Earth Science Frontiers ›› 2020, Vol. 27 ›› Issue (1): 170-177.DOI: 10.13745/j.esf.2020.1.18
Previous Articles Next Articles
KONG Yanlong1,2,3(), HUANG Yonghui1,2, ZHENG Tianyuan4, LU Renchao5, PAN Sheng1,2,3, SHAO Haibing5, PANG Zhonghe1,2,3
Received:
2019-03-31
Revised:
2019-12-30
Online:
2020-01-20
Published:
2020-01-20
CLC Number:
KONG Yanlong, HUANG Yonghui, ZHENG Tianyuan, LU Renchao, PAN Sheng, SHAO Haibing, PANG Zhonghe. Principle and application of OpenGeoSys for geothermal energy sustainable utilization[J]. Earth Science Frontiers, 2020, 27(1): 170-177.
量符号 | 量名称及单位 | 量符号 | 量名称及单位 |
---|---|---|---|
| 外边界的外法线方向单位矢量 | Γn | Neumann边界条件 |
| 流体比热/(J·m-3·K-1) | qк | 源汇项 |
| 流体密度/(kg·m-3) | | 孔隙度 |
T | 流体温度/℃ | ρβ | β相的密度/(kg·m-3) |
K | 岩石导热系数/(W·m-1·K-1) | Sβ | β相的饱和度 |
q | 热源/(W·m-2) | | 组分к在β相中的质量分数 |
hβ | β相的热焓 | | 绝对渗透率张量 |
| 应力张量 | κrβ | β相的相对渗透率 |
| 重力加速度/(m·s-2) | μβ | β相的黏度/(Pa·s) |
| 主应力/Pa | Pβ | β相的压力/Pa |
Sl | 液相饱和度 | | 组分к在β相中扩散系数 |
Sɡ | 气相饱和度 | G°p,T | 定温压下系统吉布斯函数变化 |
pl | 液相压强/Pa | R | 理想气体常数 |
pɡ | 气相压强/Pa | | 定温压下的化学平衡常数 |
I | 单位矩阵 | | 活度 |
| 热膨胀系数 | | 逸度系数 |
Vn | 体积/m3 | Ci,Cj | 热容 |
Mк | 质量矩阵 | | 反应方程式中的化学计量数 |
| 达西流量 | | 逸度 |
Table 1 Parameters in the coupling equations of OGS
量符号 | 量名称及单位 | 量符号 | 量名称及单位 |
---|---|---|---|
| 外边界的外法线方向单位矢量 | Γn | Neumann边界条件 |
| 流体比热/(J·m-3·K-1) | qк | 源汇项 |
| 流体密度/(kg·m-3) | | 孔隙度 |
T | 流体温度/℃ | ρβ | β相的密度/(kg·m-3) |
K | 岩石导热系数/(W·m-1·K-1) | Sβ | β相的饱和度 |
q | 热源/(W·m-2) | | 组分к在β相中的质量分数 |
hβ | β相的热焓 | | 绝对渗透率张量 |
| 应力张量 | κrβ | β相的相对渗透率 |
| 重力加速度/(m·s-2) | μβ | β相的黏度/(Pa·s) |
| 主应力/Pa | Pβ | β相的压力/Pa |
Sl | 液相饱和度 | | 组分к在β相中扩散系数 |
Sɡ | 气相饱和度 | G°p,T | 定温压下系统吉布斯函数变化 |
pl | 液相压强/Pa | R | 理想气体常数 |
pɡ | 气相压强/Pa | | 定温压下的化学平衡常数 |
I | 单位矩阵 | | 活度 |
| 热膨胀系数 | | 逸度系数 |
Vn | 体积/m3 | Ci,Cj | 热容 |
Mк | 质量矩阵 | | 反应方程式中的化学计量数 |
| 达西流量 | | 逸度 |
Fig.11 Comparison between analytical and numerical solutions in terms of hydraulic pressure and crack length vs. injection fluid volume. Adapted from [17].
Fig.13 Comparison between experimental and simulated results in terms of evolution of hydraulic aperture under varying hydrothermal conditions. Adapted from [19-20].
[1] | 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31. |
[2] |
KONG Y L, PANG Z H, SHAO H B, et al. Recent studies on hydrothermal systems in China: a review[J]. Geothermal Energy, 2014, 2:19.
DOI URL |
[3] | 庞忠和. 地下水运动对地温场的影响: 研究进展综述[J]. 水文地质工程地质, 1987, 14(3):30-34. |
[4] |
KOLDITZ O, BAUER S, BILKE L, et al. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media[J]. Environmental Earth Sciences, 2012, 67(2):589-599.
