Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 42-53.DOI: 10.13745/j.esf.sf.2021.8.2
Previous Articles Next Articles
YI Zebang1(), FU Wei1,*(
), ZHAO Qin1, XU Cheng1, LU Jipu2
Received:
2021-04-21
Revised:
2021-07-02
Online:
2022-01-25
Published:
2022-02-22
Contact:
FU Wei
CLC Number:
YI Zebang, FU Wei, ZHAO Qin, XU Cheng, LU Jipu. Extraction, characterization and occurrence state of REE-bearing nanoparticles from granite-derived regolith[J]. Earth Science Frontiers, 2022, 29(1): 42-53.
Fig.2 (a) Simplified geologic map of the study area (modified from [29]) and (b) field photo of the profile of granite-drived regolith showing its geologic features and the sampling positions
![]() |
Table 1 Comparison of the total REE content at different depth in the Liuchen granite-derived regolith profile with REE contents in TSPP and MQW extracted nanoparticle suspensions
![]() |
Fig.3 Vertical distribution of normalized REE concentrations in the studied profile (black curve) in comparison with REE extraction results by TSPP (red curve)
Fig.4 Corresponding relationships between particle size and REE content in nanoparticles for representative LREEs/HREEs occurred in total (black), highly (red) and semi-weathering (blue) granite as revealed by HF5-ICP-MS analysis
[1] | 陈德潜, 吴静淑. 离子吸附型稀土矿床的成矿机制[J]. 中国稀土学报, 1990, 8(2):175-179. |
[2] | 池汝安, 田君, 罗仙平, 等. 风化壳淋积型稀土矿的基础研究[J]. 有色金属科学与工程, 2012, 3(4):1-13. |
[3] | 王登红, 赵芝, 于扬, 等. 离子吸附型稀土资源研究进展、 存在问题及今后研究方向[J]. 岩矿测试, 2013, 32(5):796-802. |
[4] |
XU C, KYNICKÝ J, SMITH M P, et al. Origin of heavy rare earth mineralization in South China[J]. Nature Communications, 2017, 8:14598.
DOI URL |
[5] | 张祖海. 华南风化壳离子吸附型稀土矿床[J]. 地质找矿论丛, 1990, 5(1):57-71. |
[6] | 霍明远. 中国南岭风化壳型稀土资源分布特征[J]. 自然资源学报, 1992, 7(1):64-70. |
[7] |
LI Y H M, ZHAO W W, ZHOU M F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 2017, 148:65-95.
DOI URL |
[8] | 赵芝, 王登红, 王成辉, 等. 离子吸附型稀土找矿及研究新进展[J]. 地质学报, 2019, 93(6):1454-1465. |
[9] | 陈志澄, 洪华华, 庄文明, 等. 花岗岩风化壳稀土存在形态分析方法研究[J]. 分析测试学报, 1993, 12(4):21-25. |
[10] |
COMPTON J S, WHITE R A, SMITH M. Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa[J]. Chemical Geology, 2003, 201(3/4):239-255.
DOI URL |
[11] | 马英军, 霍润科, 徐志方, 等. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1):87-94. |
[12] | 赵芝, 王登红, 陈郑辉, 等. 南岭离子吸附型稀土矿床成矿规律研究新进展[J]. 地质学报, 2017, 91(12):2814-2827. |
[13] |
YANG M J, LIANG X L, MA L Y, et al. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 2019, 525:210-217.
DOI URL |
[14] |
FU W, LI X T, FENG Y Y, et al. Chemical weathering of S-type granite and formation of rare earth element (REE)-rich regolith in South China: critical control of lithology[J]. Chemical Geology, 2019, 520:33-51.
DOI URL |
[15] | CHI R A, TIAN J, LI Z J, et al. Existing state and partitioning of rare earth on weathered ores[J]. Journal of Rare Earths, 2005, 23(6):756-759. |
[16] |
LAND M, ÖHLANDER B, INGRI J, et al. Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction[J]. Chemical Geology, 1999, 160(1/2):121-138.
