪长岩 | 29.6 | 1.0~3.0 | 52.2 | 1.0~3.0 | 13.5 | 1.0~2.0 | 4.7 | 1.0~2.0 |
1041 | 花岗闪长岩 | 38.2 | 1.0~4.0 | 39.8 | 1.0~3.0 | 18.6 | 1.0~4.0 | 3.4 | 1.0左右 |
1717 | 花岗闪长岩 | 22.0 | 1.0~2.5 | 62.3 | 1.0~3.5 | 14.8 | 1.0~2.0 | 0.9 | 1.0左右 |
1722 | 二长花岗岩 | 25.6 | 1.0~4.0 | 28.9 | 1.0~3.5 | 43.5 | 1.0~5.0 | 2.0 | 1.0左右 |
T15 | 英云闪长岩 | 17.7 | 1.0左右 | 55.0 | 1.0~3.5 | 0.0 | 27.3 | 1.0~4.5 |
矿物 | 有效模量/GPa | 键有效模量/GPa | 抗拉强度/MPa | 黏聚力/MPa | 摩擦角/(°) | 摩擦系数 | 法向-切向刚度比 |
---|---|---|---|---|---|---|---|
石英 | 55.0 | 55.0 | 90.0 | 162.0 | 55.0 | 0.5 | 1.41 |
斜长石 | 22.0 | 22.0 | 74.5 | 134.1 | 45.0 | 0.5 | 2.26 |
碱性长石 | 28.0 | 28.0 | 70.5 | 126.9 | 45.0 | 0.5 | 2.26 |
暗色矿物 | 16.0 | 16.0 | 47.0 | 84.6 | 37.0 | 0.5 | 2.82 |
晶界 | 29.0 | 29.0 | 54.0 | 97.2 | 53.0 | 0.5 | 2.26 |
Table 2 Mesoscopic parameters of granitic rock model in Jiyang Depression
矿物 | 有效模量/GPa | 键有效模量/GPa | 抗拉强度/MPa | 黏聚力/MPa | 摩擦角/(°) | 摩擦系数 | 法向-切向刚度比 |
---|---|---|---|---|---|---|---|
石英 | 55.0 | 55.0 | 90.0 | 162.0 | 55.0 | 0.5 | 1.41 |
斜长石 | 22.0 | 22.0 | 74.5 | 134.1 | 45.0 | 0.5 | 2.26 |
碱性长石 | 28.0 | 28.0 | 70.5 | 126.9 | 45.0 | 0.5 | 2.26 |
暗色矿物 | 16.0 | 16.0 | 47.0 | 84.6 | 37.0 | 0.5 | 2.82 |
晶界 | 29.0 | 29.0 | 54.0 | 97.2 | 53.0 | 0.5 | 2.26 |
模型风化系数 | k |
---|---|
有效模量 | 0.75 |
键有效模量 | 0.75 |
抗拉强度 | 0.75 |
黏聚力 | 0.75 |
摩擦角 | 1 |
摩擦系数 | 1 |
法向-切向刚度比 | 1 |
Table 3 Weathering coefficient of granitic rock model in Jiyang Depression
模型风化系数 | k |
---|---|
有效模量 | 0.75 |
键有效模量 | 0.75 |
抗拉强度 | 0.75 |
黏聚力 | 0.75 |
摩擦角 | 1 |
摩擦系数 | 1 |
法向-切向刚度比 | 1 |
样品编号 | 实验单轴抗压 强度/MPa | 模拟单轴抗压 强度/MPa | 相对误差/ % | 实验弹性 模量/GPa | 模拟弹性 模量/GPa | 相对误差/ % | 实验泊 松比 | 模拟泊 松比 | 相对误差/ % |
---|---|---|---|---|---|---|---|---|---|
0920 | 233.907 | 235.936 | +0.9 | 53.929 | 55.9 | +3.7 | 0.256 | 0.275 | +7.4 |
1041 | 176.54 | 171.536 | -2.8 | 46.175 | 46.9 | +1.6 | 0.251 | 0.241 | -4.0 |
1717 | 183.703 | 183.339 | -0.2 | 37.248 | 40.6 | +0.9 | 0.288 | 0.248 | -13.9 |
1722 | 219.459 | 222.282 | +1.3 | 61.712 | 58.7 | -4.9 | 0.283 | 0.263 | -7.1 |
T15 | 200.174 | 201.064 | +0.4 | 50.988 | 46.7 | -8.4 | 0.272 | 0.258 | -5.1 |
Table 4 Mechanical parameters of indoor mechanical test and numerical simulation
样品编号 | 实验单轴抗压 强度/MPa | 模拟单轴抗压 强度/MPa | 相对误差/ % | 实验弹性 模量/GPa | 模拟弹性 模量/GPa | 相对误差/ % | 实验泊 松比 | 模拟泊 松比 | 相对误差/ % |
---|---|---|---|---|---|---|---|---|---|
