Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (5): 345-360.DOI: 10.13745/j.esf.sf.2025.8.33
Previous Articles Next Articles
WANG Qingfei1,2,*(), YANG Shujuan1, MA Huan1, LIU Xuefei1, ZHANG Qizuan3, LI Zhongming4, ZHAO Jun5, CUI Yinliang6, YU Wenchao7, CHEN Fangge1, DENG Jun1,*
Received:
2025-07-28
Revised:
2025-08-01
Online:
2025-09-25
Published:
2025-10-14
Contact:
DENG Jun
CLC Number:
WANG Qingfei, YANG Shujuan, MA Huan, LIU Xuefei, ZHANG Qizuan, LI Zhongming, ZHAO Jun, CUI Yinliang, YU Wenchao, CHEN Fangge, DENG Jun. Bauxitization of allochthonous laterite in karstic depressions[J]. Earth Science Frontiers, 2025, 32(5): 345-360.
Fig.5 Mineralogical and geochemical vertical variations in a typical bauxite profile. (a-c) data are derived from supplementary tables S1-S3 and supplementary figure S1.
Fig.8 Detrital zircon age distribution and morphological characteristics in Chinese bauxites generated in different tectonic settings. (a-c) modified after [17,63-64].
Fig.10 Detrital zircon age distribution and morphological characteristics in chinese bauxites from different tectonic settings. a modified after [72-73]; b adapted from [21].
[1] | BARDOSSY G. Karst bauxites:bauxite deposits on carbonate rock. developments in: developments in economic geology 14[M]. Amsterdam: Elsevier, 1982, 441. |
[2] | DENG J, WANG Q F, YANG S J, et al. Genetic relationship between the emeishan plume and the bauxite deposits in western Guangxi, China: constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores[J]. Journal of Asian Earth Sciences, 2010, 37: 412-424. |
[3] | SCHULZ K J, DWYOUNG J H, SEAL R R, et al. Critical mineral resources of the United States: economic and environmental geology and prospects for future supply[M]. Virginia: United States Geological survey, 2017. |
[4] | 温汉捷, 朱传威, 杜胜江, 等. 中国镓锗铊镉资源[J]. 科学通报, 2020, 65: 3699-3699. |
[5] | 王庆飞, 刘学飞, 邓军, 等. 喀斯特型铝土矿是如何形成的?[J]. 地球科学, 2022, 47: 3880-3881. |
[6] | BERTHIER P. Analyse del’alumine hydratee des baux, departement des bouches du rhone[J]. Anne Miner. 1821, 6: 531-4. |
[7] | DOLFUSS G. Obeservations a la note de f[J]. Laur. Bull. Soc. Geol. Fr. Paris, 1905, 4: 171. |
[8] | GORETSKY Y K. Regularities in the distribution of bauxite deposits[C]// Trudy VIMS Novaya Ser. Moscow, 1960: 1-257. |
[9] | COQUAND H. Sur les bauxites de la chaine des des alpilles et leur age geologique[M]. Paris: Société Géologique de France Bulletin, 1871, 28: 98-114. |
[10] | GEDEON T. The possibility of bauxite formation[J]. Acta Geol. Acad. Sci. Hung. Budapest, 1952, 4: 95-105. |
[11] | BERG L S. On the origin of the Uralian bauxites. in: outlines of physical geography. Izd[M]. Moscow: Ansssr, 1949. |
[12] | 刘长龄. 中国石炭纪铝土矿的地质特征与成因[J]. 沉积学报, 1988, 6: 1-10. |
[13] | 廖士范, 梁同荣, 张月恒. 论我国铝土矿床类型及其红土化风化壳形成机制问题[J]. 沉积学报, 1989, 7: 1-10. |
[14] | 王庆飞, 邓军, 刘学飞, 等. 铝土矿地质与成因研究进展[J]. 地质与勘探, 2012, 48: 430-448. |
[15] | 刘平. 八论贵州之铝土矿-黔中—渝南铝土矿成矿背景及成因探讨[J]. 贵州地质, 2001, 18: 238-243. |
[16] | 王力, 龙永珍, 彭省临. 桂西铝土矿成矿物质来源的地质地球化学分析[J]. 桂林理工大学学报, 2004, 24: 1-6. |
[17] | WANG Q F, DENG J, LIU X F, et al. Provenance of late carboniferous bauxite deposits in the north China craton: new constraints on marginal arc construction and accretion processes[J]. Gondwana Research, 2016, 38: 86-98. |
[18] | WANG Q F, YANG L, XU X J, et al. Multi-stage tectonics and metallogeny associated with phanerozoic evolution of the south China block: a holistic perspective from the Youjiang basin[J]. Earth-Science Reviews, 2020, 211: 103405. |
[19] | LIU X F, WANG Q F, Zhang Q Z, et al. Genesis of the permian karstic Pingguo bauxite deposit, western Guangxi, China[J]. Mineralium Deposita, 2017, 52: 1031-1038. |
