Earth Science Frontiers ›› 2022, Vol. 29 ›› Issue (1): 160-175.DOI: 10.13745/j.esf.sf.2021.8.13
Previous Articles Next Articles
XU Lingang1,2(), FU Xuerui1, YE Huishou3, ZHENG Wei3, CHEN Bo4, FANG Zhenglong4
Received:
2021-04-25
Revised:
2021-06-22
Online:
2022-01-25
Published:
2022-02-22
CLC Number:
XU Lingang, FU Xuerui, YE Huishou, ZHENG Wei, CHEN Bo, FANG Zhenglong. Geochemical composition and paleoceanic environment of the Lower Cambrian black shale-hosted Qianjiaping vanadium deposit in the southern Qinling Region[J]. Earth Science Frontiers, 2022, 29(1): 160-175.
[1] | 李胜荣, 高振敏. 湘黔寒武系底部黑色岩系贵金属元素来源示踪[J]. 中国科学D辑: 地球科学, 2000, 30(2):169-174. |
[2] | 孙晓明, 王敏, 薛婷, 等. 华南下寒武统黑色岩系铂多金属矿中黄铁矿流体包裹体的He-Ar同位素体系[J]. 高校地质学报, 2003, 9(4):661-666. |
[3] | 王立社. 陕西秦岭黑色岩系及其典型矿床地质地球化学与成矿规律研究[D]. 西安: 西北大学, 2009: 1-165. |
[4] | OCH L M. Biogeochemical cycling through the Neoproterozoic—Cambrian transition in China: an integrated study of redox-sensitive elements[D]. London: University College London, 2011: 1-266. |
[5] |
XU L G, LEHMANN B, MAO J W, et al. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: a reassessment[J]. Economic Geology, 2011, 106:511-522.
DOI URL |
[6] |
XU L G, LEHMANN B, MAO J W. Seawater contribution to polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China: evidence from Mo isotope, PGE, trace element and REE geochemistry[J]. Ore Geology Reviews, 2013, 52:66-84.
DOI URL |
[7] |
XU L G, LEHMANN B, MAO J W, et al. Strontium, sulfur, carbon, and oxygen isotope geochemistry of the Early Cambrian strata-bound barite and witherite deposits of the Qinling-Daba region, northern margin of the Yangtze Craton, China[J]. Economic Geology, 2016, 111(3):695-718.
DOI URL |
[8] |
MAO J W, LEHMANN B, DU A D, et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 2002, 97(5):1051-1061.
DOI URL |
[9] |
JIANG S Y, CHEN Y Q, LING H F, et al. Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China[J]. Mineralium Deposita, 2006, 41(5):453-467.
DOI URL |
[10] |
JIANG S Y, YANG J H, LING H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2):217-228.
DOI URL |
[11] |
CAO J, HU K, ZHOU J, et al. Organic clots and their differential accumulation of Ni and Mo within Early Cambrian black-shale-hosted polymetallic Ni-Mo deposits, Zunyi, South China[J]. Journal of Asian Earth Sciences, 2013, 62:531-536.
DOI URL |
[12] |
XU J, ZHU S Y, LUO T Y, et al. Uranium mineralization and its radioactive decay-induced carbonization in a black shale-hosted polymetallic sulfide ore layer, Southwest China[J]. Economic Geology, 2015, 110(6):1643-1652.
DOI URL |
[13] | 朱红周, 侯俊富, 王淑利. 南秦岭千家坪钒矿床地质地球化学特征与钒的富集规律[J]. 中国地质, 2010, 37(5):1490-1500. |
[14] | 朱红周, 侯俊富, 原连肖, 等. 南秦岭千家坪钒矿床钒赋存状态研究[J]. 地质与勘探, 2010, 46(4):643-648. |
[15] | 李赛赛. 陕西省商南县—山阳县下寒武统黑色岩系中钒矿田地质构造特征及成因探讨[D]. 西安: 长安大学, 2012: 1-146. |
[16] | 谭兴华, 王瑞廷, 廖俊红, 等. 宁陕县大构园沟钒矿床地质特征及矿床成因探讨[J]. 西北地质, 2014, 47(1):171-178. |
[17] | 李赛赛, 刘战庆. 南秦岭早寒武世黑色岩系钒矿床成因研究进展[J]. 桂林理工大学学报, 2015, 35(4):774-779. |
[18] | 张贵山, 温汉捷, 郑厚义. 千家坪钒矿床形成机制初步探讨[J]. 矿床地质, 2002, 21(增刊):349-352. |
[19] | 郑厚义. 扬子地块北缘黑色岩系的铂族元素富集特征: 以千家坪矿区为例[J]. 矿物学报, 2009, 29(增刊):161-162. |
[20] |
DONG Y P, ZHANG G W, NEUBAUER F, et al. Tectonic evolution of the Qinling orogeny, China: review and synjournal[J]. Journal of Asian Earth Sciences, 2011, 41(3):213-237.
