Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 29-41.DOI: 10.13745/j.esf.sf.2021.8.8
Previous Articles Next Articles
LIANG Xiaoliang(), TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping*(
)
Received:
2021-05-20
Revised:
2021-06-22
Online:
2022-01-25
Published:
2022-02-22
Contact:
HE Hongping
CLC Number:
LIANG Xiaoliang, TAN Wei, MA Lingya, ZHU Jianxi, HE Hongping. Mineral surface reaction constraints on the formation of ion-adsorption rare earth element deposits[J]. Earth Science Frontiers, 2022, 29(1): 29-41.
基岩类型 | 岩性 | (含)稀土矿物 | 典型矿床 |
---|---|---|---|
花岗岩类 | 黑/白云母花岗岩 | 独居石、氟碳钙钇矿、硅钍钇矿、锆石、磷灰石、磷钇矿、钛铁矿、烧绿石等 | 江西省足洞矿区[ |
花岗闪长岩 | 独居石、锆石、磷灰石等 | 赣南清溪岩体稀土矿区[ | |
石英正长/二长岩 | 独居石、榍石、锆石、磁铁矿、钛铁矿等 | 福建龙岩万安稀土矿区[ | |
花岗斑岩 | 独居石、褐帘石、磁铁矿、磷灰石、锆石等 | 广东省仁居矿区[ | |
变质岩类 | 板岩 | 独居石、磷钇矿、锆石、含稀土钛铁矿、含稀土金红石 | 江西宁都葛藤嘴地区[ |
千枚岩 | 独居石、磷钇矿、锆石、含稀土钛铁矿 | ||
片岩 | 独居石、磷钇矿、锆石、含稀土钛铁矿、磷铝酸盐类、褐帘石 | ||
变砂岩 | 独居石、磷钇矿、锆石、磷铝酸盐、水磷酸盐、褐帘石 | ||
变质凝灰岩 | 独居石、磷钇矿、锆石、含稀土金红石、含稀土绿泥石、含稀土钍石、方铈石 | ||
变粒岩 | 独居石、磷钇矿、锆石、含稀土绿泥石 | ||
火山岩类 | 流纹岩/英安岩 | 独居石、磷钇矿、锆石、磷灰石等 | 江西省寻乌河岭矿区[ |
碱性岩类 | 碱性正长岩 | 独居石、磷钇矿、烧绿石、水磷镧石、水磷铈石、水菱钇矿、氟碳镧矿等 | 云南省建水普雄铌稀土矿[ |
Table 1 Classification of REE-bearing minerals in IAR deposits
基岩类型 | 岩性 | (含)稀土矿物 | 典型矿床 |
---|---|---|---|
花岗岩类 | 黑/白云母花岗岩 | 独居石、氟碳钙钇矿、硅钍钇矿、锆石、磷灰石、磷钇矿、钛铁矿、烧绿石等 | 江西省足洞矿区[ |
花岗闪长岩 | 独居石、锆石、磷灰石等 | 赣南清溪岩体稀土矿区[ | |
石英正长/二长岩 | 独居石、榍石、锆石、磁铁矿、钛铁矿等 | 福建龙岩万安稀土矿区[ | |
花岗斑岩 | 独居石、褐帘石、磁铁矿、磷灰石、锆石等 | 广东省仁居矿区[ | |
变质岩类 | 板岩 | 独居石、磷钇矿、锆石、含稀土钛铁矿、含稀土金红石 | 江西宁都葛藤嘴地区[ |
千枚岩 | 独居石、磷钇矿、锆石、含稀土钛铁矿 | ||
片岩 | 独居石、磷钇矿、锆石、含稀土钛铁矿、磷铝酸盐类、褐帘石 | ||
变砂岩 | 独居石、磷钇矿、锆石、磷铝酸盐、水磷酸盐、褐帘石 | ||
变质凝灰岩 | 独居石、磷钇矿、锆石、含稀土金红石、含稀土绿泥石、含稀土钍石、方铈石 | ||
变粒岩 | 独居石、磷钇矿、锆石、含稀土绿泥石 | ||
火山岩类 | 流纹岩/英安岩 | 独居石、磷钇矿、锆石、磷灰石等 | 江西省寻乌河岭矿区[ |
碱性岩类 | 碱性正长岩 | 独居石、磷钇矿、烧绿石、水磷镧石、水磷铈石、水菱钇矿、氟碳镧矿等 | 云南省建水普雄铌稀土矿[ |
(含)稀土矿物 | 微生物菌种 | 参考文献 |
---|---|---|
三水铝石 | 嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans) | [ |
氟碳铈矿 | 链霉菌属(Streptomyces sp.) | [ |
微球菌属(Micrococcus sp.) | ||
小单孢菌属(Micromonospora sp.) | ||
独居石 | 曲霉菌属(Aspergillus sp.) | [ |
假单胞菌属(Pseudomonas sp.) | [ | |
芽孢杆菌属(Bacillus sp.) | [ | |
产气肠杆菌(Enterobacter aerogenes) | [ | |
拟青霉属(Paecilomyces sp.) | [ | |
醋杆菌属(Acetobacter sp.) | [ | |
嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans) | [ | |
锆石 | 嗜酸硫杆菌属(Acidithiobacillus sp.) | [ |
