Earth Science Frontiers ›› 2023, Vol. 30 ›› Issue (6): 406-435.DOI: 10.13745/j.esf.sf.2023.6.11
Previous Articles Next Articles
ZHANG Qi1,2(), ZHAI Mingguo1,2, WEI Chunjing3, ZHOU Ligang1,2, HUANG Guangyu1,2, CHEN Wanfeng4, JIAO Shoutao5,6, TANG Jun7, LIU Rui8, YUAN Jie9, WANG Zhen10,11, WANG Yue11, YUAN Fanglin1,2
Received:
2023-01-12
Revised:
2023-06-07
Online:
2023-11-25
Published:
2023-11-25
CLC Number:
ZHANG Qi, ZHAI Mingguo, WEI Chunjing, ZHOU Ligang, HUANG Guangyu, CHEN Wanfeng, JIAO Shoutao, TANG Jun, LIU Rui, YUAN Jie, WANG Zhen, WANG Yue, YUAN Fanglin. A new granitization theory: Discussion on the four-stage granitization theory[J]. Earth Science Frontiers, 2023, 30(6): 406-435.
Fig.9 Asthenosphere heating model for coupled dehydration-hydration processes for partial melting of the orogenic crust at active rifts. Adapted from [50].
Fig.12 Changes of mineral phases and melt content of tonalite gneiss sample J13 during heating and melting at 0.7, 1.0 and 2.0 GPa. Modified after [64].
Fig.18 Different types of schlieren rich in biotite in the Tigssaluk and Alangorssuag granite intrusions in southwestern Greenland. Adapted from [65].
[1] | PETFORD N, 崔迎春. 地壳中花岗岩浆的生成、运移和就位[J]. 世界地质, 2001, 20(4): 321-326. |
[2] |
BROWN M. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens[J]. Earth-Science Reviews, 1994, 36(1/2): 83-130.
DOI URL |
[3] | PETFORD N, CLEMENS J D, VIGNERESSE J L. Application of information theory to the formation of granitic rocks[M]//BOUCHEZ J L, HUTTON D H W, STEPHENS W E. Granite: from segregation of melt to emplacement fabrics. Dordrecht: Springer, 1997: 3-10. |
[4] | 桑隆康, 马昌前. 岩石学[M]. 北京: 地质出版社, 2022. |
[5] | RUDNICK R L, GAO S. Composition of the continental crust[M]//WALTER M J. Treatise on geochemistry. Amsterdam: Elsevier, 2003: 1-64. |
[6] |
BROWN M. The mechanism of melt extraction from lower continental crust of orogens[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2004, 95(1/2): 35-48.
DOI URL |
[7] |
VIGNERESSE J L. Crustal regime of deformation and ascent of granitic magma[J]. Tectonophysics, 1995, 249(3/4): 187-202.
DOI URL |
[8] |
SAWYER E W, CESARE B, BROWN M. When the continental crust melts[J]. Elements, 2011, 7(4): 229-234.
DOI URL |
[9] | BROWN M, RUSHMER T. Evolution and differentiation of the continental crust[M]. Cambridge: Cambridge University Press, 2006. |
[10] |
BOWEN N L. Diffusion in silicate melts[J]. The Journal of Geology, 1921, 29(4): 295-317.
DOI URL |
[11] | BOWEN N L. The evolution of the igneous rocks[M]. Princeton: Princeton University Press, 1928. |
[12] |
HOLLISTER L S, CRAWFORD M L. Melt-enhanced deformation: a major tectonic process[J]. Geology, 1986, 14(7): 558-561.
DOI URL |
[13] |
HOLLISTER L S. The role of melt in the uplift and exhumation of orogenic belts[J]. Chemical Geology, 1993, 108(1/2/3/4): 31-48.
DOI URL |
[14] | 曾令森, 高利娥,SALEEBY J B. 变泥质岩递进部分熔融作用的构造物理学效应[J]. 地质通报, 2008, 27(12): 1992-2000. |
[15] |
HANDY M R. The solid-state flow of polymineralic rocks[J]. Journal of Geophysical Research, 1990, 95(B6): 8647-8661.