[20] | LIU X F, WANG Q F, ZHANG Q Z, et al. Transformation from permian to quaternary bauxite in southwestern south China block driven by superimposed orogeny: a case study from Sanhe ore deposit[J]. Ore Geology Reviews, 2017, 90: 998-1017. |
[21] | LIU X F, WANG Q F, PENG B, et al. Intensified and apace bauxitization over the paleo-karstic surface linked to volcanism[J]. Geological Society Of America Bulletin, 2022, 135: 1187-1205. |
[22] | YANG S J, WANG Q F, ZHANG Q Z, et al. Terrestrial deposition processes of quaternary gibbsite nodules in the Yongjiang basin, southeastern margin of Tibet, and implication for the genesis of ancient karst bauxite[J]. Sedimentary Geology, 2018, 373: 292-306. |
[23] | YANG S J, WANG Q F, LIU X F, et al. Global spatio-temporal variations and metallogenic diversity of karst bauxites and their tectonic, paleogeographic and paleoclimatic relationship with the tethyan realm evolution[J]. Earth-Science Reviews, 2022, 233: 104184. |
[24] | BARDOSSY G, ALEVA G J J. Lateritic bauxites[M]. Amsterdam: Elsevier, 1990: 624. |
[25] | BARDOSSY G, COMBES P J. Karst bauxites:interfingering of deposition and palaeoweathering.in: thiry, m., simon-coinçon, r. (eds.), palaeoweathering, palaeosurfaces and related continental deposits[M]. Oxford, UK: Blackwell Publishing Ltd, 1999: 189-206. |
[26] | XIAO W J, HUANG B C, HAN C M, et al. A review of the western part of the altaids: a key to understanding the architecture of accretionary orogens[J]. Gondwana Research, 2010, 18: 253-273. |
[27] | XIAO W J, WINDLEY B F, SUN S, et al. A tale of amalgamation of three permo-triassic collage systems in central-east Asia: oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. |
[28] | XIAO W J, SONG D F, WINDLEY B F, et al. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: advances and perspectives[J]. Science China Earth Sciences, 2020, 63: 329-361. |
[29] | WILHEM C, WINDLEY B F, STAMPFLI G M. The altaids of central Asia: a tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113: 303-341. |
[30] | KRONER A, KOVACH V, BELOUSOVA E, et al. Reassessment of continental growth during the accretionary history of the central asian orogenic belt[J]. Gondwana Research, 2014, 25: 103-125. |
[31] | LI S Z, ZHAO S J, LIU X, et al. Closure of the proto-tethys ocean and early paleozoic amalgamation of microcontinental blocks in east Asia[J]. Earth-Science Reviews, 2018, 186: 37-75. |
[32] | LI P F, SUN M, SHU C T, et al. Evolution of the central asian orogenic belt along the siberian margin from neoproterozoicearly paleozoic accretion to devonian trench retreat and a comparison with phanerozoic eastern Australia[J]. Earth-Science Reviews, 2019, 198: 102951. |
[33] | BOGATYREV B A, ZHUKOV V V, TSEKHVSKY Y G. Formation conditions and regularities of the distribution of large and superlarge bauxite deposits[J]. Lithology and Mineral Resources. 2009, 44: 135-151. |
[34] | WANG R X, WANG Q F, UYSAL I T, et al. Mesozoic hydrothermal overprint on carboniferous bauxite in China[J]. Economic Geology, 2021, 116: 787-800. |
[35] | ZARASVANDI A, CHARCHI A, CARRANZA E J M, et al. Karst bauxite deposits in the zagros mountain belt, Iran[J]. Ore Geology Reviews, 2008, 34: 521-532. |
[36] | KHOSRAVI M, V’ERARD C, ABEDINI A. Palaeogeographic and geodynamic control on the Iranian karst-type bauxite deposits[J]. Ore Geology Reviews, 2021, 139: 104589. |
[37] | SHAMANIAN G H, HATTORI K. Neoproterozoic evolution of northern gondwana recorded in detrital zircon grains from the gheshlagh bauxite deposit, alborz mountains, Iran block[J]. Gondwana Research, 2021, 93: 184-196. |
[38] | KELLER W D, WESTCOTT J F, BLEDSOE A O. The origin of missouri fire clays[J]. Clays and Clay Minerals. 1953, 2(1): 7-46. |
[39] | ROZELLE P L, FEINEMAN M D, WHITE T S. et al. The mercer clay in pennsylvania as a polymetallic mineral resource: review and update[J]. Mining Metallurgy Exploration. 2021, 38(5): 2037-2054. |