甲醇醋杆菌(Acetobacter methanolicus) | [ |
Table 2 Specific microorganisms that can dissolve rare earth minerals
(含)稀土矿物 | 微生物菌种 | 参考文献 |
---|---|---|
三水铝石 | 嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans) | [ |
氟碳铈矿 | 链霉菌属(Streptomyces sp.) | [ |
微球菌属(Micrococcus sp.) | ||
小单孢菌属(Micromonospora sp.) | ||
独居石 | 曲霉菌属(Aspergillus sp.) | [ |
假单胞菌属(Pseudomonas sp.) | [ | |
芽孢杆菌属(Bacillus sp.) | [ | |
产气肠杆菌(Enterobacter aerogenes) | [ | |
拟青霉属(Paecilomyces sp.) | [ | |
醋杆菌属(Acetobacter sp.) | [ | |
嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans) | [ | |
锆石 | 嗜酸硫杆菌属(Acidithiobacillus sp.) | [ |
甲醇醋杆菌(Acetobacter methanolicus) | [ |
Fig.6 Microbial enrichment of HREEs. (a) Basillus subtilis cell wall model showing REE entrapment. (b) Plot of REE partition coefficients between microorganism and aqueous solution (modified after [93]).
[1] |
KYNICKY J, SMITH M P, XU C. Diversity of rare earth deposits: the key example of China[J]. Elements, 2012, 8(5):361-367.
DOI URL |
[2] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金, 2019, 33(2):106-111. |
[3] |
LIU R S, LI Q, GONG M, et al. The new resources prospect of ion adsorption type rare earth resources in metamorphic rock’s weathering crust, South Jiangxi[J]. Advances in Geosciences, 2014, 4(6):419-425.
DOI URL |
[4] |
XU C, KYNICKÝ J, SMITH M P, et al. Origin of heavy rare earth mineralization in South China[J]. Nature Communications, 2017, 8:14598.
DOI URL |
[5] |
BAO Z W, ZHAO Z H. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China[J]. Ore Geology Reviews, 2008, 33(3/4):519-535.
DOI URL |
[6] |
HE C, XU C, ZHAO Z, et al. Petrogenesis and mineralization of REE-rich granites in Qingxi and Guanxi, Nanling Region, South China[J]. Ore Geology Reviews, 2017, 81:309-325.
DOI URL |
[7] |
LI Y H M, ZHAO W W, ZHOU M F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: an integrated genetic model[J]. Journal of Asian Earth Sciences, 2017, 148:65-95.
DOI URL |
[8] | 郭威, 付伟, 黄小荣, 等. 广西富稀土风化壳的矿物学特征初步探讨[J]. 矿物学报, 2013, 33(增刊2):209. |
[9] |
FU W, LI X T, FENG Y Y, et al. Chemical weathering of S-type granite and formation of Rare Earth Element (REE)-rich regolith in South China:critical control of lithology[J]. Chemical Geology, 2019, 520:33-51.
