Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 436-450.DOI: 10.13745/j.esf.sf.2023.6.10
Previous Articles Next Articles
ZHANG Niannian1(), FAN Tianlai1,2,3,*(), HUANG Chunju4, ZHANG Mingwang1, LI Yuchun1, WEI Lu1, YU Kefu1,2,3
Received:
2022-10-01
Revised:
2023-05-23
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
ZHANG Niannian, FAN Tianlai, HUANG Chunju, ZHANG Mingwang, LI Yuchun, WEI Lu, YU Kefu. Identification of orbital cycles in coral-reef core from well CK-2, Xisha Islands and insights into coral reef evolution in the South China Sea[J]. Earth Science Frontiers, 2023, 30(6): 436-450.
Fig.8 Comparison of spectrum analysis results between ARM data series from reef core after orbital turning and marine oxygen isotope records from borehole ODP1148, South China Sea
Fig.9 Filtering comparison between ARM data series from reef core after orbital turning and marine oxygen isotope records from borehole ODP1148, South China Sea
[1] | BACHTEL S L, KISSLING R D, MARTONO D, et al. Seismic stratigraphic evolution of the Miocene-Pliocene Segitiga Platform, East Natuna Sea, Indonesia: the origin, growth, and demise of an isolated carbonate platform[J]. AAPG Memoir, 2005, (81): 309-328. |
[2] | FULTHORPE C S, SCHLANGER S O. Paleo-oceanographic and tectonic settings of early Miocene reefs and associated carbonates of offshore Southeast Asia[J]. AAPG Bulletin, 1989, 73(6): 729-756. |
[3] | SUN S Q, ESTEBAN M. Paleoclimatic controls on sedimentation, diagenesis, and reservoir quality: lessons from Miocene carbonates[J]. AAPG Bulletin, 1994, 78(4): 519-543. |
[4] | WANG P X, LI Q Y. The South China Sea: paleoceanography and sedimentology[M]. Dordrecht: Springer Press, 2009: 297-297. |
[5] | 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学: 地球科学, 2012, 42(8): 1160-1172. |
[6] |
HUGHES T P, KERRY J T, ÁLVAREZ-NORIEGA M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373-377.
DOI |
[7] |
PANDOLFI J M, CONNOLLY S R, MARSHALL D J, et al. Projecting Coral Reef Futures Under Global Warming and Ocean Acidification[J]. Science, 2011, 333(6041): 418-422.
DOI PMID |
[8] |
BRACHERT T C, FELIS T, GAGNAISON C, et al. Slow-growing reef corals as climate archives: a case study of the Middle Eocene Climatic Optimum 40 Ma ago[J]. Science Advances, 2022, 8(20): eabm3875.
DOI URL |
[9] |
SHEN C D, YI W X, YU K F, et al. Holocene megathermal abrupt environmental changes derived from 14C dating of a coral reef at Leizhou Peninsula, South China Sea[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 223/224(79): 416-419.
DOI URL |
[10] | HUANG D Y, SHI Q, ZHANG Y C. Coral reef and high sea level at Luhuitou, Hainan Island during the Holocene[J]. Marine Science Bulletin, 2007, 9(2): 61-70. |
[11] | MA Z B, XIAO J, ZHAO X T, et al. Precise U-series dating of coral reefs from the South China Sea and the high sea level during the Holocene[J]. Journal of Coastal Research, 2003, 19(2): 296-303. |
[12] |
YU K F. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1217-1229.
DOI URL |
[13] |
YU K F, ZHAO J X, COLLERSON K D, et al. Storm cycles in the last millennium recorded in Yongshu Reef, southern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 210(1): 89-100.
DOI URL |
[14] |
TAKESHITA Y C. Understanding feedbacks between ocean acidification and coral reef metabolism[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1639-1642.