DOI URL |
[21] | 刘家军, 吴胜华, 柳振江, 等. 南秦岭大型钡成矿带中毒重石矿床成因新认识: 来自单个流体包裹体证据[J]. 地学前缘, 2010, 17(2):222-238. |
[22] |
DONG S W, GAO R, YIN A, et al. What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China[J]. Geology, 2013, 41(6):671-674.
DOI URL |
[23] | 胡娟, 刘晓春, 陈龙耀, 等. 扬子克拉通北缘约2.5 Ga岩浆事件: 来自南秦岭陡岭杂岩锆石U-Pb年代学和Hf同位素证据[J]. 科学通报, 2013, 58(34):3579-3588. |
[24] | 查显锋. 南秦岭佛坪隆起的构造过程及成因机制[D]. 西安: 西北大学, 2010: 1-59. |
[25] | 李建华, 张岳桥, 徐先兵, 等. 北大巴山凤凰山岩体锆石U-Pb LA-ICP-MS年龄及其构造意义[J]. 地质论评, 2012, 58(3):581-593. |
[26] | 邹先武, 段其发, 汤朝阳, 等. 北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征[J]. 中国地质, 2011, 38(2):282-291. |
[27] | 许光, 王坤明, 王宗起, 等. 北大巴山花栎村镁铁质岩地球化学、 年代学及其构造环境制约[J]. 地质通报, 2018, 37(7):1279-1290. |
[28] |
LAWRENCE M G, GREIG A, COLLERSON K D, et al. Rare earth element and yttrium variability in south east Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1):39-72.
DOI URL |
[29] | MCLENNAN S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1):169-200. |
[30] |
PIPER D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks[J]. Chemical Geology, 1994, 114(1/2):95-114.
DOI URL |
[31] |
JOHNSON K M, GRIMM K A. Opal and organic carbon in laminated diatomaceous sediments: Saanich Inlet, Santa Barbara Basin and the Miocene Monterey Formation[J]. Marine Geology, 2001, 174(1/2/3/4):159-175.
DOI URL |
[32] |
BAU M, DULSKI P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2):37-55.
DOI URL |
[33] |
SCHRÖDER S, GROTZINGER J P. Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society, London, 2007, 164(1):175-187.
DOI URL |
[34] | NOZAKI Y. A fresh look at element distribution in the North Pacific[J]. EOS, 1997, 78(21):221. |
[35] |
TOSTEVIN R, SHIELDS G A, TARBUCK G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438:146-162.
DOI URL |
[36] | 侯俊富. 南秦岭下寒武统黑色岩系中金-钒成矿特征及成矿规律[D]. 西安: 西北大学, 2008: 1-87. |
[37] | 张复新, 王立社, 侯俊富. 秦岭造山带黑色岩系与金属矿床类型及成矿系列[J]. 中国地质, 2009, 36(3):694-704. |
[38] |
WEN H J, FAN H F, TIAN S H, et al. The formation conditions of the Early Ediacaran cherts, South China[J]. Chemical Geology, 2016, 430:45-69.
DOI URL |
[39] |
SVERJENSKY D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1):70-78.
DOI URL |
[40] |
TEPE N, BAU M. Behavior of rare earth elements and yttrium during simulation of arctic estuarine mixing between glacial-fed river waters and seawater and the impact of inorganic (nano-) particles[J]. Chemical Geology, 2016, 438:134-145.
DOI URL |
[41] |
XU L G, FRANK A B, LEHMANN B, et al. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity[J]. Scientific Reports, 2019, 9:15056.
DOI URL |
[42] |
MARCHIG V, GUNDLACH H, MÖLLER P, et al. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments[J]. Marine Geology, 1982, 50(3):241-256.
DOI URL |
[43] | BOSTRÖM K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[M]//RONA P A. Hydrothermal processes at seafloor spreading centers. Berlin: Springer, 1983: 473-489. |
[44] |
PETER J M, GOODFELLOW W D. Mineralogy, bulk and rare earth element geochemistry of massive sulphide-associated hydrothermal sediments of the Brunswick Horizon, Bathurst Mining Camp, New Brunswick[J]. Canadian Journal of Earth Science, 1996, 33(2):252-283.
DOI URL |
[45] |
YU W C, ALGEO T J, DU Y S, et al. Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459:321-337.
DOI URL |
[46] |
ALIBO D S, NOZAKI Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):363-372.
DOI URL |
[47] | HEIN J R, KOSCHINSK A, BAU M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Handbook of marine mineral deposits. Boca Roton: CRC Press, 2000: 239-279. |
[48] | KAMBER B S, WEBB G E. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history[J]. Geochimica et Cosmochimica Acta, 2001, 63(15):2509-2525. |
[49] |
CABRAL A R, CREASER R A, NÄGLER T, et al. Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil[J]. Chemical Geology, 2013, 362:91-104.