DOI URL |
[10] |
LI M Y H, ZHOU M F. The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits[J]. American Mineralogist, 2020, 105(1):92-108.
DOI URL |
[11] |
MIDDELBURG J J, VAN DER WEIJDEN C H, WOITTIEZ J R W. Chemical processes affecting the mobility of major, minor and trace-elements during weathering of granitic rocks[J]. Chemical Geology, 1988, 68(3/4):253-273.
DOI URL |
[12] | 张培善, 陶克捷, 杨主明, 等. 中国稀土矿物学[M]. 北京: 科学出版社, 1998: 37-44. |
[13] | 杨学明, 张培善. 花岗岩中稀土元素的赋存状态及质量平衡研究[J]. 稀土, 1992, 13(5):6-11. |
[14] | 陈斌锋, 邹新勇, 彭琳琳, 等. 清溪岩体稀土矿床地质特征及重稀土找矿潜力[J]. 稀土, 2019, 40(4):20-31. |
[15] | 张颐, 丘文, 王文亮. 福建龙岩万安稀土矿床地质特征及成因探讨[J]. 福建地质, 2014, 33(3):185-191. |
[16] | 陈炳辉, 俞受鋆. 广东平远仁居—黄畲地区燕山晚期花岗岩类的地质地球化学特征[J]. 中山大学学报(自然科学版), 1994, 33:130-133. |
[17] | 王臻, 陈振宇, 赵芝, 等. 赣南新元古代变质岩稀土矿物及其地球化学特征[J]. 矿床地质, 2019, 38(4):837-850. |
[18] | 王臻, 赵芝, 邹新勇, 等. 赣南浅变质岩岩石地球化学特征及稀土成矿潜力研究[J]. 岩矿测试, 2018, 37(1):96-107. |
[19] | 李维亚. 江西省花岗岩型稀土矿床初步研究[R]. 南昌:江西省地质局中心实验室, 1975: 173. |
[20] | 李余华, 张子军, 龙庆兵, 等. 云南建水普雄铌稀土矿床微量和稀土元素地球化学特征[J]. 矿物学报, 2019, 39(4):474-483. |
[21] | 王庆权, 王联魁. 大容山花岗岩带中石榴子石、 堇青石的成因研究[J]. 矿物学报, 1989, 9(1):42-50, 102. |
[22] | 包志伟, 赵振华. 佛冈铝质A型花岗岩的地球化学及其形成环境初探[J]. 地质地球化学, 2003, 31(1):52-61. |
[23] | 李献华, 李武显, 李正祥. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 2007, 52(9):981-991. |
[24] | 白鸽. 足洞花岗岩风化壳离子吸附型重稀土矿[R]. 赣州: 江西省地质矿产局赣南地质调查大队, 1987: 31. |
[25] | 郜兆典, 张忠伟, 黄方方. 广西风化矿床[M]. 北京: 地质出版社, 2013: 168-169. |
[26] |
GOLDICH S S. A study in rock-weathering[J]. The Journal of Geology, 1938, 46(1):17-58.
DOI URL |
[27] |
BROSKA I, WILLIAMS C T, JANÁK M, et al. Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia[J]. Lithos, 2005, 82(1/2):71-83.
DOI URL |
[28] |
TROMANS D. Solubility of crystalline and metamict zircon: a thermodynamic analysis[J]. Journal of Nuclear Materials, 2006, 357(1/2/3):221-233.
DOI URL |
[29] | 王登红, 赵芝, 于扬, 等. 离子吸附型稀土资源研究进展、 存在问题及今后研究方向[J]. 岩矿测试, 2013, 32(5):796-802. |
[30] | 莫彬彬, 连宾. 长石风化作用及影响因素分析[J]. 地学前缘, 2010, 17(3):281-289. |
[31] |
LI M Y H, ZHOU M F, WILLIAMS-JONES A E. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi Province, South China[J]. Economic Geology, 2019, 114(3):541-568.
