Earth Science Frontiers ›› 2021, Vol. 28 ›› Issue (3): 128-138.DOI: 10.13745/j.esf.sf.2021.1.6
Previous Articles Next Articles
KONG Weihao1,2,3(), XIAO Keyan1,*(
), CHEN Jianping2,3, SUN Li1, LI Nan1
Received:
2021-01-02
Revised:
2021-01-20
Online:
2021-05-20
Published:
2021-05-23
Contact:
XIAO Keyan
CLC Number:
KONG Weihao, XIAO Keyan, CHEN Jianping, SUN Li, LI Nan. A combined prediction method for reducing prediction uncertainty in the quantitative mineral resources prediction[J]. Earth Science Frontiers, 2021, 28(3): 128-138.
Fig.6 Volumetric strain rate (VSR) distribution diagram (2D section) for the initial state (left) and after 9×109 s simulation (right). Modified after [12].
控矿要素 | 成矿预测因子 | 特征变量 | 特征值 |
---|---|---|---|
地层 | 有利地层信息 | 有利成矿地层 | 大理岩地层 |
构造 | 构造展布特征分析 | 主干断裂分析 | (0.084,0.102) |
局部断裂分析 | (0.01,63.34) | ||
构造对称特征 | 构造中心对称度 | (0.01,1.0) | |
断裂影响范围 | 断裂影响范围 | 断裂缓冲区 | |
夕卡岩 | 成矿有利蚀变岩体 | 成矿有利蚀变岩体 | 夕卡岩 |
岩体 | 岩浆热液活动标志 | 岩体推断区域 | 花岗闪长岩体 |
Table 1 List of variables in the comprehensive prediction model
控矿要素 | 成矿预测因子 | 特征变量 | 特征值 |
---|---|---|---|
地层 | 有利地层信息 | 有利成矿地层 | 大理岩地层 |
构造 | 构造展布特征分析 | 主干断裂分析 | (0.084,0.102) |
局部断裂分析 | (0.01,63.34) | ||
构造对称特征 | 构造中心对称度 | (0.01,1.0) | |
断裂影响范围 | 断裂影响范围 | 断裂缓冲区 | |
夕卡岩 | 成矿有利蚀变岩体 | 成矿有利蚀变岩体 | 夕卡岩 |
岩体 | 岩浆热液活动标志 | 岩体推断区域 | 花岗闪长岩体 |
Fig.10 Favorable ore-forming block with posterior probability threshold greater ≥0.77 (green) or ≥0.91 (red) by weight of evidence method. Modified after [12].
[1] | 肖克炎, 孙莉, 朱裕生. 矿产资源评价理论[J]. 地质论评, 2016, 62:63-64. |
[2] | 陈永清, 赵鹏大. 综合致矿地质异常信息提取与集成[J]. 地球科学: 中国地质大学学报, 2009, 34(2):325-335. |
[3] | 赵鹏飞. 基于FLAC3D、 ANSYS的成矿动力学数值模拟[D]. 北京: 中国地质大学(北京), 2014. |
[4] | 孙涛. 铜陵冬瓜山铜矿床的三维形态及成矿动力学计算模拟[D]. 长沙: 中南大学, 2010. |
[5] | 于萍萍, 陈建平, 柴福山, 等. 基于地质大数据理念的模型驱动矿产资源定量预测[J]. 地质通报, 2015, 34(7):1333-1343. |
[6] | 李诗, 陈建平, 向杰, 等. 基于AlexNet网络的二维找矿预测: 以松桃—花垣地区沉积型锰矿为例[J]. 地质通报, 2019, 38(12):2022-2032. |
[7] | 向杰, 陈建平, 肖克炎, 等. 基于机器学习的三维矿产定量预测: 以四川拉拉铜矿为例[J]. 地质通报, 2019, 38(12):2010-2021. |
[8] | 袁峰, 张明明, 李晓晖, 等. 成矿预测:从二维到三维[J]. 岩石学报, 2019, 35(12):3863-3874. |
[9] | 肖克炎, 李楠, 孙莉, 等. 基于三维信息技术大比例尺三维立体矿产预测方法及途径[J]. 地质学刊, 2012, 36(3):9-16. |
[10] | 肖克炎. “深部综合信息矿产资源预测评价”专辑特邀主编寄语[J]. 地球学报, 2020, 41(2):130-134. |
[11] | 陈建平, 于萍萍, 史蕊, 等. 区域隐伏矿体三维定量预测评价方法研究[J]. 地学前缘, 2014, 21(5):211-220. |
[12] |
WANG Y, Chen J P, JIA D H. Three dimensional mineral potential mapping for reducing multiplicity and uncertainty: Kaerqueka polymetallic deposit, Qinghai Province, China[J]. Natural Resources Research, 2020, 29:365-393.
DOI URL |
[13] |
LI Z H, CHI G X, KATHRYN M B, et al. Numerical simulation of strain localization and its relationship to formation of the Sue unconformity-related uranium deposits, eastern Athabasca Basin, Canada[J]. Ore Geology Reviews, 2018, 101:17-31.