0920 | 233.907 | 235.936 | +0.9 | 53.929 | 55.9 | +3.7 | 0.256 | 0.275 | +7.4 |
1041 | 176.54 | 171.536 | -2.8 | 46.175 | 46.9 | +1.6 | 0.251 | 0.241 | -4.0 |
1717 | 183.703 | 183.339 | -0.2 | 37.248 | 40.6 | +0.9 | 0.288 | 0.248 | -13.9 |
1722 | 219.459 | 222.282 | +1.3 | 61.712 | 58.7 | -4.9 | 0.283 | 0.263 | -7.1 |
T15 | 200.174 | 201.064 | +0.4 | 50.988 | 46.7 | -8.4 | 0.272 | 0.258 | -5.1 |
组号 | 岩性 | 石英含量/ % | 斜长石含量/ % | 碱性长石含量/ % | 碱性长石含量/ 斜长石含量 | 暗色矿物含量/ % |
---|---|---|---|---|---|---|
1 | 石英碱长正长岩 | 4.5 | 4.275 | 81.225 | 95/5 | 10.0 |
2 | 石英正长岩 | 7.2 | 16.56 | 66.24 | 80/20 | 10.0 |
3 | 石英二长岩 | 9.9 | 40.05 | 40.05 | 50/20 | 10.0 |
4 | 石英二长岩闪长/辉长岩 | 12.6 | 61.92 | 15.48 | 20/80 | 10.0 |
5 | 石英闪长/辉长/斜长岩 | 15.3 | 70.965 | 3.735 | 5/95 | 10.0 |
6 | 碱长花岗岩 | 18.0 | 3.6 | 68.4 | 95/5 | 10.0 |
7 | 正长花岗岩 | 20.7 | 13.86 | 55.44 | 80/20 | 10.0 |
8 | 二长花岗岩 | 23.4 | 33.3 | 33.3 | 50/20 | 10.0 |
9 | 花岗闪长岩 | 26.1 | 51.12 | 12.78 | 20/80 | 10.0 |
10 | 英云闪长岩 | 28.8 | 58.14 | 3.06 | 5/95 | 10.0 |
11 | 碱长花岗岩 | 31.5 | 2.925 | 55.575 | 95/5 | 10.0 |
12 | 正长花岗岩 | 34.2 | 11.16 | 44.64 | 80/20 | 10.0 |
13 | 二长花岗岩 | 36.9 | 26.55 | 26.55 | 50/20 | 10.0 |
14 | 花岗闪长岩 | 39.6 | 40.32 | 10.08 | 20/80 | 10.0 |
15 | 英云闪长岩 | 42.3 | 45.315 | 2.385 | 5/95 | 10.0 |
16 | 碱长花岗岩 | 45.0 | 2.25 | 42.75 | 95/5 | 10.0 |
17 | 正长花岗岩 | 47.7 | 8.46 | 33.84 | 80/20 | 10.0 |
18 | 二长花岗岩 | 50.4 | 19.8 | 19.8 | 50/20 | 10.0 |
19 | 花岗闪长岩 | 53.1 | 29.52 | 7.38 | 20/80 | 10.0 |
20 | 富石英花岗岩类 | 55.8 | 32.49 | 1.71 | 5/95 | 10.0 |
Table 5 Numerical simulation groups of granitic rocks with different mineral contents
组号 | 岩性 | 石英含量/ % | 斜长石含量/ % | 碱性长石含量/ % | 碱性长石含量/ 斜长石含量 | 暗色矿物含量/ % |
---|---|---|---|---|---|---|
1 | 石英碱长正长岩 | 4.5 | 4.275 | 81.225 | 95/5 | 10.0 |
2 | 石英正长岩 | 7.2 | 16.56 | 66.24 | 80/20 | 10.0 |
3 | 石英二长岩 | 9.9 | 40.05 | 40.05 | 50/20 | 10.0 |
4 | 石英二长岩闪长/辉长岩 | 12.6 | 61.92 | 15.48 | 20/80 | 10.0 |
5 | 石英闪长/辉长/斜长岩 | 15.3 | 70.965 | 3.735 | 5/95 | 10.0 |
6 | 碱长花岗岩 | 18.0 | 3.6 | 68.4 | 95/5 | 10.0 |
7 | 正长花岗岩 | 20.7 | 13.86 | 55.44 | 80/20 | 10.0 |
8 | 二长花岗岩 | 23.4 | 33.3 | 33.3 | 50/20 | 10.0 |
9 | 花岗闪长岩 | 26.1 | 51.12 | 12.78 | 20/80 | 10.0 |
10 | 英云闪长岩 | 28.8 | 58.14 | 3.06 | 5/95 | 10.0 |
11 | 碱长花岗岩 | 31.5 | 2.925 | 55.575 | 95/5 | 10.0 |
12 | 正长花岗岩 | 34.2 | 11.16 | 44.64 | 80/20 | 10.0 |
13 | 二长花岗岩 | 36.9 | 26.55 | 26.55 | 50/20 | 10.0 |