DOI URL |
[32] |
BRAY A W, OELKERS E H, BONNEVILLE S, et al. The effect of pH, grain size, and organic ligands on biotite weathering rates[J]. Geochimica et Cosmochimica Acta, 2015, 164:127-145.
DOI URL |
[33] |
CHAÏRAT C, SCHOTT J, OELKERS E H, et al. Kinetics and mechanism of natural fluorapatite dissolution at 25 ℃ and pH from 3 to 12[J]. Geochimica et Cosmochimica Acta, 2007, 71(24):5901-5912.
DOI URL |
[34] |
MAES S, ZHUANG W Q, RABAEY K, et al. Concomitant leaching and electrochemical extraction of rare earth elements from monazite[J]. Environmental Science & Technology, 2017, 51:1654-1661. https://pubs.acs.org/doi/10.1021/acs.est.6b03675.
DOI URL |
[35] | 陈炳辉, 刘琥琥, 毋福海. 花岗岩风化壳中的微生物及其对稀土元素的浸出作用[J]. 地质论评, 2001, 47(1):88-94. |
[36] | IBRAHIM H, EL-SHEIKH E M. Bioleaching treatment of Abu Zeneima uraniferous gibbsite ore material for recovering U, REEs, Al and Zn[J]. Research Journal of Chemical Science, 2011, 1:55-66. |
[37] |
ZHANG L M, DONG H L, LIU Y, et al. Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria[J]. Chemical Geology, 2018, 483:544-557.
DOI URL |
[38] |
KEEKAN K K, JALONDHARA J C, ABHILAS H. Extraction of Ce and Th from monazite using REE tolerant Aspergillus niger[J]. Mineral Processing and Extractive Metallurgy Review, 2017, 38(5):312-320.
DOI URL |
[39] |
SHIN D, KIM J, KIM B S, et al. Use of phosphate solubilizing bacteria to leach rare earth elements from monazite-bearing ore[J]. Minerals, 2015, 5(2):189-202.
DOI URL |
[40] | FATHOLLAHZADEH H, BECKER T, EKSTEEN J J, et al. Microbial contact enhances bioleaching of rare earth elements[J]. Biotechnology Reports, 2018, 3:102-108. |
[41] |
BRISSON V L, ZHUANG W Q, ALVAREZ-COHEN L. Bioleaching of rare earth elements from monazite sand[J]. Biotechnology and Bioengineering, 2016, 113(2):339-348.
DOI URL |
[42] | FATHOLLAHZADEH H, HACKETT M J, KHALEQUE H N, et al. Better together: potential of co-culture microorganisms to enhance bioleaching of rare earth elements from monazite[J]. Biotechnology Reports, 2018, 3:109-118. |
[43] |
FATHOLLAHZADEH H, EKSTEEN J J, KAKSONEN A H, et al. Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources[J]. Applied Microbiology and Biotechnology, 2019, 103:1043-1057. https://link.springer.com/article/10.1007%2Fs00253-018-9526-z.
DOI URL |
[44] |
ISKE U, BULLMANN M, GLOMBITZA F. Organoheterotrophe laugung resistenter materialien[J]. Acta Biotechnologica, 1987, 7(5):401-407.
DOI URL |
[45] | BRANDL H. Microbial leaching of metals[M]// Biotechnology. Weinheim: Wiley-VCH, 2008: 191-224. |
[46] |
RODRIGUEZ-LEIVA M, TRIBUTSCH H. Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite[J]. Archives of Microbiology, 1988, 149(5):401-405.
DOI URL |
[47] |
LI Z B, LIU L W, CHEN J, et al. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering[J]. Geology, 2016, 44(4):319-322.
DOI URL |
[48] |
LI Z B, LU X C, TENG H H, et al. Specificity of low molecular weight organic acids on the release of elements from lizardite during fungal weathering[J]. Geochimica et Cosmochimica Acta, 2019, 256:20-34.
