Earth Science Frontiers ›› 2025, Vol. 32 ›› Issue (4): 108-121.DOI: 10.13745/j.esf.sf.2025.4.73
Previous Articles Next Articles
XIE Miao1(), LIU Bingli2,3,*(
), LI Yunhe2,3, WANG Zhengyao2,3, CAO Changjie2,3, WU Yixiao4
Received:
2025-01-15
Revised:
2025-04-29
Online:
2025-07-25
Published:
2025-08-04
CLC Number:
XIE Miao, LIU Bingli, LI Yunhe, WANG Zhengyao, CAO Changjie, WU Yixiao. Quantitative prediction method of gold deposits in Gannan area under unbalanced sample conditions[J]. Earth Science Frontiers, 2025, 32(4): 108-121.
层类别 | 输入 | 输出 | 卷积核大小 |
---|---|---|---|
Conv2d_1 | [m,9,40,40] | [m,32,20,20] | 5×5 |
BatchNorm2d | [m,32,40,40] | [m,32,40,40] | |
ReLU | [m,32,40,40] | [m,32,40,40] | |
MaxPooL_1 | [m,32,40,40] | [m,32,20,20] | 2×2 |
Conv2d_2 | [m,32,20,20] | [m,64,20,20] | 3×3 |
BatchNorm2d | [m,64,20,20] | [m,64,20,20] | |
ReLU | [m,64,20,20] | [m,64,20,20] | |
MaxPooL_2 | [m,64,20,20] | [m,64,10,10] | 2×2 |
Conv2d_3 | [m,64,10,10] | [m,128,10,10] | 3×3 |
BatchNorm2d | [m,128,10,10] | [m,128,10,10] | |
ReLU | [m,128,10,10] | [m,128,10,10] | |
Linear_1 | [m,12800] | [m,512] | |
Linear_2 | [m,512] | [m,2] |
Table 1 CNN network structure
层类别 | 输入 | 输出 | 卷积核大小 |
---|---|---|---|
Conv2d_1 | [m,9,40,40] | [m,32,20,20] | 5×5 |
BatchNorm2d | [m,32,40,40] | [m,32,40,40] | |
ReLU | [m,32,40,40] | [m,32,40,40] | |
MaxPooL_1 | [m,32,40,40] | [m,32,20,20] | 2×2 |
Conv2d_2 | [m,32,20,20] | [m,64,20,20] | 3×3 |
BatchNorm2d | [m,64,20,20] | [m,64,20,20] | |
ReLU | [m,64,20,20] | [m,64,20,20] | |
MaxPooL_2 | [m,64,20,20] | [m,64,10,10] | 2×2 |
Conv2d_3 | [m,64,10,10] | [m,128,10,10] | 3×3 |
BatchNorm2d | [m,128,10,10] | [m,128,10,10] | |
ReLU | [m,128,10,10] | [m,128,10,10] | |
Linear_1 | [m,12800] | [m,512] | |
Linear_2 | [m,512] | [m,2] |
类别 | 生成器学习率衰减 | 判别器学习率衰减 | 批次大小 | 迭代次数 | 优化器 |
---|---|---|---|---|---|
正样本 | 0.99 | 0.98 | 32 | 2 500 | Adam |
负样本 | 0.99 | 0.98 | 32 | 2 500 | Adam |
Table 2 GAN network parameter
类别 | 生成器学习率衰减 | 判别器学习率衰减 | 批次大小 | 迭代次数 | 优化器 |
---|---|---|---|---|---|
正样本 | 0.99 | 0.98 | 32 | 2 500 | Adam |
负样本 | 0.99 | 0.98 | 32 | 2 500 | Adam |
类别 | 惩罚系数 | 生成器学习率衰减 | 判别器学习率衰减 | 批次大小 | 迭代次数 | 优化器 |
---|---|---|---|---|---|---|
正样本 | 7.5 | 0.975 | 0.97 | 32 | 2 500 | Adam |
负样本 | 6.5 | 0.975 | 0.97 | 32 | 2 500 | Adam |
