Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 471-482.DOI: 10.13745/j.esf.sf.2024.7.55
Previous Articles Next Articles
HU Jinghong1,2(), LIAO Songze3,*(
), CAI Yidong1,2, LU Jun1,2
Received:
2024-03-05
Revised:
2024-06-16
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
HU Jinghong, LIAO Songze, CAI Yidong, LU Jun. Study of fracture propagation uniformity in deep shale reservoir[J]. Earth Science Frontiers, 2025, 32(4): 471-482.
参数类型 | 地质参数 | ||||||
---|---|---|---|---|---|---|---|
参数名/ 单位 | 储层最小水平 地应/MPa | 储层最大水平 地应/MPa | 储隔层水平地 应力差/MPa | 弹性模量/ GPa | 泊松比 | 储层断裂韧性/ (MPa·m0.5) | 隔层断裂韧性/ (MPa·m0.5) |
参数值 | 65 | 75 | 5 | 20 | 0.2 | 1 | 2 |
参数名/ 单位 | 岩石抗拉 强度/MPa | 储层厚度/m | 岩石摩擦 系数 | 天然裂缝 长度/m | 天然裂缝与水平 井筒夹角/(°) | 天然裂缝内 聚力/MPa | |
参数值 | 4.5 | 30 | 0.6 | 5 | 60 | 1.5 | |
参数类型 | 工程参数 | ||||||
参数名/ 单位 | 压裂液黏度/ (mPa·s) | 压裂液密度/ (kg·m-3) | 施工排量/ (m3·min) | 射孔数/孔 | 孔眼直径/ mm | Carter滤失系数/ (m·min-0.5) | 簇间距/ m |
参数值 | 5 | 1 050 | 8 | 12 | 11 | 0.000 05 | 4 |
Table 1 Base parameters of the model
参数类型 | 地质参数 | ||||||
---|---|---|---|---|---|---|---|
参数名/ 单位 | 储层最小水平 地应/MPa | 储层最大水平 地应/MPa | 储隔层水平地 应力差/MPa | 弹性模量/ GPa | 泊松比 | 储层断裂韧性/ (MPa·m0.5) | 隔层断裂韧性/ (MPa·m0.5) |
参数值 | 65 | 75 | 5 | 20 | 0.2 | 1 | 2 |
参数名/ 单位 | 岩石抗拉 强度/MPa | 储层厚度/m | 岩石摩擦 系数 | 天然裂缝 长度/m | 天然裂缝与水平 井筒夹角/(°) | 天然裂缝内 聚力/MPa | |
参数值 | 4.5 | 30 | 0.6 | 5 | 60 | 1.5 | |
参数类型 | 工程参数 | ||||||
参数名/ 单位 | 压裂液黏度/ (mPa·s) | 压裂液密度/ (kg·m-3) | 施工排量/ (m3·min) | 射孔数/孔 | 孔眼直径/ mm | Carter滤失系数/ (m·min-0.5) | 簇间距/ m |
参数值 | 5 | 1 050 | 8 | 12 | 11 | 0.000 05 | 4 |
[1] |
牟汉生, 薛欣宇, 姜在兴. 燕山构造带东段中生界盆地页岩油气地质研究现状与展望[J]. 地学前缘, 2023, 30(2): 282-295.
DOI |
[2] | 聂海宽, 党伟, 张珂, 等. 中国页岩气研究与发展20年: 回顾与展望[J]. 天然气工业, 2024, 44(3): 20-52. |
[3] | 邹才能, 董大忠, 熊伟, 等. 中国页岩气新区带、新层系和新类型勘探进展、挑战及对策[J]. 石油与天然气地质, 2024, 45(2): 309-326. |
[4] |
丁文龙, 王垚, 王生晖, 等. 页岩储层非构造裂缝研究进展与思考[J]. 地学前缘, 2024, 31(1): 297-314.
DOI |
[5] |
翁定为, 雷群, 管保山, 等. 中美页岩油气储层改造技术进展及发展方向[J]. 石油学报, 2023, 44(12): 2297-2307.
DOI |
[6] | 何骁, 陈更生, 吴建发, 等. 四川盆地南部地区深层页岩气勘探开发新进展与挑战[J]. 天然气工业, 2022, 42(8): 24-34. |
[7] |
吴晓智, 柳庄小雪, 王建, 等. 我国油气资源潜力、分布及重点勘探领域[J]. 地学前缘, 2022, 29(6): 146-155.
DOI |
[8] | 张少华, 邓小江, 冯许魁, 等. 川南地区深层页岩气地球物理勘探技术新进展与攻关方向[J]. 石油地球物理勘探, 2023, 58(1): 238-248. |
[9] | LIAO S Z, HU J H, ZHANG Y. Numerical evaluation of refracturing fracture deflection behavior under non-uniform pore pressure using XFEM[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111074. |
[10] | LIAO S Z, HU J H, ZHANG Y. Investigation on the influence of multiple fracture interference on hydraulic fracture propagation in tight reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 211:110160. |
[11] | DENG Y H, XIA Y, WANG D, et al. A study of Hydraulic fracture propagation in laminated shale using extended finite element method[J]. Computers and Geotechnics, 2024, 166: 105961. |
[12] | 曾波, 冯宁鑫, 姚志广, 等. 深层页岩气储层水力压裂裂缝扩展影响机理[J]. 断块油气田, 2024, 31(2): 246-256. |
[13] | LIAO S Z, HU J H, ZHANG Y. Mechanism of hydraulic fracture vertical propagation in deep shale formation based on elastic-plastic model[J]. Engineering Fracture Mechanics, 2024, 295: 109806. |
[14] |
胡国农, 郝世彦, 樊平天, 等. 鄂尔多斯盆地NNW油区再开发潜力分析[J]. 地学前缘, 2023, 30(1): 106-115.