14 | 花岗闪长岩 | 39.6 | 40.32 | 10.08 | 20/80 | 10.0 |
15 | 英云闪长岩 | 42.3 | 45.315 | 2.385 | 5/95 | 10.0 |
16 | 碱长花岗岩 | 45.0 | 2.25 | 42.75 | 95/5 | 10.0 |
17 | 正长花岗岩 | 47.7 | 8.46 | 33.84 | 80/20 | 10.0 |
18 | 二长花岗岩 | 50.4 | 19.8 | 19.8 | 50/20 | 10.0 |
19 | 花岗闪长岩 | 53.1 | 29.52 | 7.38 | 20/80 | 10.0 |
20 | 富石英花岗岩类 | 55.8 | 32.49 | 1.71 | 5/95 | 10.0 |
[1] | 国家能源局. SY/T 5386—2010 裂缝性油(气)藏探明储量计算细则[Z]. 北京: 石油工业出版社, 2010. |
[2] | AGHLI G, MOUSSAVI-HARAMI R, TOKHMECHI B. Integration of sonic and resistivity conventional logs for identification of fracture parameters in the carbonate reservoirs (a case study, Carbonate Asmari Formation, Zagros Basin, SW Iran)[J]. Journal of Petroleum Science and Engineering, 2020, 186(3): 106728. |
[3] | 夏在连, 刘树根, 时华星, 等. 中伊朗盆地地层条件下裂缝性储层岩石力学性质实验分析[J]. 石油实验地质, 2008, 30(1): 86-93. |
[4] | 王希贤. EBANO油田裂缝-孔隙型灰岩稠油油藏特征及油气富集规律[J]. 石油与天然气地质, 2020, 41(2): 416-422. |
[5] | 张量, 卢景美, 李爱山, 等. 墨西哥东南盆地白垩系裂缝综合研究: 以M区块W构造为例[J]. 海洋地质前沿, 2019, 35(5): 58-65. |
[6] | FIROOZABADI A. Recovery mechanisms in fractured reservoirs and field performance[J]. Journal of Canadian Petroleum Technology, 2000, 39(11): 13-17. |
[7] | 李新景, 胡素云, 程克明. 北美裂缝性页岩气勘探开发的启示[J]. 石油勘探与开发, 2007, 34(4): 392-400. |
[8] | 宁飞, 何娟, 赵亮东, 等. Sinjar隆起西翼储层裂缝发育特征及形成机制[J]. 科技导报, 2016, 34(13): 88-92. |
[9] | 赵中平. 阿拉伯板块北缘Sinjar隆起西翼裂缝成因及启示[J]. 西北大学学报(自然科学版), 2015, 45(1): 107-116. |
[10] | 祝晓林, 刘宗宾, 葛丽珍, 等. 渤海油田裂缝性潜山油藏储层分类及剩余油分布规律[J]. 断块油气田, 2022, 29(4): 527-531. |
[11] | ZHANG K X, BAI G P, CAO B F. Global deep siliciclastic reservoirs: distribution patterns and geological features[C]// International Conference and Exhibition, Melbourne, Australia 13-16 September 2015. Melbourne, Australia: Society of Exploration Geophysicists and American Association of Petroleum Geologists, 2015:484. |
[12] | 巩磊, 秦欣楠, 高帅, 等. 变质岩潜山多尺度裂缝发育特征及裂缝网络结构模式: 以渤中Z变质岩潜山为例[J]. 地学前缘, 2024, 31(5): 332-343. |
[13] | 徐长贵, 杜晓峰, 刘晓健, 等. 渤海海域太古界深埋变质岩潜山优质储集层形成机制与油气勘探意义[J]. 石油与天然气地质, 2020, 41(2): 235-247, 294. |
[14] | 谢玉洪, 张功成, 沈朴, 等. 渤海湾盆地渤中凹陷大气田形成条件与勘探方向[J]. 石油学报, 2018, 39(11): 1199-1210. |
[15] | 韩大匡. 中国油气田开发现状、面临的挑战和技术发展方向[J]. 中国工程科学, 2010, 12(5): 51-57. |
[16] | 袁士义, 宋新民, 冉启全. 裂缝性油藏开发技术[M]. 北京: 石油工业出版社, 2004. |
[17] | D’ELIA L, GARCÍA M, FEINSTEIN E, et al. Characterization of a naturally fractured ignimbrite reservoir: subsurface model validated from worldwide analogue outcrops and production data[J]. Marine and Petroleum Geology, 2023, 158(9): 106558. |