Table 3 WGAN-GP network parameter
类别 | 惩罚系数 | 生成器学习率衰减 | 判别器学习率衰减 | 批次大小 | 迭代次数 | 优化器 |
---|---|---|---|---|---|---|
正样本 | 7.5 | 0.975 | 0.97 | 32 | 2 500 | Adam |
负样本 | 6.5 | 0.975 | 0.97 | 32 | 2 500 | Adam |
模型 | 正样本FID值 | 负样本FID值 | FID平均值 |
---|---|---|---|
滑动窗口 | 90.08 | 15.98 | 53.03 |
GAN | 279.76 | 197.32 | 238.54 |
WGAN-GP | 165.87 | 36.68 | 101.27 |
Table 4 The optimal FID values for each model
模型 | 正样本FID值 | 负样本FID值 | FID平均值 |
---|---|---|---|
滑动窗口 | 90.08 | 15.98 | 53.03 |
GAN | 279.76 | 197.32 | 238.54 |
WGAN-GP | 165.87 | 36.68 | 101.27 |
增强倍数 | 训练集准确率/% | 测试集准确率/% | 召回率/% | 精确率/% | Kappa系数/% | F1分数/% |
---|---|---|---|---|---|---|
×4 | 98.67 | 89.47 | 89.47 | 91.18 | 78.38 | 89.25 |
×8 | 98.79 | 90.64 | 90.64 | 91.72 | 80.84 | 89.87 |
×12 | 99.26 | 85.96 | 85.96 | 88.84 | 70.99 | 85.49 |
Table 5 Comparison of classification performance of CNN models under different enhancement factors
增强倍数 | 训练集准确率/% | 测试集准确率/% | 召回率/% | 精确率/% | Kappa系数/% | F1分数/% |
---|---|---|---|---|---|---|
×4 | 98.67 | 89.47 | 89.47 | 91.18 | 78.38 | 89.25 |
×8 | 98.79 | 90.64 | 90.64 | 91.72 | 80.84 | 89.87 |
×12 | 99.26 | 85.96 | 85.96 | 88.84 | 70.99 | 85.49 |
模型 | 训练集 准确率/% | 测试集 准确率/% | 召回率/% | 精确度/% | Kappa系数/% | F1分数/% | 受试者工作特征 曲线下面积 |
---|---|---|---|---|---|---|---|
滑动窗口_CNN | 99.87 | 87.72 | 87.71 | 88.76 | 74.86 | 87.52 | 0.92 |
GAN_CNN | 98.12 | 89.47 | 89.47 | 91.18 | 78.38 | 87.39 | 0.93 |
WGAN-GP_CNN | 98.39 | 94.74 | 94.73 | 95.2 | 89.29 | 94.7 | 0.98 |
Table 6 Comparison of classification performance among models with 8-fold data augmentation
模型 | 训练集 准确率/% | 测试集 准确率/% | 召回率/% | 精确度/% | Kappa系数/% | F1分数/% | 受试者工作特征 曲线下面积 |
---|---|---|---|---|---|---|---|
滑动窗口_CNN | 99.87 | 87.72 | 87.71 | 88.76 | 74.86 | 87.52 | 0.92 |
GAN_CNN | 98.12 | 89.47 | 89.47 | 91.18 | 78.38 | 87.39 | 0.93 |
WGAN-GP_CNN | 98.39 | 94.74 | 94.73 | 95.2 | 89.29 | 94.7 | 0.98 |
[1] |
张振杰, 成秋明, 杨玠, 等. 机器学习与成矿预测: 以闽西南铁多金属矿预测为例[J]. 地学前缘, 2021, 28(3): 221-235.
DOI |
[2] |
左仁广. 勘查地球化学数据挖掘与弱异常识别[J]. 地学前缘, 2019, 26(4): 67-75.
DOI |
[3] |
左仁广. 基于数据科学的矿产资源定量预测的理论与方法探索[J]. 地学前缘, 2021, 28(3): 49-55.
DOI |
[4] |
ZUO R G, XIONG Y H, WANG J, et al. Deep learning and its application in geochemical mapping[J]. Earth-Science Reviews, 2019, 192: 1-14.