[40] | ÖZLU N. Trace element contents of karst bauxites and their parent rocks in the mediterranean belt[J]. MineraLIUm Deposita, 1983, 18: 469-476. |
[41] | MONGELLI G, BUCCIONE R, SINISI R. Genesis of autochthonous and allochthonous apulian karst bauxites (southern Italy): climate constraints[J]. Sedimentary Geology. 2015, 325: 168-176. |
[42] | KELEMEN P, DUNKL I, CSILLAG G. et al. Tracing multiple resedimentation on an isolated karstified plateau: the bauxitebearing miocene red clay of the southern Bakony mountains, Hungary[J]. Sedimentary Geology. 2017, 358, 84-96. |
[43] | Mondillo N, Chelle-Michou C, Putzolu F, et al. The mid-cretaceous bauxites of SE France: geochemistry, U-Pb zircon dating and their implications for the paleogeography at the junction between alpine tethys and pyrenean rift[J]. Gondwana Research, 2025, 137: 145-170. |
[44] | NELSON C E, PROENZA J A, LEWIS J F, et al. The metallogenic evolution of the greater antilles[J]. Geologica Acta, 2011, 9: 229-264. |
[45] | PATTERSON S H, KURTZ H F, OLSON J C, et al. World bauxite resources[D]. US Geological Survey Professional Paper. 1986, 1076-B: 151. |
[46] | YANG S J, WANG Q F, DENG J. Genesis of karst bauxite-bearing sequences in Baofeng, Henan (China), and the distribution of critical metals[J]. Ore Geology Reviews, 2023, 115: 103161. |
[47] | LIU X F, ZHAO L H, WANG Q F, et al. Provenance and genesis of karstic bauxite deposits in China: implications for the formation of super-large karstic bauxite deposits[J]. Earth-Science Reviews, 2024, 257: 104882. |
[48] | LIU X F, WANG Q F, FENG Y W, et al. Genesis of the Guangou karstic bauxite deposit in western Henan, China(Article)[J]. Ore Geology Reviews, 2013, 55: 162-175. |
[49] | LIU X F, WANG Q F, ZHAO L H, et al. Metallogeny of the large-scale carboniferous karstic bauxite in the Sanmenxia area, southern part of the north China craton, China[J]. Chemical Geology, 2020, 556: 119851. |
[50] | RAISWELL R W, BRIMBLECOMBE P, DENT D L, et al. Environmental chemistry: the earth-air-water factory[M]. London: Hodder Arnold, 1980: 184. |
[51] | NORTON SA. Laterite and bauxite formation[J]. Economic Geology, 1973, 68: 353-61. |
[52] | LIU X F, WANG Q F, ZHANG Q Z, et al. Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit form ation conditions[J]. Ore Geology Reviews, 2016, 75: 100-115. |
[53] | LONG Y Z, CHI G X, LIU J P, et al. Trace and rare earth elements constraints on the sources of the Yunfeng paleo-karstic bauxite deposit in the Xiuwen-Qingzhen area, Guizhou, China[J]. Ore Geology Reviews, 2017, 91: 404-418. |
[54] | WANG Q F, DENG J, LIU X F, et al. Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, west Guangxi, China[J]. Journal of Asian Earth Sciences, 2010, 39: 701-712. |
[55] | WANG Z S, LI Y, ALGEO T J, et al. Critical metal enrichment in upper carboniferous karst bauxite[J]. Mineralium Deposita, 2023, 59: 237-254. |
[56] | HAO X L, LEUNG K, WANG R C, et al. The geomicrobiology of bauxite deposits[J]. Geoscience Frontiers, 2010, 1: 81-89. |
[57] | RICKARD D, MUSSMANN M, STEADMAN J A. Sedimentary sulfides[J]. Elements, 2017, 13: 117-122. |
[58] | SUN X F, YANG S J, LIU X F, et al. Metallogenic process of Permian Taiping karstic bauxite deposit in Youjiang basin, China[J]. Ore Geology Reviews, 2023, 152: 105258. |
[59] | ZWINGMANN H, MANCKTELOW N, ANTOGNINI M, et al. Dating of shallow faults: new constraints from the alp transit tunnel site (Switzerland)[J]. Geology, 2010, 38: 487-490. |
[60] | VIOLA G, SCHEIBER T, FREDIN O, et al. Deconvoluting complex structural histories archived in brittle fault zones[J]. Nature Communications, 2016, 7: 13448. |
[61] | 刘学飞, 王庆飞, 马遥. 华北克拉通南缘石炭系本溪组铁-铝黏土矿物质来源: 以河南三门峡大安铝黏土矿床为例[J]. 古地理学报, 2020, 22: 965-976. |