DOI |
[15] | LI M H, ZHOU F J, WANG B, et al. Numerical simulation on the multiple planar fracture propagation with perforation plugging in horizontal wells[J]. Petroleum Science, 2022, 19(5): 2253-2267. |
[16] | UGUETO C G A, HUCKABEE P T, MOLENAAR M M, et al. Perforation cluster efficiency of cemented plug and perf limited entry completions: insights from fiber optics diagnostics[C]// SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA: Society of Petroleum Engineers, 2016. |
[17] | MILLER C, WATERS G, RYLANDER E. Evaluation of production log data from horizontal wells drilled in organic shales[C]// North American Unconventional Gas Conference and Exhibition. The Woodlands, Texas, USA: Society of Petroleum Engineers, 2011. |
[18] | ZHANG F S, WANG X H, TANG M R, et al. Numerical investigation on hydraulic fracturing of extreme limited entry perforating in plug-and-perforation completion of shale oil reservoir in Changqing oilfield, China[J]. Rock Mechanics and Rock Engineering, 2021, 54(6): 2925-2941. |
[19] | LIU C, ZHAO A G, WU H G. Competition growth of biwing hydraulic fractures in naturally fractured reservoirs[J]. Gas Science and Engineering, 2023, 109: 204873. |
[20] | LI M H, ZHOU F J, YUAN L S, et al. Numerical modeling of multiple fractures competition propagation in the heterogeneous layered formation[J]. Energy Reports, 2021, 7: 3737-3749. |
[21] | LI J W, WU K. An efficient model for hydraulic fracture height growth considering the effect of bedding layers in unconventional shale formations[J]. SPE Journal, 2022, 27(6): 3740-3756. |
[22] | CHEN X Y, ZHAO J Z, LI Y M, et al. Numerical simulation of simultaneous hydraulic fracture growth within a rock layer: implications for stimulation of low-permeability reservoirs[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(12): 13227-13249. |
[23] | 陈曦宇. 水平井分段多簇压裂多裂缝非均匀扩展现象数值模拟研究[D]. 成都: 西南石油大学, 2018. |
[24] | CHEN M, GUO T K, ZOU Y S, et al. Numerical simulation of proppant transport coupled with multi-planar-3D hydraulic fracture propagation for multi-cluster fracturing[J]. Rock Mechanics and Rock Engineering, 2022, 55(2): 565-590. |
[25] | HUANG G P, HU X D, ZHOU F J, et al. A new multi-cluster fracturing simulation model coupled with perforation erosion: based on the continuous-discontinuous method[J]. Rock Mechanics and Rock Engineering, 2023, 56(6): 3887-3901. |
[26] | WANG Y P, GUO T K, CHEN M, et al. Numerical study on simultaneous propagation of multiple fractures: a method to design nonuniform perforation and in-stage diversion[J]. SPE Journal, 2023, 28(5): 2514-2533. |
[27] | SIMONSON E R, ABOU-SAYED A S, CLIFTON R J. Containment of massive hydraulic fractures[J]. Society of Petroleum Engineers Journal, 1978, 18(1): 27-32. |
[28] | WANG Z, YANG L F, GAO R, et al. Numerical analysis of zipper fracturing using a non-planar 3D fracture model[J]. Frontiers in Earth Science, 2022, 10: 808183. |
[29] | MEHRABI M, PEI Y L, HADDAD M, et al. Quasi-static fracture height growth in laminated reservoirs:impacts of stress and toughness barriers, horizontal well landing depth, and fracturing fluid density[C]// SPE/AAPG/SEG Unconventional Resources Technology Conference. Houston, Texas, USA: Society of Exploration Geophysicists, 2021. |
[30] | XU W, ZHAO J Z, RAHMAN S, et al. A comprehensive model of a hydraulic fracture interacting with a natural fracture: analytical and numerical solution[J]. Rock Mechanics and Rock Engineering, 2019, 52: 1095-1113. |
[31] | WANG H Y, YANG S G, ZHOU D S, et al. Influence of non-intersecting cemented natural fractures on hydraulic fracture propagation behavior[J]. Journal of Structural Geology, 2024, 181: 105111. |
[32] | TANG X H, ZHU H Y, ZHAO P, et al. A numerical study of complex fractures propagation path in naturally fractured gas shale: reorientation, deflection and convergence[J]. Gas Science and Engineering, 2024, 121: 205186. |
[33] | 黄超. 水平井分段压裂多裂缝扩展规律研究[D]. 成都: 西南石油大学, 2017. |
[34] | 范金燕, 袁亚湘. 非线性方程组数值方法[M]. 北京: 科学出版社, 2018. |
[35] | 李勇. 特低渗透油藏水力压裂中的若干计算与裂缝扩展分析[D]. 北京: 中国石油大学(北京), 2008. |
[36] | CHENG W, JIN Y, CHEN M, et al. A criterion for identifying hydraulic fractures crossing natural fractures in 3D space[J]. Petroleum Exploration and Development, 2014, 41(3): 371-376. |
[37] | QIU G Z, CHANG X, LI J, et al. Study on the interaction between hydraulic fracture and natural fracture under highstress[J]. Theoretical and Applied Fracture Mechanics, 2024, 130: 104259. |
[38] | 唐慧莹, 邸元, 吴玉树. 压裂液黏度及注入速率对裂缝网络形态的影响[J]. 浙江科技学院学报, 2017, 29(6): 401-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||