DOI URL |
[49] | 马毅杰, 罗家贤, 蒋梅茵, 等. 我国南方铁铝土矿物组成及其风化和演变[J]. 沉积学报, 1999, 17(增刊1):681-686. |
[50] | GALÁN E, FERRELL R E. Genesis of clay minerals[M]//BERGAYA F, LAGALY G. Developments in clay science. Amsterdam: Elsevier, 2013: 83-126. |
[51] | 赵芝, 王登红, 王成辉, 等. 离子吸附型稀土找矿及研究新进展[J]. 地质学报, 2019, 93(6):1454-1465. |
[52] | LANGMUIR D. Aqueous environmental geochemistry[M]. New Jersey: Prentice Hall, 1997: 312-340. |
[53] |
BANFIELD J F, EGGLETON R A. Analytical transmission electron-microscope studies of plagioclase, muscovite, and K-feldspar weathering[J]. Clays and Clay Minerals, 1990, 38(1):77-89.
DOI URL |
[54] |
YUAN G H, CAO Y C, SCHULZ H M, et al. A review of feldspar alteration and its geological significance in sedimentary basins: from shallow aquifers to deep hydrocarbon reservoirs[J]. Earth-Science Reviews, 2019, 191:114-140.
DOI URL |
[55] |
PAPOULIS D, TSOLIS-KATAGAS P, KATAGAS C. Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase[J]. Clays and Clay Minerals, 2004, 52(3):275-286.
DOI URL |
[56] |
WILSON M J. Weathering of the primary rock-forming minerals: processes, products and rates[J]. Clay Minerals, 2004, 39(3):233-266.
DOI URL |
[57] | VELDE B B, MEUNIER A. The origin of clay minerals in soils and weathered rocks[M]. Berlin: Springer Science and Business Media, 2008: 156-192. |
[58] | AHN J H, PEACOR D R. Kaolinitization of biotite - TEM data and implications for an alteration mechanism[J]. American Mineralogist, 1987, 72:353-356. |
[59] |
DONG H L, PEACOR D R, MURPHY S F. TEM study of progressive alteration of igneous biotite to kaolinite throughout a weathered soil profile[J]. Geochimica et Cosmochimica Acta, 1998, 62(11):1881-1887.
DOI URL |
[60] | 张祖海. 华南风化壳离子吸附型稀土矿床[J]. 地质找矿论丛, 1990, 5(1):57-71. |
[61] | 张培善, 林传仙. 华南离子型稀土矿地质矿物和地球化学[R]. 赣州: 中国科学院稀土办公室, 1993: 32-36. |
[62] | 刘英俊, 曹励明, 李兆麟. 元素地球化学[M]. 北京: 科学出版社, 1984: 80-95. |
[63] | BANFIELD J F. The mineralogy and chemistry of granite weathering[D]. Canberra: Australian National University, 1985: 69-72. |
[64] |
VANIMAN D T, CHIPERA S J, BISH D L, et al. Crystal chemistry of clay-Mn oxide associations in soils, fractures, and matrix of the Bandelier Tuff, Pajarito Mesa, New Mexico[J]. Geochimica et Cosmochimica Acta, 2002, 66(8):1349-1374.
DOI URL |
[65] |
SAWKA W N, BANFIELD J F, CHAPPELL B W. A weathering-related origin of widespread monazite in S-type granites[J]. Geochimica et Cosmochimica Acta, 1986, 50(1):171-175.
DOI URL |
[66] |
BANFIELD J F, EGGLETON R A. Apatite replacement and rare earth mobilization, fractionation, and fixation during weathering[J]. Clays and Clay Minerals, 1989, 37(2):113-127.
DOI URL |
[67] |
SANEMATSU K, KON Y, IMAI A. Influence of phosphate on mobility and adsorption of REEs during weathering of granites in Thailand[J]. Journal of Asian Earth Sciences, 2015, 111:14-30.
DOI URL |
[68] |
BERN C R, YESAVAGE T, FOLEY N K. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: an effect of hydrothermal alteration[J]. Journal of Geochemical Exploration, 2017, 172:29-40.