DOI URL |
[50] |
SCHIJF J, DE BAAR H J W, WIJBRANS J R, et al. Dissolved rare earth elements in the Black Sea[J]. Deep Sea Research, Part A: Oceanographic Research Papers, 1991, 38:S805-S823.
DOI URL |
[51] |
TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2):12-32.
DOI URL |
[52] |
JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4):111-129.
DOI URL |
[53] |
RIMMER S M. Geochemical paleoredox indicators in Devonian—Mississippian black shales, central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4):373-391.
DOI URL |
[1] | ZHU Ziyi, ZHOU Fei, WANG Yu, ZHOU Tong, HOU Zhaoliang, QIU Kunfeng. Machine learning-based approach for zircon classification and genesis determination [J]. Earth Science Frontiers, 2022, 29(5): 464-475. |
[2] | DONG Hongkun, WAN Shiming, LIU Chang, ZHAO Debo, ZENG Zhigang, LI Anchun. Mineralogical and geochemical constraints on the origin of rhythmic layering of Late Miocene reddish-brown and greenish-gray sediments in the northern South China Sea [J]. Earth Science Frontiers, 2022, 29(4): 42-54. |
[3] | DENG Miao, WEI Chunwan, XU Cheng, SHI Aiguo, LI Zuoqi, FAN Chaoxi, KUANG Guangxi. Rare earth mineralization in Bayan Obo super-large deposit: A review [J]. Earth Science Frontiers, 2022, 29(1): 14-28. |
[4] | ZHOU Yongsheng, DAI Wenhao. Transient creep during crustal brittle-plastic transition and deformation mechanism of postseismic relaxation [J]. Earth Science Frontiers, 2022, 29(1): 403-412. |
[5] | ZHANG Baolin, LÜ Guxian, YU Jianguo, LIANG Guanghe, LI Zhiyuan, XU Xingwang, HU Baoqun, WANG Hongcai, BI Minfeng, JIAO Jiangang, WANG Cuizhi. Classification of tectonic deformation lithofacies based on deep geophysical information [J]. Earth Science Frontiers, 2022, 29(1): 413-426. |
[6] | YI Zebang, FU Wei, ZHAO Qin, XU Cheng, LU Jipu. Extraction, characterization and occurrence state of REE-bearing nanoparticles from granite-derived regolith [J]. Earth Science Frontiers, 2022, 29(1): 42-53. |
[7] | DUAN Lei, YANG Shengke, WANG Wenke. Effect of humic acid on the phase distribution of sulfadiazine in shallow groundwater [J]. Earth Science Frontiers, 2021, 28(5): 104-113. |
[8] | HE Mingqian, HUANG Wenhui, JIU Bo. Origin and evolution of gypsum dolomite as a favorable reservoir in the Ordos Basin, China [J]. Earth Science Frontiers, 2021, 28(4): 327-336. |
[9] | ZHAO Pengda, CHEN Yongqing. Digital geology and quantitative mineral exploration [J]. Earth Science Frontiers, 2021, 28(3): 1-5. |
[10] | SHU Degan, HAN Jian. Core value of the Chengjiang fauna: formation of the animal kingdom and the birth of basic human organs [J]. Earth Science Frontiers, 2020, 27(6): 1-27. |
[11] | GUO Junfeng, QIANG Yaqin, HAN Jian, SONG Zuchen, WANG Wenzhe, ZHANG Zhifei. Recent research progress on small shelly fossils from the Cambrian (Terreneuvian) Yanjiahe Formation in the Three Gorges area [J]. Earth Science Frontiers, 2020, 27(6): 104-115. |
[12] | YU Xiaoyan, ZHENG Yuyu, ZHANG Tingya, GUO Hongshu, LONG Zhengyu, WAN Jiaxin, ZHANG Cun. The genesis of color zonation of emerald from Dayakou, Yunnan Province: implication for multi-stage mineralization [J]. Earth Science Frontiers, 2020, 27(5): 116-125. |
[13] | GUO Fei, WANG Zhilin, XU Deru, YU Deshui, DONG Guojun, NING Juntao, KANG Bo, PENG Erke. Trace element characteristics of sphalerite in the Lishan Pb-Zn-Cu polymetallic deposit in Hunan Province and the metallogenic implications [J]. Earth Science Frontiers, 2020, 27(4): 66-81. |
[14] | DUAN Wenjing, ZHAO Fufeng, REN Kefa, LIU Xianfan, DENG Jianghong, YANG Mimi, CHU Yating. Zircon U-Pb dating and trace element geochemistry in syenite porphyry and granite xenoliths from Liuhe, western Yunnan, China [J]. Earth Science Frontiers, 2020, 27(3): 154-167. |
[15] | HONG Dongming, JIAN Xing, HUANG Xin, ZHANG Wei, MA Jinge. Garnet trace elemental geochemistry and its application in sedimentary provenance analysis [J]. Earth Science Frontiers, 2020, 27(3): 191-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||