DOI |
[5] | XIONG Y H, ZUO R G, CARRANZA E J M. Mapping mineral prospectivity through big data analytics and a deep learning algorithm[J]. Ore Geology Reviews, 2018, 102: 811-817. |
[6] | SUN T, LI H, WU K X, et al. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from southern Jiangxi Province, China[J]. Minerals, 2020, 10(2): 102. |
[7] | LI S, CHEN J P, XIANG J. Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data[J]. Neural Computing and Applications, 2020, 32(7): 2037-2053. |
[8] | CHEN G X, HUANG N, WU G P, et al. Mineral prospectivity mapping based on wavelet neural network and Monte Carlo simulations in the Nanling W-Sn metallogenic province[J]. Ore Geology Reviews, 2022, 143: 104765. |
[9] |
王成彬, 王明果, 王博, 等. 融合知识图谱的矿产资源定量预测[J]. 地学前缘, 2024, 31(4): 26-36.
DOI |
[10] |
曹胜桃, 胡瑞忠, 周永章, 等. 基于大数据关联规则算法的卡林型金矿床元素富集规律及找矿方法研究[J]. 地学前缘, 2024, 31(4): 58-72.
DOI |
[11] | CHEN G X, CHENG Q M, PUETZ S. Special issue: data-driven discovery in geosciences: opportunities and challenges[J]. Mathematical Geosciences, 2023, 55(3): 287-293. |
[12] | ZUO R, PENG Y, LI T, XIONG Y. Challenges of geological prospecting big data mining and integration using deep learning algorithms[J]. Earth Science, 2021, 46(1): 350-358. |
[13] | FADAEE M, BISAZZA A, MONZ C. Data augmentation for low-resource neural machine translation[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2:Short Papers). Vancouver, Canada: Stroudsburg, PA, USAACL, 2017: 567-573. |
[14] |
王琳, 季晓慧, 杨眉, 等. 基于数据增强和集成学习的矿物图像识别[J]. 地学前缘, 2024, 31(4): 87-94.
DOI |
[15] | YANG N, ZHANG Z K, YANG J H, et al. Applications of data augmentation in mineral prospectivity prediction based on convolutional neural networks[J]. Computers & Geosciences, 2022, 161: 105075. |
[16] | HARIHARAN S, TIRODKAR S, PORWAL A, et al. Random forest-based prospectivity modelling of greenfield terrains using sparse deposit data: an example from the tanami region, Western Australia[J]. Natural Resources Research, 2017, 26(4): 489-507. |
[17] | LI T F, XIA Q L, ZHAO M Y, et al. Prospectivity mapping for tungsten polymetallic mineral resources, Nanling metallogenic belt, South China: use of random forest algorithm from a perspective of data imbalance[J]. Natural Resources Research, 2020, 29(1): 203-227. |
[18] | PRADO E M G, DESOUZA FILHO C R, CARRANZA E J M, et al. Modeling of Cu-Au prospectivity in the Carajás mineral province (Brazil) through machine learning: dealing with imbalanced training data[J]. Ore Geology Reviews, 2020, 124: 103611. |
[19] | PARSA M. A data augmentation approach to XGboost-based mineral potential mapping: an example of carbonate-hosted Zn-Pb mineral systems of Western Iran[J]. Journal of Geochemical Exploration, 2021, 228: 106811. |
[20] | MA D A, TANG P, ZHAO L J. Sifting GAN: generating and sifting labeled samples to improve the remote sensing image scene classification baseline in vitro[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7): 1046-1050. |
[21] |
张利军, 鲁文豪, 张建东, 等. 基于深度学习的镜下岩石、矿物薄片识别[J]. 地学前缘, 2024, 31(3): 498-510.