[62] | MARCHAND E, SERANNE M, BRUGUIER O, et al. LA-ICP-MS dating of detrital zircon grains from the cretaceous allochthonous bauxites of Languedoc (south of France): provenance and geodynamic consequences[J]. Basin Research, 2021, 33: 270-290. |
[63] | WANG R X, WANG Q F, HUANG Y X, et al. Combined tectonic and paleogeographic controls on the genesis of bauxite in the early carboniferous to permian central Yangtze island[J]. Ore Geology Reviews, 2018, 101: 468-480. |
[64] | YANG S J, WANG Q F, LAI X L, et al. Genesis of end-guadalupian bauxite and pyrite deposits in the Youjiang basin (south China): insights into the causative link between magmatic events and mass extinction[J]. Journal of Asian Earth Sciences, 2021, 215: 104801. |
[65] | ZHANG J Y, WANG Q F, LIU X F, et al. Provenance and ore-forming process of permian lithium-rich bauxite in central Yunnan, SW China[J]. Ore Geology Reviews, 2022, 169: 106078. |
[66] | YE Q, WEN H J, LUO C G, et al. Provenance of early permian Li-rich claystone from central Yunnan, south China: constrained by Sr-Nd-Pb isotopes, geochemistry, and zircon U-Pb ages[J]. Ore Geology Reviews, 2023, 162: 105708. |
[67] | YANG J H, CAWOOD P A, DU Y S, et al. Large igneous province and magmatic arc sourced permian-triassic volcanogenic sediments in China[J]. Sedimentary Geology, 2012, 261-262: 120-131. |
[68] | YU W C, ALGEO T J, DU Y S, et al. Mixed volcanogeniclithogenic sources for permian bauxite deposits in southwestern Youjiang basin, south China, and their metallogenic significance[J]. Sedimentary Geology, 2016, 341: 276-288. |
[69] | ZHAO H N, LING K Y, DU S J, et al. Provenance of the Nb-rich bauxite and Li-rich claystone at the base of the Heshan formation in Pingguo, Guangxi, SW China: constrained by U-Pb ages and trace element contents of detrital zircon[J]. Ore Geology Reviews, 2023, 161: 105633. |
[70] | LIU Y, LIU D, MIAO L, et al. Devonian a-type graniticmagmatism on the northern margin of the north China craton: SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China[J]. Gondwana Research, 2010, 17: 632-641. |
[71] | ZHAO L H, LIU X F. Metallogenic and tectonic implications of detrital zircon U-Pb, Hf isotopes, and detrital rutile geochemistry of late carboniferous karstic bauxite on the southern margin of the North China craton[J]. Lithos, 2019, 350-351: 105222. |
[72] | BLUM J D, BERGQUIST B A. Reporting of variations in the natural isotopic composition of mercury[J]. Analytical and Bioanalytical Chemistry, 2007, 388: 353-359. |
[73] | YIN R S, FENG X B, HURLEY J P, et al. Mercury isotopes as proxies to identify sources and environmental impacts of mercury in sphalerites[J]. Scientific Reports, 2016, 6(6): 18686. |
[74] | ÖZTURK H, HEIN J R, HANILOI N. Genesis of the Dogankuzu and Mortas bauxite deposits, Taurides, Turkey: separation of Fe, and Mn and implications for passive margin metallogeny[J]. Economic Geology, 2002, 97: 1063-1077. |
[75] | LING K Y, WEN H J, FAN H F, et al. Iron loss during continental weathering in the early carboniferous period recorded by karst bauxite[J]. Journal of Geophysical Research: Earth Surface, 2023, 128: e2022JF006906. |
[76] | LI S, JAHN B M, ZHAO S, et al. Triassic southeastward subduction of north China block to south China block: insights from new geological, geophysical and geochemical data[J]. Earth-Science Reviews, 2017, 166: 270-285. |
[77] | YANG S J, HUANG Y X, WANG Q F, et al. Mineralogical and geochemical features of karst bauxites from Poci (western Henan, China), implications for parental affinity and bauxitization[J]. Ore Geology Reviews, 2019, 105: 295-309. |