DOI URL |
[17] |
YUSOFF Z M, NGWENYA B T, PARSONS I. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia[J]. Chemical Geology, 2013, 349/350:71-86.
DOI URL |
[18] |
ALSHAMERI A, HE H P, XIN C, et al. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: adsorption operative parameters[J]. Hydrometallurgy, 2019, 185:149-161.
DOI URL |
[19] |
LI M Y H, ZHOU M F. The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits[J]. American Mineralogist, 2020, 105(1):92-108.
DOI URL |
[20] | 刘容, 王汝成, 陆现彩, 等. 赣南花岗岩风化壳型稀土矿床中纳米级稀土矿物的研究[J]. 岩石矿物学杂志, 2016, 35(4):617-626. |
[21] |
HOCHELLA M F. Nanogeoscience: from origins to cutting-edge applications[J]. Elements, 2008, 4(6):373-379.
DOI URL |
[22] |
CHRISTIAN P, KAMMER F V D, BAALOUSHA M, et al. Nanoparticles: structure, properties, preparation and behaviour in environmental media[J]. Ecotoxicology, 2008, 17(5):326-343.
DOI URL |
[23] |
BANFIELD J F, ZHANG H Z. Nanoparticles in the environment[J]. Reviews in Mineralogy and Geochemistry, 2001, 44(1):1-58.
DOI URL |
[24] |
LYVÉN B, HASSELLÖV M, TURNER D R, et al. Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(20):3791-3802.
DOI URL |
[25] |
DEDITIUS A P, UTSUNOMIYA S, REICH M, et al. Trace metal nanoparticles in pyrite[J]. Ore Geology Reviews, 2011, 42(1):32-46.
DOI URL |
[26] |
GUÉNET H, DEMANGEAT E, DAVRANCHE M, et al. Experimental evidence of REE size fraction redistribution during redox variation in wetland soil[J]. Science of the Total Environment, 2018, 631/632:580-588.
DOI URL |
[27] |
YI Z B, LOOSLI F, WANG J J, et al. How to distinguish natural versus engineered nanomaterials: insights from the analysis of TiO2 and CeO2 in soils[J]. Environmental Chemistry Letters, 2020, 18(1):215-227.
DOI URL |
[28] | 广西壮族自治区地质矿产局. 广西壮族自治区区域地质志[M]. 北京: 地质出版社, 1985. |
[29] | 王磊, 龙文国, 周岱, 等. 桂东南大容山晚二叠世花岗岩锆石U-Pb年龄和Sr-Nd-Hf同位素特征及其地质意义[J]. 地质通报, 2016, 35(8):1291-1303. |
[30] | 李平初. 广西六陈岩体与离子吸附型稀土矿成矿及成因[J]. 四川有色金属, 2014(1):23-27. |
[31] | WU Z H, LUO J, GUO H Y, et al. Adsorption isotherms of lanthanum to soil constituents and effects of pH, EDTA and fulvic acid on adsorption of lanthanum onto goethite and humic acid[J]. Chemical Speciation & Bioavailability, 2001, 13(3):75-81. |
[32] |
THENG B K G, YUAN G D. Nanoparticles in the soil environment[J]. Elements, 2008, 4(6):395-399.
DOI URL |
[33] |
CALABI-FLOODY M, BENDALL J S, JARA A A, et al. Nanoclays from an Andisol: extraction, properties and carbon stabilization[J]. Geoderma, 2011, 161(3/4):159-167.
DOI URL |
[34] |
HALL G E M, VAIVE J E, MACLAURIN A I. Analyticalaspects of the application of sodium pyrophosphate reagent in the specific extraction of the labile organic component of humus and soils[J]. Journal of Geochemical Exploration, 1996, 56(1):23-36.
DOI URL |
[35] |
LOOSLI F, YI Z B, BERTI D, et al. Toward a better extraction of titanium dioxide engineered nanomaterials from complex environmental matrices[J]. NanoImpact, 2018, 11:119-127.