DOI |
[22] | MORENO-BAREA F J, STRAZZERA F, JEREZ J M, et al. Forward noise adjustment scheme for data augmentation[C]// 2018 IEEE Symposium Series on Computational Intelligence (SSCI). Bangalore, India: IEEE, 2018: 728-734. |
[23] | DEVRIES T, TAYLOR G W. Improved regularization of convolutional neural networks with cutout[EB/OL]. (2017-11-29)[2024-12-15]. http://arxiv.org/pdf/1708.04552. |
[24] | LI S, CHEN J P, LIU C, et al. Mineral prospectivity prediction via convolutional neural networks based on geological big data[J]. Journal of Earth Science, 2021, 32(2): 327-347. |
[25] | LI Q K, CHEN G X, LUO L. Mineral prospectivity mapping using attention-based convolutional neural network[J]. Ore Geology Reviews, 2023, 156: 105381. |
[26] | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks fromoverfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
[27] | WU Y X, LIU B L, GAO Y X, et al. Mineral prospecting mapping with conditional generative adversarial network augmented data[J]. Ore Geology Reviews, 2023, 163: 105787. |
[28] | 第鹏飞, 汤庆艳, 刘聪, 等. 西秦岭夏河—合作地区早子沟和加甘滩金矿床石英微量元素特征及意义[J]. 现代地质, 2021, 35(6): 1608-1621. |
[29] | 李康宁, 贾儒雅, 李鸿睿, 等. 西秦岭甘肃夏河—合作地区与中酸性侵入岩有关的金铜多金属成矿系统及找矿预测[J]. 地质通报, 2020, 39(8): 1191-1203. |
[30] | 蒲万峰, 李鸿睿, 袁臻, 等. 甘肃省玛曲县大水金矿“三位一体” 找矿预测地质模型[J]. 地质通报, 2020, 39(8): 1163-1172. |
[31] | 第鹏飞, 汤庆艳, 刘东晓, 等. 西秦岭甘南地区金矿床黄铁矿微量元素地球化学特征及意义: 以加甘滩和早子沟金矿为例[J]. 稀土, 2023, 44(4): 140-154. |
[32] | LIUJ J, LIU C H, CARRANZA E J M, et al. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China[J]. Journal of Asian Earth Sciences, 2015, 103: 40-69. |
[33] |
刘家军, 刘冲昊, 王建平, 等. 西秦岭地区金矿类型及其成矿作用[J]. 地学前缘, 2019, 26(5): 1-16.
DOI |
[34] | 陈耀宇. 甘南地区金矿找矿标志与找矿模型: 大水、 早子沟、 拉尔玛金矿床对比分析[J]. 矿产与地质, 2020, 34(1): 7-18. |
[35] | 李康宁, 张江苏, 徐进, 等. 西秦岭甘南加甘滩金矿床流体包裹体及氢-氧-硫-铅同位素特征[J]. 地质通报, 2023, 42(6): 941-952. |
[36] | 朱赖民, 张国伟, 李犇, 等. 秦岭造山带重大地质事件、 矿床类型和成矿大陆动力学背景[J]. 矿物岩石地球化学通报, 2008, 27(4): 384-390. |
[37] | 陈衍景. 秦岭印支期构造背景、 岩浆活动及成矿作用[J]. 中国地质, 2010, 37(4): 854-865. |
[38] | 陈衍景, 张静, 张复新, 等. 西秦岭地区卡林—类卡林型金矿床及其成矿时间、 构造背景和模式[J]. 地质论评, 2004, 50(2): 134-152. |
[39] | 翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 3版. 北京: 地质出版社, 2011. |
[40] | 张家瑞, 高永伟, 张忠平, 等. 甘肃西秦岭地区重要金矿预测模型的建立及资源潜力预测[J]. 西北地质, 2024, 57(5): 88-105. |
[41] | XIE X J, MU X Z, REN T X. Geochemical mapping in China[J]. Journal of Geochemical Exploration, 1997, 60(1): 99-113. |
[42] | XIE X J, WANG X Q, ZHANG Q, et al. Multi-scale geochemical mapping in China[J]. Geochemistry: Exploration, Environment, Analysis, 2008, 8(3/4): 333-341. |
[43] | WANG X Q, ZHANG Q, ZHOU G H. National-scale geochemical mapping projects in China[J]. Geostandards and Geoanalytical Research, 2007, 31(4): 311-320. |
[44] | AITCHISON J. The statistical analysis of compositional data[M]. London: Chapman and Hall, 1986. |
[45] | ZUO R G, WANG Z Y. Effects of random negative training samples on mineral prospectivity mapping[J]. Natural Resources Research, 2020, 29(6): 3443-3455. |
[46] | LU Y, TAO X P, ZENG N Y, et al. Enhanced CNN classification capability for small rice disease datasets using progressive WGAN-GP: algorithms and applications[J]. Remote Sensing, 2023, 15(7): 1789. |
[47] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27:2672-2680. |
[48] | GOODFELLOW I, YOSHUA B, AARON C. Deep learning[M]. Cambridge, MA: MIT Press, 2016. |
[49] | RADFORD A, METZ L, CHINTALAS S. Unsupervised representation learning with deep convolution generative adversarial networks[EB/OL]. (2016-01-07)[2024-12-15]. http://arxiv.org/pdf/1511.06434. |