DOI URL |
[15] | 孙东怀, 苏瑞侠, 程海, 等. 中全新世 (5400 a BP) 亚洲季风气候季节性与年际变率的南海珊瑚氧同位素记录[J]. 自然科学进展, 2007, 17(8): 1078-1090. |
[16] | ZHU W L, WANG Z F, MI L J, et al. Sequence stratigraphic framework and reef growth unit of Well XK-1 from Xisha Islands, South China Sea[J]. Earth Science, 2015, 40(4): 677-687. |
[17] | ZHANG M S, HE Q X, YE Z J. The geologic research of deposition of bioherm carbonate in the Xisha Islands[M]. Beijing: Science Press, 1989. |
[18] | WU S G, ZHANG X Y, YANG Z, et al. Spatial and temporal evolution of Cenozoic carbonate platforms on the continental margins of the South China Sea: response to opening of the ocean basin[J]. Interpretation, 2016, 4(3): 1-19. |
[19] |
SHAO L, LI Q Y, ZHU W L, et al. Neogene carbonate platform development in the NW South China Sea: litho-, bio- and chemo-stratigraphic evidence[J]. Marine Geology, 2017, 385(C): 233-243.
DOI URL |
[20] | WANG Z F, ZHANG D J, LIU X Y, et al. Magnetostratigraphy and Th-230 dating of Pleistocene biogenic reefs in XK-1 borehole from Xisha Islands, South China Sea[J]. Cinese Journal of Geophysics, 2017, 60(3): 1027-1038. |
[21] | 祝幼华, 刘新宇, 马瑞芳, 等. 南海西沙群岛西科1井早中新世—第四纪生物礁地层中钙质超微化石的发现及其意义[J]. 古生物学报, 2016, 55(3): 385-392. |
[22] | 李毓英. 南沙群岛太平岛地质概况[J]. 地质论评, 1948, 13(3): 333-340. |
[23] | 馬廷英. 造礁珊瑚與中國沿海珊瑚礁的成長率[J]. 地质论评, 1936, 1(3): 77-167. |
[24] | 赵焕庭. 永暑礁地质年代和第四纪地层初步划分[J]. 科学通报, 1992, 37(23): 2165-2168. |
[25] | 郭丽芬, 陈婉颜, 陈丽虹. 南沙群岛永暑礁区近百万年来的古气候变化: 南永1井的锰含量分析[J]. 热带海洋学报, 1993, 12(4): 39-46. |
[26] | 朱袁智, 王有强, 赵焕庭, 等. 南沙群岛永暑礁第四纪珊瑚礁成岩作用与海平面变化关系[J]. 热带海洋学报, 1994, 13(2): 1-8. |
[27] | 汤贤赞, 唐诚, 陈木宏, 等. 南沙群岛永暑礁钻井珊瑚礁和珊瑚碎屑的磁学分析[J]. 热带海洋学报, 2003, 22(3): 44-51. |
[28] | 中国科学院南沙综合科学考察队. 南沙群岛永暑礁第四纪珊瑚礁地质[M]. 北京: 海洋出版社, 1992: 51-51. |
[29] | LI Y B, LIU X Y, CHEN W W, et al. Magnetic properties and initiation of biogenic reefs in Xisha Islands, South China Sea, at the Oligo-Miocene boundary[J]. Marine Science Engineer, 2021, 9(9): 1031-1046. |
[30] |
LI M S, KUMP L R, HINNOV L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179.
DOI URL |
[31] |
YI L, DENG C L, YAN W, et al. Neogene-Quaternary magnetostratigraphy of the biogenic reef sequence of core NK-1 in Nansha Qundao, South China Sea[J]. Science Bulletin, 2021, 66(3): 200-203.
DOI PMID |
[32] |
LI G, XU W H, LUO Y, et al. Strontium isotope stratigraphy and LA-ICP-MS U-Pb carbonate age constraints on the Cenozoic tectonic evolution of the southern South China Sea[J]. GSA Bulletin, 2022, 135(1/2): 271-285.
DOI URL |
[33] |
FAN T L, YU K F, ZHAO J, et al. Strontium isotope stratigraphy and paleomagnetic age constraints on the evolution history of coral reef islands, northern South China Sea[J]. Geological Society of America Bulletin, 2019, 132(3/4): 803-816.