DOI URL |
[16] |
SAWYER E W. Melt segregation in the continental crust[J]. Geology, 1994, 22(11): 1019-1022.
DOI URL |
[17] |
HANDY M R, WISSING S, STREIT J E. Strength and structure of mylonite with combined frictional-viscous rheology and varied bimineralic composition[J]. Tectonophysics, 1999, 303(1/2/3/4): 175-191.
DOI URL |
[18] |
VIGNERESSE J L, BARBEY P, CUNEY M. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer[J]. Journal of Petrology, 1996, 37(6): 1579-1600.
DOI URL |
[19] |
VILÀ M, FERNÁNDEZ M, JIMÉNEZ-MUNT I. Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling[J]. Tectonophysics, 2010, 490(3/4): 152-164.
DOI URL |
[20] |
CLARK C, FITZSIMONS I C W, HEALY D, et al. How does the continental crust get really hot?[J]. Elements, 2011, 7(4): 235-240.
DOI URL |
[21] |
BEA F. The sources of energy for crustal melting and the geochemistry of heat-producing elements[J]. Lithos, 2012, 153: 278-291.
DOI URL |
[22] |
BROWN M. Granite: from genesis to emplacement[J]. Geological Society of America Bulletin, 2013, 125(7/8): 1079-1113.
DOI URL |
[23] |
LAURENT O, COUZINIÉ S, ZEH A, et al. Protracted, coeval crust and mantle melting during Variscan late-orogenic evolution: U-Pb dating in the eastern French Massif Central[J]. International Journal of Earth Sciences, 2017, 106(2): 421-451.
DOI URL |
[24] |
ZHENG Y F, CHEN R X. Regional metamorphism at extreme conditions: implications for orogeny at convergent plate margins[J]. Journal of Asian Earth Sciences, 2017, 145: 46-73.
DOI URL |
[25] |
ENGLAND P C, THOMPSON A B. Pressure-temperature-time paths of regional metamorphism: I. Heat transfer during the evolution of regions of thickened continental crust[J]. Journal of Petrology, 1984, 25(4): 894-928.
DOI URL |
[26] |
GAO P, ZHENG Y F, ZHAO Z F. Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis[J]. Lithos, 2016, 266/267: 133-157.
DOI URL |
[27] | JOHANNES W, HOLTZ F. Petrogenesis and experimental petrology of granitic rocks[M]. Berlin, Heidelberg: Springer, 1996. |
[28] |
CLEMENS J D, VIELZEUF D. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters, 1987, 86(2/3/4): 287-306.
DOI URL |
[29] |
ANNEN C, BLUNDY J D, SPARKS R S J. The sources of granitic melt in Deep Hot Zones[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2008, 97(4): 297-309.
DOI URL |
[30] |
WYLLIE P J, OSMASTON M F, MORRISON M A. Constraints imposed by experimental petrology on possible and impossible magma sources and products[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1984, 310(1514): 439-456.
DOI URL |
[31] |
MÜNTENER O, ULMER P. Arc crust formation and differentiation constrained by experimental petrology[J]. American Journal of Science, 2018, 318(1): 64-89.
DOI URL |
[32] | JACOB J B, MOYEN J F. Granite and related rocks[M]//ASHTON H. Encyclopedia of geology. Amsterdam: Elsevier, 2021: 170-183. |
[33] |
JIN Z M, LI H, BORCH R S. Microstructures of olivine and stresses in the upper mantle beneath eastern China[J]. Tectonophysics, 1989, 169(1/2/3): 23-50.
DOI URL |
[34] | HIRTH G, KOHLSTEDT D L. Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15441-15449. |
[35] |
SAWYER E W. Melt segregation and magma flow in migmatites: implications for the generation of granite magmas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1996, 87(1/2): 85-94.