DOI URL |
[36] |
FILGUEIRAS A V, LAVILLA I, BENDICHO C. Chemical sequential extraction for metal partitioning in environmental solid samples[J]. Journal of Environmental Monitoring, 2002, 4(6):823-857.
DOI URL |
[37] |
LEE W J, MIN B R, MOON M H. Improvement in particle separation by hollow fiber flow field-flow fractionation and the potential use in obtaining particle size distribution[J]. Analytical Chemistry, 1999, 71(16):3446-3452.
DOI URL |
[38] |
RESCHIGLIAN P, ZATTONI A, RODA B, et al. Hyperlayer hollow-fiber flow field-flow fractionation of cells[J]. Journal of Chromatography A, 2003, 985(1/2):519-529.
DOI URL |
[39] |
TAN Z Q, LIU J F, GUO X R, et al. Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors[J]. Analytical Chemistry, 2015, 87(16):8441-8447.
DOI URL |
[40] | 李文彦. 土壤天然纳米颗粒提取及其性质和环境行为的表征[D]. 杭州: 浙江大学, 2013. |
[41] |
REGELINK I C, WENG L P, KOOPMANS G F, et al. Asymmetric flow field-flow fractionation as a new approach to analyse iron-(hydr)oxide nanoparticles in soil extracts[J]. Geoderma, 2013, 202/203:134-141.
DOI URL |
[42] |
STOLPE B, GUO L D, SHILLER A M. Binding and transport of rare earth elements by organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS[J]. Geochimica et Cosmochimica Acta, 2013, 106:446-462.
DOI URL |
[43] |
SIRIPINYANOND A, BARNES R M, AMARASIRIWARDENA D. Flow field-flow fractionation-inductively coupled plasma mass spectrometry for sediment bound trace metal characterization[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(9):1055-1064.
DOI URL |
[44] |
VEGA F A, WENG L P. Speciation of heavy metals in River Rhine[J]. Water Research, 2013, 47(1):363-372.
DOI URL |
[45] |
ANDERSSON K, DAHLQVIST R, TURNER D, et al. Colloidal rare earth elements in a boreal river: changing sources and distributions during the spring flood[J]. Geochimica et Cosmochimica Acta, 2006, 70(13):3261-3274.
DOI URL |
[46] |
NEUBAUER E, V D KAMMER F, HOFMANN T. Using FLOWFFF and HPSEC to determine trace metal-colloid associations in wetland runoff[J]. Water Research, 2013, 47(8):2757-2769.
DOI URL |
[47] |
TYLER G, OLSSON T. Conditions related to solubility of rare and minor elements in forest soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(5):594-601.
DOI URL |
[48] |
FU W, LUO P, HU Z Y, et al. Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: genetic mechanism and formation preference[J]. Ore Geology Reviews, 2019, 114:103120.
DOI URL |
[49] |
YANG Y, RATTÉ D, SMETS B F, et al. Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption[J]. Chemosphere, 2001, 43(8):1013-1021.
DOI URL |
[50] |
BUETTNER K M, RINCIOG C I, MYLON S E. Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366(1/2/3):74-79.
DOI URL |
[51] |
ZHANG W L, SCHWAB A P, WHITE J C, et al. Impact of nanoparticle surface properties on the attachment of cerium oxide nanoparticles to sand and kaolin[J]. Journal of Environmental Quality, 2018, 47(1):129-138.