[18] | 韩鹏远, 丁文龙, 杨德彬, 等. 塔河油田奥陶系碳酸盐岩储层裂缝表征与主控因素分析[J]. 地学前缘, 2024, 31(5): 209-226. |
[19] | 李云涛, 丁文龙, 韩俊, 等. 顺北地区走滑断裂带奥陶系碳酸盐岩裂缝分布预测与主控因素研究[J]. 地学前缘, 2024, 31(5): 263-287. |
[20] | 邵威猛, 牛永斌, 程梦园, 等. 豫西北奥陶系马家沟组碳酸盐岩中裂缝-溶洞的发育特征及成因机制[J]. 现代地质, 2023, 37(5): 1306-1320. |
[21] | 刘倩, 樊太亮, 高志前, 等. 新疆塔北隆起桥古地区前中生界碳酸盐岩潜山储层特征与发育模式[J]. 现代地质, 2022, 36(5): 1391-1402. |
[22] | LIU C Y, LI H Y, SHAN X L, et al. Development mechanism of metamorphic fractured reservoirs in the Bozhong area, Bohai Bay Basin: implications from tectonic and magmatic hydrothermal activities[J]. Geoenergy Science and Engineering, 2023, 229(1): 212030. |
[23] | 余朝华, 杜业波, 肖坤叶, 等. 乍得Bongor盆地基岩潜山储层特征与影响因素研究[J]. 岩石学报, 2019, 35(4): 1279-1290. |
[24] | 朱茂林, 刘震, 刘惠民, 等. 东营凹陷北带基岩风化壳储层发育特征及控制因素[J]. 地学前缘, 2024, 31(3): 324-336. |
[25] | 刘鹏程, 吕丁友, 衣健, 等. 渤海湾盆地渤中凹陷太古宇潜山变质岩的岩性特征、成因及储层意义:以渤中19-6构造区和安子岭地区为例[J]. 石油学报, 2025, 46(2): 320-334. |
[26] | 徐静, 叶小明, 刘小鸿, 等. 不同岩性裂缝油气藏定量表征关键技术[J]. 油气地质与采收率, 2023, 30(5): 41-48. |
[27] | 田鹤, 曾联波, 徐翔, 等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质, 2020, 41(3): 474-483. |
[28] | 孙雅雄, 梁兵, 邱旭明, 等. 苏北盆地高邮凹陷阜二段页岩天然裂缝发育特征及其对页岩油富集和保存的影响[J]. 地学前缘, 2024, 31(5): 61-74. |
[29] | ZENG X, YANG T, FENG J W, et al. Development characteristics and controlling factors of fractures inlacustrine shale and their geological significance for evaluating shale oil sweet spots in the third member of the Shahejie Formation in the Qikou Sag, Bohai Bay Basin[J]. Petroleum Science, 2024, 21(2): 791-805. |
[30] | ZHANG X M, WANG R, SHI W Z, et al. Structure- and lithofacies-controlled natural fracture developments in shale: implications for shale gas accumulation in the Wufeng-Longmaxi Formations, Fuling Field, Sichuan Basin, China[J]. Geoenergy Science and Engineering, 2023, 223(2): 211572. |
[31] | 马诗杰, 曾联波, 石学文, 等. 四川盆地泸州地区海相页岩天然裂缝特征及主控因素[J]. 地球科学, 2023, 48(7): 2630-2642. |
[32] | 史今雄, 赵向原, 潘仁芳, 等. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质, 2023, 44(2): 393-405. |
[33] | 李长海, 赵伦, 刘波, 等. 碳酸盐岩裂缝研究进展及发展趋势[J]. 地质科技通报, 2021, 40(4): 31-48. |
[34] | 杜晓宇, 金之钧, 曾联波, 等. 鄂尔多斯盆地陇东地区长7页岩油储层天然裂缝发育特征与控制因素[J]. 地球科学, 2023, 48(7): 2589-2600. |
[35] | 张庄, 章顺利, 何秀彬, 等. 川西坳陷须家河组二段裂缝发育特征及形成主控因素: 以合兴场气田为例[J]. 油气藏评价与开发, 2023, 13(5): 581-590. |