DOI URL |
[36] | 刘正宏, 徐仲元, 杨振升. 部分熔融与高级变质岩流变机制: 以内蒙古大青山高级变质岩为例[J]. 地学前缘, 2008, 15(3)168-177. |
[37] | GILL R. Igneous rocks and processes: a practical guide[M]. Chichester: Wiley-Blackwell, 2010. |
[38] | 魏春景. 麻粒岩相变质作用与花岗岩成因: Ⅱ 变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟[J]. 岩石学报, 2016, 32(6): 1625-1643. |
[39] | JACKSON M D, CHEADLE M J, ATHERTON M P. Quantitative modeling of granitic melt generation and segregation in the continental crust[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B7): 2332. |
[40] |
JACKSON M D, GALLAGHER K, PETFORD N, et al. Towards a coupled physical and chemical model for tonalite-trondhjemite-granodiorite magma formation[J]. Lithos, 2005, 79(1/2): 43-60.
DOI URL |
[41] |
GETSINGER A, RUSHMER T, JACKSON M D, et al. Generating high Mg-numbers and chemical diversity in tonalite-trondhjemite-granodiorite (TTG) magmas during melting and melt segregation in the continental crust[J]. Journal of Petrology, 2009, 50(10): 1935-1954.
DOI URL |
[42] |
FAURE F, TROLLIARD G, MONTEL J M, et al. Nano-petrographic investigation of a mafic xenolith (Maar de Beaunit, Massif Central, France)[J]. European Journal of Mineralogy, 2001, 13(1): 27-40.
DOI URL |
[43] |
WEI C S, ZHENG Y F, ZHAO Z F, et al. Oxygen and neodymium isotope evidence for recycling of juvenile crust in Northeast China[J]. Geology, 2002, 30(4): 375-378.
DOI URL |
[44] | 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007, 23(6): 1217-1238. |
[45] |
ZHENG Y F, ZHANG S B, ZHAO Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust[J]. Lithos, 2007, 96(1/2): 127-150.
DOI URL |
[46] |
ZHENG Y F, WU R X, WU Y B, et al. Rift melting of juvenile arc-derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 2008, 163(3/4): 351-383.
DOI URL |
[47] |
QIAN X, WANG Y J, FENG Q L, et al. Zircon U-Pb geochronology, and elemental and Sr-Nd-Hf-O isotopic geochemistry of post-collisional rhyolite in the Chiang Khong area, NW Thailand and implications for the melting of juvenile crust[J]. International Journal of Earth Sciences, 2017, 106(4): 1375-1389.
DOI URL |
[48] |
TANG Y W, CHEN L, ZHAO Z F, et al. Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese Orogen, southern Tibet[J]. Geological Society of America Bulletin, 2020, 132(7/8): 1347-1364.
DOI URL |
[49] | 张旗, 赵大升, 李达周. 云南新平县双沟蛇绿岩中地幔岩初始熔融物[J]. 岩石学报, 1991, 7(1): 1-15, 95. |
[50] |
ZHENG Y F, GAO P. The production of granitic magmas through crustal anatexis at convergent plate boundaries[J]. Lithos, 2021, 402/403: 106232.
DOI URL |
[51] |
PEARCE J A, LIPPARD S J, ROBERTS S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1): 77-94.
DOI URL |
[52] |
SHAW H R. Viscosities of magmatic silicate liquids: an empirical method of prediction[J]. American Journal of Science, 1972, 272(9): 870-893.
DOI URL |
[53] |
DAVIDSON C, SCHMID S M, HOLLISTER L S. Role of melt during deformation in the deep crust[J]. Terra Nova, 1994, 6(2): 133-142.
DOI URL |
[54] |
WHITTINGTON A G, TRELOAR P J. Crustal anatexis and its relation to the exhumation of collisional orogenic belts, with particular reference to the Himalaya[J]. Mineralogical Magazine, 2002, 66(1): 53-91.
DOI URL |
[55] | 李江海. 麻粒岩相变质的岩石学成因模式[J]. 地质科技情报, 1996, 15(1): 7-12. |
[56] |
FYFE W S. A discussion on the evolution of the Precambrian crust: the granulite facies, partial melting and the Archaean crust[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1973, 273(1235): 457-461.
DOI URL |
[57] | ASHWORTH J R. Migmatites[M]. London: Blackie Academic and Professional, 1985. |
[58] | BEST M G. Igneous and metamorphic petrology[M]. 2nd ed. Malden: Blackwell Science, 2003. |
[59] | MEHNERT K R. Migmatites and the origin of granitic rocks[M]. Amsterdam: Elsevier, 1968. |
[60] | PETFORD N. Segregation of tonalitic-trondhjemitic melts in the continental crust: the mantle connection[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B8): 15735-15743. |
[61] |
PETFORD N, KOENDERS M A. Self-organisation and fracture connectivity in rapidly heated continental crust[J]. Journal of Structural Geology, 1998, 20(9/10): 1425-1434.