DOI URL |
[34] | 夏明. 铀系年代学中的若干问题[J]. 矿物岩石地球化学通讯, 1984, 3(3): 82-87. |
[35] | HUANG C J, OGG J G, KEMP D B. Cyclostratigraphy and astrochronology: case studies from China[J]. Paleoceanography and Paleoclimatology, 2020, 560(3): 110017. |
[36] |
YAO X, DAI S, LI M S, et al. Orbital eccentricity and inclination metronomes in Middle Miocene lacustrine mudstones of Jiuxi Basin, Tibet: closing an astrochronology time gap and calibrating global cooling events[J]. Global and Planetary Change, 2022, 215: 103896.
DOI URL |
[37] |
ZEEBE R E, LOURENS L J. Solar System chaos and the Paleocene-Eocene boundary age constrained by geology and astronomy[J]. Science, 2019, 365(6456): 926-929.
DOI PMID |
[38] |
VAHLENKAMP M, DE VLESSCHOUWER D, BATENBURG S J, et al. A Lower to Middle Eocene astrochronology for the Mentelle Basin (Australia) and its implications for the geologic time scale[J]. Earth and Planetary Science Letters, 2020, 529: 115865.
DOI URL |
[39] | MILANKOVITCH M. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem[M]. Belgrade: Royal Serbian Academy of Sciences, 1941. |
[40] |
HAYS J D, IMBRIE J, SHACKLETON N J. Variations in the Earth’s orbit: pacemaker of the Ice Ages[J]. Science, 1976, 194(4270): 1121-1132.
DOI URL |
[41] | GILBERT G K. Sedimentary measurement of Cretaceous Time[J]. Scienfic American, 1895, 3(2): 121-125. |
[42] |
BERGER A. Milankovitch theory and climate[J]. Reviews Geophysics, 1988, 26(4): 624-657.
DOI URL |
[43] | LASKAR J, FIENGA A, GASTINEAU M, et al. La2010: a new orbital solution for the long-term motion of the Earth[J]. Astronomy Astrophysics, 2011, 532(2): 784-785. |
[44] | BOER P D, SMITH D G. Orbital forcing and cyclic sequences[M]. London: Blackwell Scientific Publication, 2009: 15-24. |
[45] | 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学: 中国地质大学学报, 2011, 36(3): 409-428. |
[46] |
黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66.
DOI |
[47] |
TIAN S F, CHEN Z Q, HUANG C J, et al. Astronomical dating of the Middle Miocene Hanjiang Formation in the Pearl River Mouth Basin, South China Sea[J]. Acta Geologica Sinica, 2013, 87(1): 48-58.
DOI URL |
[48] |
BEDDOW H M, LIEBRAND D, WILSON D S, et al. Astronomical tunings of the Oligocene-Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle[J]. Climate of the Past, 2018, 14(3): 255-270.
DOI URL |
[49] | 杨彦峰, 符超峰, 徐新文, 等. 青藏高原东北缘尖扎盆地晚中新世地层绝对天文年代标尺的建立[J]. 地球科学与环境学报, 2021, 43(4): 710-723. |
[50] | 邹卓延, 黄春菊, 李明松, 等. 晚渐新世-早中新世气候变化在赤道大西洋的天文响应[J]. 中国科学: 地球科学, 2016, 46(9): 1231-1240. |
[51] | 谢建磊, 张克信, 马小林, 等. 长江三角洲上新世以来磁性地层及天文调谐年代标尺[J]. 地球科学, 2017, 42(10): 1760-1773. |
[52] |
杨昆昆, 李海燕, 赵汉卿, 等. 西澳大利亚新元古代Browne组—Hussar组旋回地层学研究[J]. 地学前缘, 2023, 30(3): 441-451.
DOI |
[53] | 吴怀春, 张世红, 黄清华. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘, 2008, 15(4): 159-169. |
[54] |
YI L, JIAN Z M, LIU X Y, et al. Astronomical tuning and magnetostratigraphy of Neogene biogenic reefs in Xisha Islands, South China Sea[J]. Science Bulletin, 2018, 63(9): 564-573.