[78] | LI J W, VASCONCELOS P, DUZGOREN-AYDIN N, et al. Neogene weathering and supergene manganese enrichment in subtropical south China: an 40Ar/39Ar approach and paleoclimatic significance[J]. Earth and Planetary Science Letters, 2007, 256: 389-402. |
[79] | YU W C, ALGEO T J, YAN J X, et al. Climatic and hydrologic controls on upper paleozoic bauxite deposits in south China[J]. Earth-Science Reviews, 2019, 189: 159-176. |
[80] | WANG Q F, LIU X F, YAN C H, et al. Mineralogical and geochemical studies of boron-rich bauxite ore deposits in the Songqi region, SW Henan, China[J]. Ore Geology Reviews, 2012, 48: 258-270. |
[1] | CHEN Weizhi, TAO Lanchu, LI Jingting, ZHANG Ya, BA Yong, SONG Lin. Hydrochemical characteristics and control factors of surface water in the Napahai Basin of plateau wetland [J]. Earth Science Frontiers, 2025, 32(5): 493-510. |
[2] | XU Sheng, YANG Ye, ZHANG Maoliang, SHAO Yanxiu, LI Yunshuai, XU Hai, LIU Jing, Liu Cong-Qiang. Advances in tectonics-geomorphology-climate-ecosystem dynamics [J]. Earth Science Frontiers, 2025, 32(3): 23-34. |
[3] | YANG Jinling, DONG Yue, FENG Wenlan, ZHANG Haozhe, ZHANG Ganlin. Proton production and consumption in red soil critical zone and their environmental effects: A review [J]. Earth Science Frontiers, 2025, 32(3): 231-247. |
[4] | YANG Ruihan, YANG Ye, CAO Zhenping, XU Sheng. Progress and perspectives of meteoric 10Be applications in Earth Science [J]. Earth Science Frontiers, 2025, 32(3): 392-407. |
[5] | ZHAO Yuhao, YANG Zhiming, ZHU Yiping, Kumul CONRAD, DU Denghu, Mosusu NATHAN, WANG Tiangang, JIANG Hantao, YAO Zhongyou. Geochemical characteristics and metallogenic potential of nickel in Papua New Guinea [J]. Earth Science Frontiers, 2025, 32(1): 183-193. |
[6] | CHEN Fajia, XIAO Qiong, HU Xiangyun, GUO Yongli, SUN Ping’an, ZHANG Ning. Weathering process and carbon sink effect of carbonates in typical karst small basin [J]. Earth Science Frontiers, 2024, 31(5): 449-459. |
[7] | ZHU Maolin, LIU Zhen, LIU Huimin, ZHANG Pengfei, ZHAO Zhen. Development characteristics and controlling factors of bedrock weathering crust reservoirs in the northern belt of the Dongying sag [J]. Earth Science Frontiers, 2024, 31(3): 324-336. |
[8] | WANG Ye, CHEN Yang, CHEN Jun. Petrogenic organic carbon weathering and its controlling factors—a review [J]. Earth Science Frontiers, 2024, 31(2): 402-409. |
[9] | CHEN Yu, XU Fei, CHENG Hongfei, CHEN Xianzhe, WEN Hanjie. Lithium isotope geochemistry—a review [J]. Earth Science Frontiers, 2023, 30(5): 469-490. |
[10] | XIE Yincai, YU Shi, MIAO Xiongyi, LI Jun, HE Shiyi, SUN Ping’an. Chemical weathering and its associated CO2 consumption on the Tibetan Plateau: A case of the Lhasa River Basin [J]. Earth Science Frontiers, 2023, 30(5): 510-525. |
[11] | OUYANG Kaigao, JIANG Xiaowei, MA Ce, YAN Hongbin, REN Jianguang, FAN Yao, ZHANG Runping, FU Qianfang, LI Xu, WAN Li. Formation and transformation of condensate water inside rocks: Insight into source of rock moisture affecting weathering [J]. Earth Science Frontiers, 2023, 30(2): 506-513. |
[12] | LI Haiming, LI Mengdi, XIAO Han, LIU Xuena. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain [J]. Earth Science Frontiers, 2022, 29(3): 167-178. |
[13] | LIANG Xiaoliang, TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits [J]. Earth Science Frontiers, 2022, 29(1): 29-41. |
[14] | YI Zebang, FU Wei, ZHAO Qin, XU Cheng, LU Jipu. Extraction, characterization and occurrence state of REE-bearing nanoparticles from granite-derived regolith [J]. Earth Science Frontiers, 2022, 29(1): 42-53. |
[15] | WANG Xuyang, YAO Ning, GONG Qingjie, CHAO Yuede, PENG Cheng, WU Yuan. Geochemical genes related to granite weathering in the Yunmengshan area of Beijing, China [J]. Earth Science Frontiers, 2021, 28(1): 363-374. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||