DOI URL |
[69] | 池汝安, 田君. 风化壳淋积型稀土矿评述[J]. 中国稀土学报, 2007, 25(6):641-650. |
[70] |
HUANG J, TAN W, LIANG X L, et al. REE fractionation controlled by REE speciation during formation of the Renjü regolith-hosted REE deposits in Guangdong Province, South China[J]. Ore Geology Reviews, 2021, 134:104172.
DOI URL |
[71] | 胡淙声. 赣南离子吸附型稀土矿成矿规律研究[R]. 赣州: 江西省地矿局赣南地调大队, 1986: 63-64. |
[72] |
COPPIN F, BERGER G, BAUER A, et al. Sorption of lanthanides on smectite and kaolinite[J]. Chemical Geology, 2002, 182(1):57-68.
DOI URL |
[73] |
YANG M J, LIANG X L, MA L Y, et al. Adsorption of REEs on kaolinite and halloysite: a link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 2019, 525:210-217.
DOI URL |
[74] |
MESTDAGH M M, VIELVOYE L L, HERBILLON A J. Iron in kaolinite: II. the relationship between kaolinite crystallinity and iron content[J]. Clay Minerals, 1980, 15(1):1-13.
DOI URL |
[75] |
ALSHAMERI A, HE H P, CHEN X, et al. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: adsorption operative parameters[J]. Hydrometallurgy, 2019, 185:149-161.
DOI URL |
[76] |
QUINN K A, BYRNE R H, SCHIJF J. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of pH and ionic strength[J]. Marine Chemistry, 2006, 99(1/2/3/4):128-150.
DOI URL |
[77] |
HAFERBURG G, MERTEN D, BÜCHEL G, et al. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area: their impact on changes in rare earth element patterns in acid mine drainage[J]. Journal of Basic Microbiology, 2007, 47(6):474-484.
DOI URL |
[78] |
MULLEN M D, WOLF D C, FERRIS F G, et al. Bacterial sorption of heavy metals[J]. Applied and Environmental Microbiology, 1989, 55(12):3143-3149.
DOI URL |
[79] |
KAMIJO M, SUZUKI T, KAWAI K, et al. Accumulation of yttrium by variovorax paradoxus[J]. Journal of Fermentation and Bioengineering, 1998, 86(6):564-568.
DOI URL |
[80] |
PALMIERI M C, GARCIA O, MELNIKOV P. Neodymium biosorption from acidic solutions in batch system[J]. Process Biochemistry, 2000, 36(5):441-444.
DOI URL |
[81] |
MERROUN M L, BEN CHEKROUN K, ARIAS J M, et al. Lanthanum fixation by Myxococcus Xanthus: cellular location and extracellular polysaccharide observation[J]. Chemosphere, 2003, 52(1):113-120.
DOI URL |
[82] |
MARKAI S, ANDRÈS Y, MONTAVON G, et al. Study of the interaction between europium (Ⅲ) and Bacillus subtilis: fixation sites, biosorption modeling and reversibility[J]. Journal of Colloid and Interface Science, 2003, 262(2):351-361.
DOI URL |
[83] |
MORGAN J W, FORSTER C F, EVISON L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Research, 1990, 24(6):743-750.
DOI URL |
[84] |
YOSHIDA T, OZAKI T, OHNUKI T, et al. Adsorption of rare earth elements by γ-Al2O3 and pseudomonas fluorescens cells in the presence of desferrioxamine B: implication of siderophores for the Ce anomaly[J]. Chemical Geology, 2004, 212(3/4):239-246.
DOI URL |
[85] |
OHTA A, KAWABE I. REE(Ⅲ) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(Ⅲ) oxidation by δ-MnO2[J]. Geochimica et Cosmochimica Acta, 2001, 65(5):695-703.
DOI URL |
[86] |
OHTA A, KAGI H, NOMURA M, et al. Coordination study of rare earth elements on Fe oxyhydroxide and Mn dioxides: Part I. Influence of a multi-electron excitation on EXAFS analyses of La, Pr, Nd, and Sm[J]. American Mineralogist, 2009, 94(4):467-475.