DOI PMID |
[55] | 赵强. 西沙群岛海域生物礁碳酸盐岩沉积学研究[D]. 青岛: 中国科学院研究生院 (海洋研究所), 2010. |
[56] |
MEYERS S R, SAGEMAN B B. Quantification of deep-time orbital forcing by average spectral misfit[J]. American Journal Science, 2007, 307(5): 773-792.
DOI URL |
[57] |
SABATINO N, MEYERS S R, VOIGT S. A new high-resolution carbon-isotope stratigraphy for the Campanian (Bottaccione section): its implications for global correlation, ocean circulation, and astrochronology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 489: 29-39.
DOI URL |
[58] |
SPROSON A D. Pacing of the latest Ordovician and Silurian carbon cycle by a -4.5 Myr orbital cycle: ScienceDirect[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109543.
DOI URL |
[59] | MALINVERNO A. Orbital tuning as an inverse problem: chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 25(2): PA2203. |
[60] |
SHI J, JIN Z, LIU Q, et al. Terrestrial sedimentary responses to astronomically forced climate changes during the Early Paleogene in the Bohai Bay Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502: 1-12.
DOI URL |
[61] | 杨涵菲. 晚白垩世松辽盆地嫩江组米兰科维奇旋回的识别及其古气候响应[D]. 北京: 中国地质大学(北京), 2017. |
[62] | 余继峰, 乔文彦, 赵秀丽, 等. 山旺盆地: 记录“深时”气候的时间胶囊[J]. 山东科技大学学报 (自然科学版), 2019, 38(5): 1-20. |
[63] | 房强. 晚古生代冰期末期米兰科维奇旋回在华南的记录及环境响应[D]. 北京: 中国地质大学(北京), 2015. |
[64] | 袁学旭. 基于主成分分析的米兰科维奇旋回识别与应用[J]. 华北科技学院学报, 2019, 16(4): 48-70. |
[65] |
ZHAO K, DU X B, LU Y C, et al. Are light-dark coupled laminae in lacustrine shale seasonally controlled? A case study using astronomical tuning from 42.2 to 45.4 Ma in the Dongying Depression, Bohai Bay Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528: 35-49.
DOI URL |
[66] |
WANG M, CHEN H, HUANG C, et al. Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China[J]. Earth and Planetary Science Letters, 2020, 535: 116116.
DOI URL |
[67] |
李山, 吴怀春, 房强, 等. 华南泥盆-石炭系界线剖面旋回地层学研究[J]. 地学前缘, 2022, 29(3): 329-339.
DOI |
[68] |
马雪莹, 邓胜徽, 卢远征, 等. 华南上奥陶统宝塔组天文年代格架及其地质意义[J]. 地学前缘, 2019, 26(2): 281-291.
DOI |
[69] | HINNOV L A. Earth’s orbital parameters and cycle stratigraphy[M]. Cambridge: Cambridge University Press, 2004: 55-62. |
[70] |
冯英辞, 詹文欢, 姚衍桃, 等. 西沙群岛礁区的地质构造及其活动性分析[J]. 热带海洋学报, 2015, 34(3): 48-53.
DOI |
[71] | 许红, 蔡峰, 王玉净, 等. 西沙中新世生物礁演化与藻类的造礁作用[J]. 科学通报, 1999, 44(13): 1435-1439. |
[72] | 张明书. 《西沙生物礁沉积地质学研究》一书出版[J]. 海洋地质动态, 1990(1): 21. |
[73] | CHEN J R. Preliminary study on Quaternary geology of Xisha Islands in southern China[J]. Chinese Journal of Geology, 1978, 13(1): 45-56, 97. |
[74] | 余强, 姜振春. 西沙琛航岛礁工程地质特征[J]. 土工基础, 2013, 27(2): 115-117. |
[75] | 朱长岐. 中国西沙群岛珊瑚礁科学钻探取得重大进展[J]. 岩土力学, 2014, 35(9): 5-5. |
[76] |
BERGER A, LOUTRE M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297-317.