DOI URL |
[62] |
PETFORD N, CRUDEN A R, MCCAFFREY K J W, et al. Granite magma formation, transport and emplacement in the Earth’s crust[J]. Nature, 2000, 408(6813): 669-673.
DOI |
[63] |
GUERNINA S, SAWYER E W. Large-scale melt-depletion in granulite terranes: an example from the Archean Ashuanipi Subprovince of Quebec[J]. Journal of Metamorphic Geology, 2003, 21(2): 181-201.
DOI URL |
[64] | 张世伟, 魏春景, 段站站. 冀东太古宙奥长花岗质岩石的成因模拟[J]. 中国科学: 地球科学, 2017, 47(4): 494-508. |
[65] | PITCHER W S. The nature and origin of granite[M]. London: Blackie Academic and Professional, 1993. |
[66] | HARKER A. The natural history of igneous rocks[M]. New York: Hafner Publishing Company, 1965. |
[67] |
REID J B Jr, MURRAY D P, HERMES O D, et al. Fractional crystallization in granites of the Sierra Nevada: how important is it?[J]. Geology, 1993, 21(7): 587-590.
DOI URL |
[68] |
BLUNDY J, CASHMAN K. Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980-1986[J]. Contributions to Mineralogy and Petrology, 2001, 140(6): 631-650.
DOI URL |
[69] |
COLEMAN D S, GRAY W, GLAZNER A F. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California[J]. Geology, 2004, 32(5): 433-436.
DOI URL |
[70] | 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. |
[71] | HUBER N K, BATEMAN P C, WAHRHAFTIG C. Geologic map of Yosemite National Park and vicinity, California[CM]. U.S. Geological Survey Miscellaneous Investigations Series Map I-1874, 1:125000. California: USGS Publications Warehouse, 1989. |
[72] |
CASTRO A. On granitoid emplacement and related structures: a review[J]. Geologische Rundschau, 1987, 76(1): 101-124.
DOI URL |
[73] | GROUT F F. Scale models of structures relating to batholiths[J]. American Journal of Science, 1945, 243A: 260-284. |
[74] | RAMBERG H. Gravity, deformation, and the Earth’s crust: in theory, experiments, and geological application[M]. 2nd ed. London: Academic Press, 1981. |
[75] | COBBING J. The geology and mapping of granite batholiths[M]. Berlin, Heidelberg: Springer, 2000. |
[76] | PETFORD N. Granite on the move[J]. New Scientist, 1991, 129(1773): 44-48. |
[77] | 陈国能. 花岗岩成因与成矿理论研究进展: 原地重熔说与元素地球化学场简介[J]. 地球科学进展, 1998, 13(2): 140-144. |
[78] |
BRYON D N, ATHERTON M P, HUNTER R H. The interpretation of granitic textures from serial thin sectioning, image analysis and three-dimensional reconstruction[J]. Mineralogical Magazine, 1995, 59(395): 203-211.
DOI URL |
[79] |
BRYON D N, ATHERTON M P, HUNTER R H, et al. The description of the primary textures of “Cordilleran” granitic rocks[J]. Contributions to Mineralogy and Petrology, 1994, 117(1): 66-75.
DOI URL |
[80] | SPURR J E. A consideration of igneous rocks and their segregation or differentiation as related to the occurrence of ores[J]. Transactions of the American Institute of Mining Engineers, 1903, 33: 288-340. |
[81] |
WYLLIE P J. Crustal anatexis: an experimental review[J]. Tectonophysics, 1977, 43(1/2): 41-71.
DOI URL |
[82] | TREUIL M, JORON J L. Utilisation des l ments hybromagmaphiles pour la simplification de lamodlisation quantitative des processus magmatiques[J]. Societa Italiana di Mineralogia e Petrologia, 1975, 31: 125-174. |
[83] |
ALLÈGRE C J, MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters, 1978, 38(1): 1-25.