DOI URL |
[5] | KOLDITZ O, GÖRKE U J, SHAO H, et al. Thermo-hydro-mechanical/chemical processes in porous media: lecture notes in computational science and engineering[M]. Heidelberg: Springer, 2012: 344. |
[6] | KOLDITZ O, SHAO H, WANG W Q, et al. Thermo-hydro-mechanical-chemical processes in fractured porous media: modelling and benchmarking[M]. Heidelberg: Springer, 2016: 217. |
[7] |
BEIER R A, SMITH M D, SPITLER J D. Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis[J]. Geothermics, 2011, 40(1):79-85.
DOI URL |
[8] |
ZHENG T Y, SHAO H B, S. SCHELENZ S, et al. Efficiency and economic analysis of utilizing latent heat from groundwater freezing in the context of borehole heat exchanger coupled ground source heat pump systems[J]. Applied Thermal Engineering, 2016, 105:314-326.
DOI URL |
[9] |
EROL S, FRANCOIS B. Freeze damage of grouting materials for borehole heat exchanger: experimental and analytical evaluations[J]. Geomechanics for Energy and the Environment, 2016, 5:29-41.
DOI URL |
[10] |
ESEN H, INALLI M, ESEN Y. Temperature distributions in boreholes of a vertical ground-coupled heat pump system[J]. Renewable Energy, 2009, 34(12):2672-2679.
DOI URL |
[11] |
ZHENG T Y, MIAO X Y, NAUMOV G, et al. A thermo-hydro-mechanical finite element model with freezing and thawing processes in saturated soils for geotechnical engineering[J]. Environmental Geotechnics, 2019, 6:1-13.
DOI URL |
[12] |
KONG Y L, PANG Z H, SHAO H B, et al. Optimization of well-doublet placement in geothermal reservoirs using numerical simulation and economic analysis[J]. Environmental Earth Sciences, 2017, 76(3):118.
DOI URL |
[13] | AKIN T, GUNEY A, KARGI H. Modeling of calcite scaling and estimation of gas breakout depth in a geothermal well by using PHREEQC [C]//Proceedings of the 40th Workshop on Geothermal Reservoir Engineering. Stanford, California, 2015. |
[14] | 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12):4741-4752. |
[15] | TESTER J W, ANDERSON B J, BATCHELOR A S. et al. The future of geothermal energy: impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century[M]. Cambridge: Massachusetts Institute of Technology Press, 2006: 358. |
[16] | WATANABE N, WANG W, TARON J, et al. Lower-dimensional interface elements with local enrichment: application to coupled hydro-mechanical problems in discretely fractured porous media[J]. International Journal for Numerical Methods in Engineering, 2012, 90(8):1010-1034. |
[17] | YOSHIOKA K, PARISIO F, NAUMOV D, et al. Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing[J]. International Journal on Geomathematics, 2019, 10(1):13. |
[18] |
BOND A, BRUSKY I, CHITTENDEN N, et al. Development of approaches for modelling coupled thermal-hydraulic-mechanical-chemical processes in single granite fracture experiments[J]. Environmental Earth Sciences, 2016, 75(19):1313.
DOI URL |
[19] |
LU R C, NAGEL T, SHAO H, et al. Modeling of dissolution-induced permeability evolution of a granite fracture under crustal conditions[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7):5609-5627.
DOI URL |
[20] |
YASUHARA H, KINOSHITA N, OHFUJI H, et al. Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model[J]. Applied Geochemistry, 2011, 26(12):2074-2088.
DOI URL |
[21] |
HUANG Y H, KOLDITZ O, SHAO H B. Extending the persistent primary variable algorithm to simulate non-isothermal two-phase two-component flow with phase change phenomena[J]. Geothermal Energy, 2015, 3(1):13.
DOI URL |
[22] |
HUANG Y H, SHAO H B, WIELAND E, et al. A new approach to coupled two-phase reactive transport simulation for long-term degradation of concrete[J]. Construction and Building Materials, 2018, 190:805-829.
DOI URL |
[23] |
NAGEL T, SHAO H, SINGH A K, et al. Non-equilibrium thermochemical heat storage in porous media: Part 1-Conceptual model[J]. Energy, 2013, 60:254-270.
DOI URL |
[24] |
MIAO X Y, KOLDITZ O, NAGEL T. Modelling thermal performance degradation of high and low-temperature solid thermal energy storage due to cracking processes using a phase-field approach[J]. Energy Conversion and Management, 2019, 180:977-989.