DOI URL |
[77] | LASKAR J, JOUTEL F, BOUDIN F. Orbital, precessional, and insolation quantities for the Earth from -20 MYR to +10 MYR[J]. Astronomy Astrophysics, 1993, 270(1/2): 522-533. |
[78] |
WU H C, ZHANG S H, JIANG G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin, northeastern China and its implication for long-period behavior of the solar system[J]. Paleogeography, Palaeoclimatology, Palaeoecology, 2019, 385: 55-70.
DOI URL |
[79] | WEEDON G P. Time series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles[M]. Cambridge: Cambridge University Press, 2003. |
[80] |
BRESCIA M, D’ARGENIO B, FERRERI V, et al. Neural net aided detection of astronomical periodicities in geologic records[J]. Earth and Planetary Science Letters, 1996, 139(1/2): 33-45.
DOI URL |
[81] |
LI M S, HINNOV L, KUMP L. Acycle: time-series analysis software for paleoclimate research and education[J]. Computers and Geosciences, 2019, 127: 12-22.
DOI URL |
[82] |
THOMSON D J. Spectrum estimation and harmonic analysis[J]. Proceedings of the IEEE, 2005, 70(9): 1055-1096.
DOI URL |
[83] |
MANN M E, LEES J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climate Change, 1996, 33(3): 409-445.
DOI URL |
[84] | KODAMA K P, HINNOV L A. Rock magnetic cyclostratigraphy[M]. Oxford: Wiley-Blackwell, 2014: 52-89. |
[85] |
SUGIURA N. ARM, TRM and magnetic interactions: concentration dependence[J]. Earth and Planetary Science Letters, 1979, 42(3): 451-455.
DOI URL |
[86] |
YAMAZAKI T, IOKA N. Cautionary note on magnetic grain-size estimation using the ratio of ARM to magnetic susceptibility[J]. Geophysical Research Letters, 2013, 24(7): 751-754.
DOI URL |
[87] | 张淑伟, 刘青松, 王喜生, 等. 宁武天池干海湖泊沉积物的部分非磁滞剩磁研究[J]. 地质力学学报, 2017, 23(4): 612-616. |
[88] |
DE VLEESCHOUWER D, RAKOCINSKI M, RACKI G, et al. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland)[J]. Earth and Planetary Science Letters, 2013, 365: 25-37.
DOI URL |
[89] |
LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy Astrophysics, 2004, 428(1): 261-285.
DOI URL |
[90] |
HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1703-1734.
DOI URL |
[91] |
SLOAN L C, MORRILL C. Orbital forcing and Eocene continental temperatures[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 144(1/2): 21-35.
DOI URL |
[92] | LIU Y, WU H C, ZHANG S H, et al. Cyclic stratigraphy of Hanjiang Formation-Wanshan Formation in Zhu-depression, Pearl River Mouth Basin[J]. Earth Sciences: Journal of China University of Geosciences, 2012, 37(3): 13-13. |
[93] |
HHINNOV L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 419-475.
DOI URL |
[94] | HUANG H, GAO Y, MA C, et al. Organic carbon burial is paced by a -173 ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): 9489-9498. |
[95] | TIAN J, ZHAO Q H, WANG P X, et al. Astronomically modulated Neogene sediment records from the South China Sea[J]. Paleoceanography and Paleoclimatology, 2008, 23(3): PA3210. |
[96] |
WANG P X, TIAN J, LOURENS L J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records[J]. Earth and Planetary Science Letters, 2010, 290(3): 319-330.
DOI URL |
[97] |
ZACHOS J C. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI PMID |
[98] | MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): |
[99] |
LOURENS L J, HILGEN F J. Long-periodic variations in the Earth’s obliquity and their relation to third-order eustatic cycles and late Neogene glaciations[J]. Quaternary International, 1997, 40(1): 43-52.
DOI URL |
[100] |
HOLBOURN A E, KUHNT W, SCHULZ M, et al. Orbitally-paced climate evolution during the Middle Miocene “Monterey” carbon-isotope excursion[J]. Earth and Planetary Science Letters, 2007, 261(3): 534-550.
DOI URL |
[101] |
WANG P X, LI Q Y, TIAN J, et al. Long-term cycles in the carbon reservoir of the Quaternary ocean: a perspective from the South China Sea[J]. National Science Review, 2014, 1(1): 25.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||