DOI URL |
[84] | 南京大学地质系矿物岩石教研室. 火成岩岩石学[M]. 北京: 地质出版社, 1980. |
[85] |
CLEMENS J D, PETFORD N. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings[J]. Journal of the Geological Society, 1999, 156(6): 1057-1060.
DOI URL |
[86] | CLEMENS J D. Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility[M]. Cambridge: Cambridge University Press, 2006. |
[87] |
SAWYER E W. Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks[J]. Journal of Metamorphic Geology, 2001, 19(3): 291-309.
DOI URL |
[88] |
BROWN M. Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences[J]. Journal of the Geological Society, 2007, 164(4): 709-730.
DOI URL |
[89] |
BROWN M. The spatial and temporal patterning of the deep crust and implications for the process of melt extraction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1910): 11-51.
DOI URL |
[90] |
JOHNSON T, YAKYMCHUK C, BROWN M. Crustal melting and suprasolidus phase equilibria: from first principles to the state-of-the-art[J]. Earth-Science Reviews, 2021, 221: 103778.
DOI URL |
[91] |
MORFIN S, SAWYER E W, BANDYAYERA D. Large volumes of anatectic melt retained in granulite facies migmatites: an injection complex in northern Quebec[J]. Lithos, 2013, 168/169: 200-218.
DOI URL |
[92] |
SCHWINDINGER M, WEINBERG R F. A felsic MASH zone of crustal magmas: feedback between granite magma intrusion and in situ crustal anatexis[J]. Lithos, 2017, 284/285: 109-121.
DOI URL |
[93] | 张旗, 王焰, 熊小林, 等. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社, 2008. |
[94] |
张旗, 翟明国, 魏春景, 等. 一个新的花岗岩成因分类: 基于变质岩深熔作用理论与大数据的证据[J]. 地学前缘, 2022, 29(4): 319-329.
DOI |
[95] | 张旗, 原杰, 焦守涛, 等. 花岗岩三级分类刍议[J]. 矿物岩石地球化学通报, 2022, 41(3): 657-667. |
[96] | CHAPPELL B W, WHITE A J R. Two contrasting granite types[J]. Pacific Geology, 1974, 8: 173-174. |
[97] |
WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.
DOI URL |
[98] | 许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, 5(3): 113-124. |
[99] | 洪大卫. 花岗岩研究的最新进展及发展趋势[J]. 地学前缘, 1994, 1(2): 79-86. |
[100] | 王德滋, 沈渭洲. 中国东南部花岗岩成因与地壳演化[J]. 地学前缘, 2003, 10(3): 209-220. |
[101] | 王涛. 花岗岩研究与大陆动力学[J]. 地学前缘, 2000, 7(增刊): 137-146. |
[102] | 肖庆辉, 邢作云, 张昱, 等. 当代花岗岩研究的几个重要前沿[J]. 地学前缘, 2003, 10(3): 221-229. |
[103] | PLUMMER C C, MCGEARY D, CARLSON D H. Physical geology[M]. Boston: McGraw-Hill, 2001. |
[1] | LIU Wei, ZHANG Hongrui, LUO Dike, JIA Pengfei, JIN Lijie, ZHOU Yonggang, LIANG Yunhan, WANG Zisheng, LI Chunjia. Petrogenesis of Paleoproterozoic granites in the Dondo area, northern Angola block: Geological response to the assembly of Columbia Supercontinent [J]. Earth Science Frontiers, 2024, 31(4): 237-257. |
[2] | YIN Qingqing, TANG Juxing, XIANG Xinkui, ZHAO Xiaoyan, WANG Fangyue, XU Yumin, GUO Hu, YU Zhendong, XIE Jinling, DAI Jingjing, PENG Bo. Petrogenesis of reductive S-type granites in the Pengshan district, northern Jiangxi Province, and their implications for tin enrichment: Insights from zircon trace elements [J]. Earth Science Frontiers, 2024, 31(3): 133-149. |
[3] | LI Guangjie, CHEN Yongqing, SHANG Zhi, LIU Shibo. Geochemical characteristics and petrogenesis of the Neoproterozoic Eshan highly fractionated I-type granites, western Yangtze block [J]. Earth Science Frontiers, 2024, 31(3): 20-39. |