[50] | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANS[J]. Advances in Neural Information Processing Systems, 2016, 29. DOI: 10.4855/arxiv.1511.06434. |
[51] | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[J]. Advances in Neural Information Processing Systems, 2017, 30: 5767-5777. |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[EB/OL]. (2017-03-31)[2025-04-26]. https://arxiv.org/abs/1704.00028v3. | |
[52] | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
[53] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
DOI PMID |
[54] | KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 1097-1105. |
[55] | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[EB/OL]. (2015-03-02)[2025-01-20]. http://arxiv.org/pdf/1502.03167. |
[56] | HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[J]. Advances in Neural Information Processing Systems, 2017, 30: 6626-6637. |
[1] | LI Nan, YIN Shitao, LIU Bingli, XIAO Keyan, WANG Chenghui, DAI Hongzhang, SONG Xianglong. A knowledge-data driven interpretable intelligent mineral prediction: A case study of the Keeryin Mineral Concentration Area, Sichuan Province [J]. Earth Science Frontiers, 2025, 32(4): 60-77. |
[2] | LI Yuntao, DING Wenlong, HAN Jun, HUANG Cheng, WANG Laiyuan, MENG Qingxiu. Fractures in Ordovician carbonate rocks in strike-slip fault zone, Shunbei area: Fracture distribution prediction and fracture controlling factors [J]. Earth Science Frontiers, 2024, 31(5): 263-287. |
[3] | WANG Lin, JI Xiaohui, YANG Mei, HE Mingyue, ZHANG Zhaochong, ZENG Shan, WANG Yuzhu. Mineral identification based on data augmentation and ensemble learning [J]. Earth Science Frontiers, 2024, 31(4): 87-94. |
[4] | ZHANG Lijun, LU Wenhao, ZHANG Jiandong, PENG Guangxiong, BU Jiancai, TANG Kai, XIE Jiancheng, XU Zhibin, YANG Haiyan. Rock and mineral thin section identification based on deep learning [J]. Earth Science Frontiers, 2024, 31(3): 498-510. |
[5] | WANG Gongwen, ZHANG Shouting, YAN Changhai, PANG Zhenshan, WANG Hongwei, FENG Zhankui, DONG Hong, CHENG Hongtao, HE Yaqing, LI Ruixi, ZHANG Zhiqiang, HUANG Leilei, GUO Nana. Resource-environmental joint forecasting in the Luanchuan mining district, China through big data mining and 3D/4D modeling [J]. Earth Science Frontiers, 2021, 28(3): 139-155. |
[6] | KONG Weihao, XIAO Keyan, CHEN Jianping, SUN Li, LI Nan. A combined prediction method for reducing prediction uncertainty in the quantitative mineral resources prediction [J]. Earth Science Frontiers, 2021, 28(3): 128-138. |
[7] | AN Wentong, CHEN Jianping, ZHU Pengfei. A two-way forecasting method based on numerical simulation of mineralization process for the prediction of concealed ore deposits [J]. Earth Science Frontiers, 2021, 28(3): 97-111. |
[8] | XIA Qinglin, ZHAO Mengyu, WANG Xiaochen, LENG Shuai, LI Tongfei, XIONG Shuangcai. Quantitative prediction of molybdenum-copper polymetallic mineral resources in the Xindalai grassland-covered area of Inner Mongolia based on geological anomalies [J]. Earth Science Frontiers, 2021, 28(3): 56-66. |
[9] | ZUO Renguang. Data science-based theory and method of quantitative prediction of mineral resources [J]. Earth Science Frontiers, 2021, 28(3): 49-55. |
[10] | GUO Yanjun, ZHOU Zhe, LIN Hexun, LIU Xiaohui, CHEN Danqiu, ZHU Jiaqi, WU Junqi. The mineral intelligence identification method based on deep learning algorithms [J]. Earth Science Frontiers, 2020, 27(5): 39-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||