DOI URL |
[14] |
ZOU Y H, LIU Y, PAN Y, et al. Numerical simulation of hydrothermal mineralization associated with simplified chemical reactions in Kaerqueka polymetallic deposit, Qinghai, China[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(1):165-177.
DOI URL |
[15] | 陈建平. 深地矿产资源定量预测理论与方法[M]. 北京: 地质出版社, 2010: 1. |
[16] | 赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5):1-10. |
[17] | 舒良树. 普通地质学[M]. 北京: 地质出版社, 2010. |
[18] | 左仁广, 夏庆霖. 矿产勘查与评价中的风险与不确定性[J]. 矿床地质, 2010, 29(增刊1):769-770. |
[19] | 左仁广. 基于地质异常的矿产资源定量化预测与不确定性评价[D]. 北京: 中国地质大学(北京), 2009. |
[20] | 陶晓风, 吴德超. 普通地质学[M]. 北京: 地质出版社, 2007. |
[21] | 赵鹏大, 胡旺亮, 李紫金. 矿床统计预测[M]. 武汉: 中国地质大学出版社, 1994. |
[22] | 胡彬, 陈建平, 向杰, 等. 信息不对称条件下的矿产资源三维预测评价: 以陕西小秦岭金矿田为例[J]. 金属矿山, 2017, 8:127-137. |
[23] |
CHRISTAKOS G. A bayesian/maximum-entropy view to the spatial estimation problem[J]. Mathematical Geology, 1990, 22(7):763-777.
DOI URL |
[24] | 任梦依. 海底多金属硫化物定量预测理论与实践[D]. 北京: 中国地质大学(北京), 2016. |
[25] | 常慧娟. 矿床模型指导下的隐伏矿体正反演预测研究[D]. 北京: 中国地质大学(北京), 2015. |
[26] | 於崇文. 成矿作用动力学: 理论体系和方法论[J]. 地学前缘, 1994, 1(3/4):54-82. |
[27] | 池国祥, 薛春纪. 成矿流体动力学的原理、 研究方法及应用[J]. 地学前缘, 2011, 18(5):1-18. |
[28] |
SCHELLART W P, STRAK V. A review of analogue modelling of geodynamic processes: approaches, scaling, materials and quantification, with an application to subduction experiments[J]. Journal of Geodynamics, 2016, 100:7-32.
DOI URL |
[29] | ISMAIL-ZADEH A, TACKLEY P. Computational methods for geodynamics[M]. Cambridge: Cambridge University Press, 2010. |
[30] | TARAS V G. Introduction to numerical geodynamic modelling[M]. Cambridge: Cambridge University Press, 2010. |
[31] | 刘可禹, 刘建良. 盆地和含油气系统模拟(BPSM)研究现状及发展趋势[J]. 石油科学通报, 2017, 2(2):161-175. |
[32] |
ZHANG Y, SORJONEN-WARD P, ORD A. Modelling fluid transport associated with mineralization and deformation in the Outokumpu Cu-Zn-Co deposit, Finland[J]. Journal of Geochemical Exploration, 2006, 89(1):465-469.
DOI URL |
[33] |
ZHANG Y, LIN G, ROBERTS P, et al. Numerical modelling of deformation and fluid flow in the Shuikoushan district, Hunan Province, South China[J]. Ore Geology Reviews, 2007, 31(1):261-278.
DOI URL |
[34] | 陈良波. 基于FLAC3D的成矿动力学数值模拟与成矿预测[D]. 衡阳: 南华大学, 2018. |
[35] | 陈亮, 陈良波, 唐振平, 等. 湖南金狮岭地区成矿动力学数值模拟与成矿预测[J]. 南华大学学报(自然科学版), 2018, 32(2):67-74. |
[36] |
SHELDON H A. Simulation of magmatic and metamorphic fluid production coupled with deformation, fluid flow and heat transport[J]. Computers and Geosciences, 2009, 35(11):2275-2281.
DOI URL |
[37] | 张权平, 陈建平, 武彦博. 山西浑源罗框金矿隐状矿体三维预测[J]. 地质学刊, 2018, 42(3):412-421. |
[38] | 刘亮明, 疏志明, 赵崇斌, 等. 夕卡岩矿床的汇流扩容空间控矿机制及其对深部找矿的意义: 以铜陵—安庆地区为例[J]. 岩石学报, 2008, 24(8):1848-1856. |
[39] | 赵义来, 刘亮明. 复杂形态岩体接触带成矿耦合动力学三维数值模拟: 以安庆铜矿为例[J]. 大地构造与成矿学, 2011, 35(1):128-136. |
[40] | 贾蔡, 袁峰, 张明明, 等. 宁芜盆地白象山铁矿床成矿作用过程数值模拟[J]. 岩石学报, 2014, 30(4):1031-1040. |
[41] | 于淼, 陈建平, 龚建华. 含矿热液运移过程的数值模拟研究: 以个旧锡矿为例[C]// 第十二届全国数学地质与地学信息学术研讨会论文集. 乌鲁木齐: 中国地质学会数学地质与地学信息专业委员会, 2013: 186-195. |
[42] |
YANG J, LARGE R R, BULL S, et al. Basin-scale numerical modeling to test the role of Buoyancy-Driven fluid flow and heat transfer in the Formation of stratiform Zn-Pb-Ag deposits in the Northern Mount Isa Basin[J]. Economic Geology, 2006, 101(6):1275-1292.