DOI URL |
[52] |
BORST A M, SMITH M P, FINCH A A, et al. Adsorption of rare earth elements in regolith-hosted clay deposits[J]. Nature Communications, 2020, 11(1):4386
DOI URL |
[1] | WU Zhonghu, MENG Xiangrui, LAN Baofeng, LIU Jingshou, GONG Lei, YANG Yuhan. Mechanical behavior of calcite vein-bearing shale of the Niutitang Formation in Fenggang area, northern Guizhou based on CT tests [J]. Earth Science Frontiers, 2024, 31(5): 117-129. |
[2] | SUN Haoran, DOU Jiale, LI Nan, WU Peng, DU Cong, DUAN Xianzhe. Prediction of volcanic CO2 flux based on random simulation: Taking the Mount Etna, Italy as an example [J]. Earth Science Frontiers, 2024, 31(4): 429-437. |
[3] | LIAO Zhou, LI Mei. Research on the 3D implicit potential field modeling method for urban underground space based on the open-source GemPy [J]. Earth Science Frontiers, 2024, 31(3): 482-497. |
[4] | HOU Yusong, HU Xiaonong, WU Jichun. Pore scale simulation study of transverse dispersion of solute in porous media with different cementation degrees [J]. Earth Science Frontiers, 2024, 31(3): 59-67. |
[5] | YU Lei, SUN Xiaoyi, QIN Luyao, WANG Jing, WANG Meng, CHEN Shibao. Screening chemical extraction methods for bioavailable Cd in soils based on bioconcentration factor in crops [J]. Earth Science Frontiers, 2024, 31(2): 111-120. |
[6] | WANG Pengshou, XU Min, HAN Haidong, LI Zhenzhong, SONG Xuanyu, ZHOU Weiyong. Response of glacier mass balance and meltwater runoff to climate change in the Akesu River Basin, southern Tianshan [J]. Earth Science Frontiers, 2024, 31(2): 435-446. |
[7] | WANG Xiaoyu, QU Yajing, ZHAO Wenhao, MA Jin. Soil screening levels in the United States and implication for soil evaluation in China [J]. Earth Science Frontiers, 2024, 31(2): 64-76. |
[8] | DING Wenlong, WANG Yao, WANG Shenghui, LIU Tingfeng, ZHANG Ziyou, GOU Tong, ZHANG Mengyang, HE Xiang. Research progress and insight on non-tectonic fractures in shale reservoirs [J]. Earth Science Frontiers, 2024, 31(1): 297-314. |
[9] | ZHANG Niannian, FAN Tianlai, HUANG Chunju, ZHANG Mingwang, LI Yuchun, WEI Lu, YU Kefu. Identification of orbital cycles in coral-reef core from well CK-2, Xisha Islands and insights into coral reef evolution in the South China Sea [J]. Earth Science Frontiers, 2023, 30(6): 436-450. |
[10] | XUE Tao, BAO Xunshuan, ZHU Xiaodi, HUANG Xiao. Attribute modeling constrained by multi-source data-based 3D geological structural model: A case study in Tongzhou District, Beijing [J]. Earth Science Frontiers, 2023, 30(3): 529-536. |
[11] | CHEN Shizhong, ZHOU Yan, XING Guangfu, XU Mincheng, FAN Feipeng, XI Wanwan, ZHU Xiaoting, GUO Weimin. Relationship between the large scale fenitization and REE mineralization on the border between Zhejiang and Fujian provinces: A review of recent research progress [J]. Earth Science Frontiers, 2023, 30(2): 415-425. |
[12] | DONG Hongkun, WAN Shiming, LIU Chang, ZHAO Debo, ZENG Zhigang, LI Anchun. Mineralogical and geochemical constraints on the origin of rhythmic layering of Late Miocene reddish-brown and greenish-gray sediments in the northern South China Sea [J]. Earth Science Frontiers, 2022, 29(4): 42-54. |
[13] | DENG Miao, WEI Chunwan, XU Cheng, SHI Aiguo, LI Zuoqi, FAN Chaoxi, KUANG Guangxi. Rare earth mineralization in Bayan Obo super-large deposit: A review [J]. Earth Science Frontiers, 2022, 29(1): 14-28. |
[14] | XU Lingang, FU Xuerui, YE Huishou, ZHENG Wei, CHEN Bo, FANG Zhenglong. Geochemical composition and paleoceanic environment of the Lower Cambrian black shale-hosted Qianjiaping vanadium deposit in the southern Qinling Region [J]. Earth Science Frontiers, 2022, 29(1): 160-175. |
[15] | ZHOU Yongsheng, DAI Wenhao. Transient creep during crustal brittle-plastic transition and deformation mechanism of postseismic relaxation [J]. Earth Science Frontiers, 2022, 29(1): 403-412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||