DOI URL |
[87] |
KOEPPENKASTROP D, DE CARLO E H. Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach[J]. Chemical Geology, 1992, 95(3/4):251-263.
DOI URL |
[88] |
OHTA A, KAWABE I. Theoretical study of tetrad effects observed in REE distribution coefficients between marine Fe-Mn deposit and deep seawater, and in REE(Ⅲ)-carbonate complexation constants[J]. Geochemical Journal, 2000, 34(6):455-473.
DOI URL |
[89] |
JOHANNESSON K H, LYONS W B, YELKEN M A, et al. Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: complexation behavior and middle rare-earth element enrichments[J]. Chemical Geology, 1996, 133(1/2/3/4):125-144.
DOI URL |
[90] |
DAVRANCHE M, POURRET O, GRUAU G, et al. Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide[J]. Journal of Colloid and Interface Science, 2004, 277(2):271-279.
DOI URL |
[91] |
LEE J H, BYRNE R H. Examination of comparative rare earth element complexation behavior using linear free-energy relationships[J]. Geochimica et Cosmochimica Acta, 1992, 56(3):1127-1137.
DOI URL |
[92] |
LIU X W, BYRNE R H. Rare earth and yttrium phosphate solubilities in aqueous solution[J]. Geochimica et Cosmochimica Acta, 1997, 61(8):1625-1633.
DOI URL |
[93] |
TAKAHASHI Y, CHÂTELLIER X, HATTORI K H, et al. Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats[J]. Chemical Geology, 2005, 219(1/2/3/4):53-67.
DOI URL |
[94] |
LI M YH, ZHOU M F, WILLIAMS-JONES A E. Controls on the dynamics of rare earth elements during subtropical hillslope processes and formation of regolith-hosted deposits[J]. Economic Geology, 2020, 115(5):1097-1118.
DOI URL |
[95] |
TESSIER A, CAMPBELL P G C, BISSON M. Particulate trace-metal speciation in stream sediments and relationships with grain-size: implications for geochemical exploration[J]. Journal of Geochemical Exploration, 1982, 16(2):77-104.
DOI URL |
[96] |
SUTHERLAND R A. BCR©-701: a review of 10-years of sequential extraction analyses[J]. Analytica Chimica Acta, 2010, 680(1/2):10-20.
DOI URL |
[97] | 范晨子, 张誉, 陈郑辉, 等. 江西赣南风化淋滤型稀土矿床中的黏土矿物研究[J]. 岩石矿物学杂志, 2015, 34(6):803-810. |
[98] | 周军明, 袁鹏, 余亮, 等. 八尺风化淋积型稀土矿凝灰岩风化壳中的细粒矿物特征[J]. 矿物学报, 2018, 38(4):420-428. |
[99] | 刘楠, 王宏伟. 单颗粒冷冻电镜技术的研究现状和未来展望[J]. 中国基础科学, 2019, 21(5):1-7. |
[100] |
LIAO J L, SUN X M, LI D F, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 2019, 512:58-68.
DOI URL |
[101] | 刘容, 王汝成, 陆现彩, 等. 赣南花岗岩风化壳型稀土矿床中纳米级稀土矿物的研究[J]. 岩石矿物学杂志, 2016, 35(4):617-626 |
[102] |
BORST A M, SMITH M P, FINCH A A, et al. Adsorption of rare earth elements in regolith-hosted clay deposits[J]. Nature Communications, 2020, 11:4386.
DOI URL |
[103] |
ELZINGA E J, REEDER R J, WITHERS S H, et al. EXAFS study of rare-earth element coordination in calcite[J]. Geochimica et Cosmochimica Acta, 2002, 66(16):2875-2885.
DOI URL |
[1] | SONG Yan, DONG Shaochun, HU Huan, WANG Rucheng. Global temporospatial distribution patterns of Nb/Ta-bearing minerals based on big data analytics [J]. Earth Science Frontiers, 2023, 30(5): 197-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||