DOI URL |
[43] |
POTMA W, ROBERTS P A, SCHAUBS P M, et al. Predictive targeting in Australian orogenic-gold systems at the deposit to district scale using numerical modelling[J]. Australian Journal of Earth Sciences, 2008, 55(1):101-122.
DOI URL |
[44] |
ZHAO C B, HOBBS B E, ORD A. Theoretical and numerical investigation into roles of geofluid flow in ore forming systems: Integrated mass conservation and generic model approach[J]. Journal of Geochemical Exploration, 2010, 106(1):251-260.
DOI URL |
[45] | FERZIGER J H, PERIC M. Computational methods for fluid dynamics[M]. Berlin: Springer, 2002. |
[46] | ZHONG S J, YUEN D A, MORESI L N. Numerical methods for mantle convection[J]. Treatise on Geophysics, 2007, 7:227-252. |
[47] | ORD A, OLIVER N H S. Mechanical controls on fluid flow during regional metamorphism: some numerical models[J]. Journal of Metamorphic Geology, 1997: 345-359. |
[48] | 赵鹏大, 孟宪国. 地质异常与矿产预测[J]. 地球科学: 中国地质大学学报, 1993, 18(1):39-47. |
[49] | 赵鹏大. 三联式资源定量预测与评价: 数字找矿理论与实践探讨[J]. 地球科学: 中国地质大学学报, 2002, 27(5):482-489. |
[50] | 赵鹏大, 陈建平, 张寿庭. “三联式”成矿预测新进展[J]. 地学前缘, 2003, 10(2):455-463. |
[51] | 陈建平, 陈勇, 王全明. 基于GIS的多元信息成矿预测研究: 以赤峰地区为例[J]. 地学前缘, 2008, 15(4):18-26. |
[52] | 肖克炎, 张晓华, 王四龙, 等. 矿产资源GIS 评价系统[M]. 北京: 地质出版社, 2000. |
[53] | 肖克炎, 孙莉, 阴江宁, 等. 全国重要矿产预测评价[J]. 地球学报, 2014, 35(5):543-551. |
[54] | 陈建平, 吕鹏, 吴文, 等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 2007, 14(5):54-62. |
[55] | 陈建平, 陈勇, 曾敏, 等. 基于数字矿床模型的新疆可可托海3号脉三维定位定量研究[J]. 地质通报, 2008, 155(4):552-559. |
[56] | 陈建平, 尚北川, 吕鹏, 等. 云南个旧矿区某隐伏矿床大比例尺三维预测[J]. 地质科学, 2009, 44(1):324-337. |
[57] | 万丽, 王庆飞, 高帮飞, 等. 成矿预测数据统计方法[J]. 现代地质, 2005, 19(4), 615-620. |
[58] | 吕鹏. 基于立方体预测模型的隐伏矿体三维预测和系统开发[D]. 北京: 中国地质大学(北京), 2007. |
[59] | 赵鹏大, 陈永清. 科学选靶的理论与途径[J]. 地球科学: 中国地质大学学报, 2011, 36(2):181-188. |
[60] | HANTSCHEL T, KAUERAUF A I. Fundamentals of basin and petroleum systems modeling[M]. Berlin: Springer, 2009. |
[1] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[2] | YUAN Feng, LI Xiaohui, TIAN Weidong, ZHOU Guanqun, WANG Jinju, GE Can, GUO Xianzheng, ZHENG Chaojie. Key issues in three-dimensional predictive modeling of mineral prospectivity [J]. Earth Science Frontiers, 2024, 31(4): 119-128. |
[3] | WANG Gongwen, ZHANG Shouting, YAN Changhai, PANG Zhenshan, WANG Hongwei, FENG Zhankui, DONG Hong, CHENG Hongtao, HE Yaqing, LI Ruixi, ZHANG Zhiqiang, HUANG Leilei, GUO Nana. Resource-environmental joint forecasting in the Luanchuan mining district, China through big data mining and 3D/4D modeling [J]. Earth Science Frontiers, 2021, 28(3): 139-155. |
[4] | AN Wentong, CHEN Jianping, ZHU Pengfei. A two-way forecasting method based on numerical simulation of mineralization process for the prediction of concealed ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 97-111. |
[5] | XIA Qinglin, ZHAO Mengyu, WANG Xiaochen, LENG Shuai, LI Tongfei, XIONG Shuangcai. Quantitative prediction of molybdenum-copper polymetallic mineral resources in the Xindalai grassland-covered area of Inner Mongolia based on geological anomalies [J]. Earth Science Frontiers, 2021, 28(3): 56-66. |
[6] | ZUO Renguang. Data science-based theory and method of quantitative prediction of mineral resources [J]. Earth Science Frontiers, 2021, 28(3): 49-55. |
[7] | . The method of seismic random noise blind separation based on JADE. [J]. Earth Science Frontiers, 2011, 18(3): 302-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||