[36] | KONG L, SHANG J L, RANJITH P G, et al. Grain-based DEM modelling of mechanical and coupled hydro-mechanical behaviour of crystalline rocks[J]. Engineering Geology, 2024, 339(9): 107649. |
[37] | KONG L, RANJITH P G, LI B Q. Fluid-driven micro-cracking behaviour of crystalline rock using a coupled hydro-grain-based discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144(4): 104766. |
[38] | HU X J, GUO PP, XIE N, et al. Creep behavior and associated acoustic characteristics of heterogeneous granite containing a single pre-existing flaw using a grain-based parallel-bonded stress corrosion model[J]. Rock Mechanics and Rock Engineering, 2023, 56(7): 4799-4832. |
[39] | CHENG Y, WONG L N Y. A study on mechanical properties and fracturing behavior of Carrara marble with the flat-jointed model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(6): 803-822. |
[40] | 韩振华, 张路青, 周剑, 等. 矿物粒径对花岗岩单轴压缩特性影响的试验与模拟研究[J]. 工程地质学报, 2019, 27(3): 497-504. |
[41] | BAHAADDINI M, SHEIKHPOURKHANI A M, MANSOURI H. Flat-joint model to reproduce the mechanical behaviour of intact rocks[J]. European Journal of Environmental and Civil Engineering, 2021, 25(8): 1427-1448. |
[42] | 王聚贤, 梁鹏, 张艳博, 等. 基于声发射RA-AF值与kneedle算法的岩石拉剪破裂分类研究[J]. 岩石力学与工程学报, 2024, 43(增刊1): 3267-3279. |
[43] | HU X J, GONG X N, HU H B, et al. Cracking behavior and acoustic emission characteristics of heterogeneous granite with double pre-existing filled flaws and a circular hole under uniaxial compression: insights from grain-based discrete element method modeling[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4): 162. |
[44] | CHENG A P, SHU P F, DENG D Q, et al. Microscopic acoustic emission simulation and fracture mechanism of cemented tailings backfill based on moment tensor theory[J]. Construction and Building Materials, 2021, 308(9): 125069. |
[45] | 邹才能, 林敏捷, 马锋, 等. 碳中和目标下中国天然气工业进展、挑战及对策[J]. 石油勘探与开发, 2024, 51(2): 418-435. |
[46] | 吴晓智, 柳庄小雪, 王建, 等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘, 2022, 29(6): 146-155. |
[47] | 刘海涛, 于海涛, 孙雨, 等. 断陷盆地多类型斜坡形成与油气差异富集规律: 以渤海湾盆地为例[J]. 岩石学报, 2022, 38(9): 2697-2708. |
[48] | 宋明水, 李友强. 济阳坳陷油气精细勘探评价及实践[J]. 中国石油勘探, 2020, 25(1): 93-101. |
[49] | 宋明水, 王惠勇, 张云银. 济阳坳陷潜山“挤-拉-滑” 成山机制及油气藏类型划分[J]. 油气地质与采收率, 2019, 26(4): 1-8. |
[50] | 王德英, 王清斌, 刘晓健, 等. 渤海湾盆地海域片麻岩潜山风化壳型储层特征及发育模式[J]. 岩石学报, 2019, 35(4): 1181-1193. |