[4] | FU Jiangang, LI Guangming, GUO Weikang, ZHANG Hai, ZHANG Linkui, DONG Suiliang, ZHOU Limin, LI Yingxu, JIAO Yanjie, SHI Hongzhao. Mineralogical characteristics of columbite group minerals and its implications for magmatic-hydrothermal transition in the Gabo lithium deposit, Himalayan metallogenic belt [J]. Earth Science Frontiers, 2023, 30(5): 134-150. |
[5] | WANG Ziye, ZUO Renguang. Mapping Himalayan leucogranites by machine learning using multi-source data [J]. Earth Science Frontiers, 2023, 30(5): 216-226. |
[6] | GUO Weikang, LI Guangming, FU Jiangang, ZHANG Hai, ZHANG Linkui, WU Jianyang, DONG Suiliang, YANG Yulin. Metallogenic epoch, magmatic evolution and metallogenic significance of the Gabo lithium pegmatite deposit, Himalayan metallogenic belt, Tibet [J]. Earth Science Frontiers, 2023, 30(5): 275-297. |
[7] | HUANG Chunmei, LI Guangming, FU Jiangang, LIANG Wei, ZHANG Zhi, WANG Yiyun. Early Miocene leucogranitic magmatism in Cuonadong, southern Tibet: Constraints from whole-rock geochemical and mineralogical characteristics [J]. Earth Science Frontiers, 2023, 30(5): 74-92. |
[8] | WANG Tao, LI Jiqing, HAN Jie, WANG Taishan, LI Yulong, YUAN Bowu. Geochemistry, geochronology and Hf isotopic characteristics of rare earth-bearing quartz syenite in eastern Dashuigou, East Kunlun [J]. Earth Science Frontiers, 2023, 30(4): 283-298. |
[9] | LUO Niangang, GAO Lianfeng, ZHANG Zhenguo, YIN Zhigang, CUI Jianyu, WU Junfei, XING Jie, DING Kai, GAO Chenyang, WANG Yue. Processes and mechanism of lithospheric thinning in the eastern North China Craton during the Early Cretaceous: Evidence from the Beidashan pluton, Liaoning Province [J]. Earth Science Frontiers, 2023, 30(3): 340-365. |
[10] | SUN Zhe, ZHANG Bin, CHEN Dawei, LI Yutao, WANG Hanxun. Two-phase oil/water seepage in fractured granite rock mass: Insight from seepage visualization experiment and numerical simulation [J]. Earth Science Frontiers, 2023, 30(3): 465-475. |
[11] | GUO Zhixin, YANG Yongtai, REN Yi, WANG Zhengqing, FENG Zhigang, CHEN Liang, TANG Zhenping. Emplacement and episodic denudation of basement granites from the southern Jiergalangtu Sag, Erlian Basin and its tectonic implications [J]. Earth Science Frontiers, 2023, 30(2): 259-271. |
[12] | ZHU Xiaohui, CHEN Danling, FENG Yimin, REN Yunfei, ZHANG Xin. Granitic magmatism and tectonic evolution in the Qilian Mountain Range in NW China: A review [J]. Earth Science Frontiers, 2022, 29(2): 241-260. |
[13] | FU Shun, ZHAO Yingquan, WANG Jinjun, YU Yu, ZHU Yingtang, FU Xingzhe. Continent-continent collision at the southwestern margin of the Cretaceous Qiangtang terrane: Constraints from granite in the western Bangong-Nujiang Suture Zone [J]. Earth Science Frontiers, 2022, 29(2): 416-430. |
[14] | YANG Xiaoyong, SUN Chao, CAO Jingya, SHI Jianbin. High purity quartz: Research progress and perspective review [J]. Earth Science Frontiers, 2022, 29(1): 231-244. |
[15] | YI Zebang, FU Wei, ZHAO Qin, XU Cheng, LU Jipu. Extraction, characterization and occurrence state of REE-bearing nanoparticles from granite-derived regolith [J]. Earth Science Frontiers, 2022, 29(1): 42-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||