DOI URL |
[25] |
YAPPAROVA A, MIRON G D, KULIK D A, et al. An advanced reactive transport simulation scheme for hydrothermal systems modelling[J]. Geothermics, 2019, 78:138-153.
DOI URL |
[1] | WANG Wanli, DUAN Yajuan, ZHANG Wei, ZHU Xi, MA Feng, WANG Guiling. Control factors and guidelines for urban-scale shallow geothermal energy development based on control units: An example from Xiong’an [J]. Earth Science Frontiers, 2024, 31(6): 158-172. |
[2] | DAI Chuanshan, LIU Dongxi, LI Jiashu, LEI Haiyan, CHEN Shuhuan, CHEN Qianhan, WANG Qilong. Single-well in-situ heat extraction technology—a review and perspectives [J]. Earth Science Frontiers, 2024, 31(6): 204-214. |
[3] | YANG Bing, MENG Tong, GUO Huaming, LIAN Guoxi, CHEN Shuaiyao, YANG Xi. Kd-based transport modeling of uranium in groundwater at an acid leaching uranium mine [J]. Earth Science Frontiers, 2024, 31(3): 381-391. |
[4] | HOU Yusong, HU Xiaonong, WU Jichun. Pore scale simulation study of transverse dispersion of solute in porous media with different cementation degrees [J]. Earth Science Frontiers, 2024, 31(3): 59-67. |
[5] | LIU Demin, WANG Jie, JIANG Huai, ZHAO Yue, GUO Tieying, YANG Weiran. Evolutionary geodynamics and remote effects of the uplift of the Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2024, 31(1): 154-169. |
[6] | SUN Huanquan, MAO Xiang, WU Chenbingjie, GUO Dianbin, WANG Haitao, SUN Shaochuan, ZHANG Ying, LUO Lu. Geothermal resources exploration and development technology: Current status and development directions [J]. Earth Science Frontiers, 2024, 31(1): 400-411. |
[7] | LI Yudan, YOU Yuchun, ZENG Daqian, SHI Zhiliang, GU Shaohua, ZHANG Rui. Numerical simulation of water intrusion in wet gas reservoirs: A case study of the Changxing gas reservoir in Yuanba [J]. Earth Science Frontiers, 2023, 30(6): 341-350. |
[8] | ZHANG Yun, KANG Zhijiang, MA Junwei, ZHENG Huan, WU Dawei. A numerical simulation method for deep, discrete fractured reservoirs using a multi-scale fluid-rock coupling model [J]. Earth Science Frontiers, 2023, 30(6): 365-370. |
[9] | SUN Zhe, ZHANG Bin, CHEN Dawei, LI Yutao, WANG Hanxun. Two-phase oil/water seepage in fractured granite rock mass: Insight from seepage visualization experiment and numerical simulation [J]. Earth Science Frontiers, 2023, 30(3): 465-475. |
[10] | HE Bizhu, ZHENG Menglin, YUN Xiaorui, CAI Zhihui, JIAO Cunli, CHEN Xijie, ZHENG Yong, MA Xuxuan, LIU Ruohan, CHEN Huiming, ZHANG Shengsheng, LEI Min, FU Guoqiang, LI Zhenyu. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai-Tibet Plateau [J]. Earth Science Frontiers, 2023, 30(1): 81-105. |
[11] | SUN Hui, LIU Xiaodong. Numerical simulation of the climate effects of the Tibetan Plateau uplift: A review of research advances [J]. Earth Science Frontiers, 2022, 29(5): 300-309. |
[12] | SHEN Xiaofang, WAN Yuyu, WANG Ligang, SU Xiaosi, DONG Weihong. Multiphase flow modeling of natural attenuation of volatile organic compounds (VOCs) in a petroleum contaminated sit [J]. Earth Science Frontiers, 2021, 28(5): 90-103. |
[13] | AN Wentong, CHEN Jianping, ZHU Pengfei. A two-way forecasting method based on numerical simulation of mineralization process for the prediction of concealed ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 97-111. |
[14] | WANG Dianju, LI Jianghai, LI Yihe. Rheology of the lower crust controls the polarity of conjugated basins asymmetry on the South Atlantic passive margin [J]. Earth Science Frontiers, 2020, 27(3): 254-261. |
[15] | KANG Fangchao, TANG Chun’an. Overview of enhanced geothermal system (EGS) based on excavation in China [J]. Earth Science Frontiers, 2020, 27(1): 185-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||