[51] | 张鹏飞, 刘惠民, 王永诗, 等. 济阳坳陷太古界潜山储集体发育模式[J]. 中国石油大学学报(自然科学版), 2017, 41(6): 20-29. |
[52] | 刘惠民, 张鹏飞, 宋国奇, 等. 鲁西地区太古界裂缝类型与发育规律[J]. 中国石油大学学报(自然科学版), 2014, 38(5): 34-40. |
[53] | 孟涛, 穆星, 石泉清, 等. 基岩成岩作用对储层发育的影响: 以济阳坳陷太古宇基岩为例[J]. 地学前缘, 2025, 32(1): 401-417. |
[54] | 伍劲, 高先志, 马达德, 等. 柴达木盆地东坪地区基岩风化壳特征[J]. 现代地质, 2017, 31(1): 129-141. |
[55] | 张家辉, 相振群, 施建荣, 等. 鲁西泰安地区-2.7 Ga变玄武岩成因及其对新太古代花岗-绿岩带构造演化的制约[J]. 岩石学报, 2024, 40(11): 3336-3362. |
[56] | ZHANG Q, ZHANG X P, JI P Q. Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors[J]. Computers and Geotechnics, 2019, 105(1): 79-93. |
[57] | LIU G, CAI M, HUANG M. Mechanical properties of brittle rock governed by micro-geometric heterogeneity[J]. Computers and Geotechnics, 2018, 104(2): 358-372. |
[58] | LI X F, LI H B, LIU Y Q, et al. Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs[J]. Tunnelling and Underground Space Technology, 2016, 53: 96-108. |
[59] | ZHOU J, LAN H X, ZHANG L Q, et al. Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite[J]. Engineering Geology, 2019, 251(3): 100-114. |
[60] | 张翼宇. 不同风化程度花岗岩破坏特征及损伤演化试验研究[D]. 郑州: 华北水利水电大学, 2022. |
[61] | 张招崇. 深成岩的分类命名问题[J]. 现代地质, 2024, 38(4): 1205-1208. |
[62] | CHO J W, KIM H, JEON S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50(3): 158-169. |
[63] | KONG F M, XUE Y G, QIU D H, et al. Effect of grain size or anisotropy on the correlation between uniaxial compressive strength and Schmidt hammer test for building stones[J]. Construction and Building Materials, 2021, 299(5): 123941. |
[1] | XIE Miao, LIU Bingli, LI Yunhe, WANG Zhengyao, CAO Changjie, WU Yixiao. Quantitative prediction method of gold deposits in Gannan area under unbalanced sample conditions [J]. Earth Science Frontiers, 2025, 32(4): 108-121. |
[2] | LI Nan, YIN Shitao, LIU Bingli, XIAO Keyan, WANG Chenghui, DAI Hongzhang, SONG Xianglong. A knowledge-data driven interpretable intelligent mineral prediction: A case study of the Keeryin Mineral Concentration Area, Sichuan Province [J]. Earth Science Frontiers, 2025, 32(4): 60-77. |
[3] | HU Jinghong, LIAO Songze, CAI Yidong, LU Jun. Study of fracture propagation uniformity in deep shale reservoir [J]. Earth Science Frontiers, 2025, 32(4): 471-482. |
[4] | YU Lu, LI Xian, CUI Guodong, XING Donghui, LU Hongfeng, WANG Yejia. The impact of threshold pressure gradient on the production dynamics of gas hydrate reservoirs in the northern South China Sea [J]. Earth Science Frontiers, 2025, 32(2): 178-194. |
[5] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[6] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[7] | HOU Yusong, HU Xiaonong, WU Jichun. Pore scale simulation study of transverse dispersion of solute in porous media with different cementation degrees [J]. Earth Science Frontiers, 2024, 31(3): 59-67. |
[8] | LI Yudan, YOU Yuchun, ZENG Daqian, SHI Zhiliang, GU Shaohua, ZHANG Rui. Numerical simulation of water intrusion in wet gas reservoirs: A case study of the Changxing gas reservoir in Yuanba [J]. Earth Science Frontiers, 2023, 30(6): 341-350. |
[9] | ZHANG Yun, KANG Zhijiang, MA Junwei, ZHENG Huan, WU Dawei. A numerical simulation method for deep, discrete fractured reservoirs using a multi-scale fluid-rock coupling model [J]. Earth Science Frontiers, 2023, 30(6): 365-370. |
[10] | SUN Zhe, ZHANG Bin, CHEN Dawei, LI Yutao, WANG Hanxun. Two-phase oil/water seepage in fractured granite rock mass: Insight from seepage visualization experiment and numerical simulation [J]. Earth Science Frontiers, 2023, 30(3): 465-475. |
[11] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[12] | SHEN Xiaofang, WAN Yuyu, WANG Ligang, SU Xiaosi, DONG Weihong. Multiphase flow modeling of natural attenuation of volatile organic compounds (VOCs) in a petroleum contaminated sit [J]. Earth Science Frontiers, 2021, 28(5): 90-103. |
[13] | WANG Gongwen, ZHANG Shouting, YAN Changhai, PANG Zhenshan, WANG Hongwei, FENG Zhankui, DONG Hong, CHENG Hongtao, HE Yaqing, LI Ruixi, ZHANG Zhiqiang, HUANG Leilei, GUO Nana. Resource-environmental joint forecasting in the Luanchuan mining district, China through big data mining and 3D/4D modeling [J]. Earth Science Frontiers, 2021, 28(3): 139-155. |
[14] | KONG Weihao, XIAO Keyan, CHEN Jianping, SUN Li, LI Nan. A combined prediction method for reducing prediction uncertainty in the quantitative mineral resources prediction [J]. Earth Science Frontiers, 2021, 28(3): 128-138. |
[15] | AN Wentong, CHEN Jianping, ZHU Pengfei. A two-way forecasting method based on numerical simulation of mineralization process for the prediction of concealed ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 97-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||